
The FLUKA User Routines

How to taylor FLUKA
to specific, non standard, user’s needs:

User programming in the FLUKA environment

Why User Routines

Unlike some other Monte Carlo particle transport codes, Fluka gets its input
mainly from a simple file. It offers a rich choice of options for scoring most
quantities of possible interest and for applying different variance reduction
techniques, without requiring the users to write a single line of code.
However, although normally there is no need for any “user code”, there are
special cases where this is unavoidable, either because of the complexity of
the problem, or because the desired information is too unusual or too
problem-specific to be offered as a standard option.
And on the other hand, even when this is not strictly necessary, experienced
programmers may like to create customised input/output interfaces.
A number of user routines (available on LINUX and UNIX platforms in
directory usermvax) allow to define non-standard input and output, and in
some cases even to modify to a limited extent the normal particle transport.
Most of them are already present in the Fluka library as dummy or template
routines, and require a special command in the standard input file to be
activated.
Users can modify any one of these routines, and even insert into them further
calls to their own private ones, or to external packages (at their own risk!).
This increased flexibility must be balanced against the advantage of using as
far as possible the Fluka standard facilities, which are known to be reliable
and well tested.

What is available for the users

The “skeleton” of all possible user routines
in $FLUPRO/usermvax
The include files containing the COMMON
blocks with all relevant variables to access
particle stack, secondary products and
their kinematics, particle and material
properties, etc. in $FLUPRO/flukapro
The compiling and linking scripts which
are in $FLUPRO/flutil

Something more that users may need

The “rules” to achieve a good
programming style inside FLUKA
The knowledge of a certain number of
utilities already existing in FLUKA
(mathematics, random number, general
utilities, etc.)
The “theoretical” background and the
proper know-how to implement a correct
algorithm for the specific user problem

A first look to the correspondece bewteen
some of the user routines and FLUKA commands

USRICALL

USERDUMP

USROCALL

USERWEIG

SOURCE

usrini.f

usrout.f (usreou.f)

source.f

mgdraw.f

comscw.f
fluscw.f

(usrein.f)
Ev

en
t L

oo
p:

But many other
correspondences
exist as explained
later

The full list of user routines

abscff.f
comscw.f
dffcff.f
endscp.f
fldscp.f
fluscw.f
formfu.f
frghns.f
fusrbv.f
lattic.f
lusrbl.f
magfld.f
mdstck.f

mgdraw.f
musrbr.f
ophbdx.f
pshckp.f
queffc.f
rflctv.f
rfrndx.f
soevsv.f
source.f
stupre.f
stuprf.f
ubsset.f
udcdrl.f

usimbs.f
usrein.f
usreou.f
usrini.f
usrmed.f
usrout.f
usrrnc.f
ustckv.f

A possible classification in terms of their use (1)

User run control
usrini.f
usreini.f
usrout.f
usreou.f

Event generation, physics,
kinematics
source.f
soevsv.f
udcdrl.f
formfu.f

Properties of medium
magfld.f
usrmed.f

See MAT-PROP

A possible classification in terms of their use (2)

in association to FLUKA output
comscw.f
fluscw.f
endscp.f
fldscp.f
musrbr.f
lusrbl.f
fusrbv.f
usrrnc.f

Intercepting particle stack
mdstck.f
stupre.f
stuprf.f

Biasing
usbset.f
usimbs.f

A possible classification in terms of their use (3)

The most general output management
mgdraw.f

To drive optical photon transport
abscff.f
dffcff.f
frghns.f
ophbdx.f
queffc.f
rflctv.f
rfrndx.f

To manage lattice geometry
lattic.f

See Chap. 13 of manual

Programming in FLUKA

It is recommended that at least the following lines be
present at the beginning of each routine:

INCLUDE ’(DBLPRC)’
INCLUDE ’(DIMPAR)’
INCLUDE ’(IOUNIT)’

Each INCLUDE file contains a COMMON block, plus related
constants.
Additional INCLUDEs may be useful, in particular BEAMCM,
CASLIM, EMFSTK, SOURCM, EVTFLG, FHEAVY, GENSTK,
LTCLCM, FLKMAT, RESNUC, SCOHLP, SOUEVT, FLKSTK,
SUMCOU, TRACKR, USRBIN, USRBDX, USRTRC, USRYLD.
Note the parentheses which are an integral part of the Fluka
INCLUDE file names.

Programming in FLUKA

Directory $FLUPRO/flukapro contains a full documentation
about the meaning of the variables of the INCLUDE files.

DBLPRC: included in all routines of Fluka, contains the
declaration

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMPAR: dimensions of the most important arrays
IOUNIT: logical input and output unit numbers and sets

many mathematical and physical constants.

Users are strongly encouraged to adhere to “Fluka style” by
using systematically double precision (except for very good
reasons such as calling external single precision scoring
packages), and to use constants defined in this file for
maximum accuracy.

Other important COMMON blocks in short (1)

BEAMCM: properties of primary particles as defined by options
BEAM and BEAMPOS

CASLIM: number of primary particles followed (needed for
normalisation)

EMFSTK: particle stack for electrons and photons
SOURCM: user variables and information for a user-written

source
EVTFLG: event flags
FHEAVY: stack of heavy secondaries created in nuclear

evaporation
GENSTK: properties of each secondary created in a

hadronic event
LTCLCM: LaTtice CeLl CoMmon (needed when writing

symmetry transformations for Lattice Geometry)
FLKMAT: material properties
FLKSTK: main Fluka particle stack
RESNUC: properties of the current residual nucleus

Other important COMMON blocks in short (2)

SCOHLP: SCOring HeLP (information on current estimator
type). It contains a flag ISCRNG, indicating the
quantity being scored by the current estimator, and
one JSCRNG corresponding to the binning/ detector
number. Binnings and detectors are sequentially
numbered according to their order of appearance in
standard input. Note that several detectors can
have the same JSCRNG number (for instance
Binning N. 3 and Track-length estimator N. 3).
They can be distinguished based on the value of
ISCRNG. However, note that the same value of
ISCRNG may have different meanings in functions
FLUSCW and COMSCW (see later)

Other important COMMON blocks in short (2)

SOUEVT: SOUrce EVenT (useful when source particles are
obtained from an external event generator)

SUMCOU: total numbers and total weights relative to many
physical and Monte Carlo events (needed for
normalisation, energy balance etc.)

TRACKR: TRACK Recording (properties of the currently
transported particle and its path)

USRBIN, USRBDX, USRSNC, USRTRC, USRYLD:
parameters of the requested estimators

Exercise and homework

Look at (DBLPRC) and learn the available
PARAMETERS (numerical constants,
physics constants, unit conversions...)
Look at (IOUNIT) and learn the default
logical unit assignement in FLUKA

usrini (USeR INItialization)

Subroutine USRINI is called every time a USRICALL card
is read in input. It can be used to do any kind of
initialisation: reading and manipulating data from one or
more files, calling other private routines, etc.
The calling parameters can carry any kind of useful
information or can be used as flags to choose between
different possible actions to be performed before any
particle transport takes place.

usrein (USeR Event INitialization)

Subroutine USREIN is called just before the first source
particle of an event is unloaded from stack and begins to
be transported. An event is the full history of a group of
related particles and their descendants.
If primaries are loaded into stack by the input option
BEAM, there is only one source particle per event; but
there can be more if the user routine SOURCE is used to
load particles into stack. USREIN does not need any
special command to be activated, but the default version
of USREIN does nothing: the user can write here any kind
of initialisation.

usrou (USeR OUtput)

Subroutine USROUT is called every time a USROCALL card
is read in input. It is used to print special user-written
output in addition to the standard one provided by default.
The calling parameters can carry any kind of useful
information or can be used as flags to choose between
different possible actions to be performed after all particle
transport has taken place.

usreou (USeR Event OUtput)

Subroutine USREOU is called at the end of each event,
namely after all event primary particles and their
descendants have been transported. (See USREIN above
for a definition of an event).
USREOU does not need any special command to be
activated, but the default version of USREOU does
nothing: the user can write here any kind of event
analysis, output, etc.

comscw (weighting energy or star deposit)

This function is activated by option USERWEIG with WHAT(6) > 0.0.
Energy and star densities obtained via SCORE and USRBIN, energy and
stars obtained via EVENTBIN and production of residual nuclei obtained
via RESNUCLEi are multiplied by the value returned by this function.
The user can implement any desired logic to differentiate the returned
value according to any information contained in the argument list
(particle type, position, region, amount deposited, particle generation),
or information available in COMMON SCOHLP (binning number, type of
scored quantity). The scored quantity is given by the flag ISCRNG (in
SCOHLP):
ISCRNG = 1 −! Energy density binning
ISCRNG = 2 −! Star density binning
ISCRNG = 3 −! Residual nuclei scoring

comscw (continues...)

The binning/detector number is given by JSCRNG (in SCOHLP)
and is printed in output between the estimator type and the
detector name:

Note that an detector of residual nuclei can have the same
JSCRNG number as a binning (use the value of ISCRNG to
discriminate).

Further information can be obtained including COMMON
TRACKR (for instance particle’s total energy, direction cosines,
age). TRACKR contains also special user variables (both integer
and in double precision) which can be used to save information
about particles which have undergone some particular event.

If data concerning the current material are needed, it can be
accessed as MEDIUM(MREG) if file (FLKMAT) is included.

typical example of the use of comscw

A common simple application of COMSCW is to score dose
according to the local density:

Let’s give a look to the (TRACKR) include

TRACKR (continues...)

TRACKR (continues...)

TRACKR (continues...)

fluscw (weighting fluence, current and yield)

Similar to COMSCW. Function FLUSCW is activated by option
USERWEIG, with WHAT(3) > 0.0. Yields obtained via
USRYIELD, fluences calculated with USRBDX, USRTRACK,
USRCOLL, USRBIN, and currents calculated with USRBDX are
multiplied by the value returned by this function.

fluscw (continues...)

The user can implement any desired logic to differentiate the
returned value according to any information contained in the
argument list (particle type, energy, direction, weight,
position, region, boundary, particle generation), or
information available in COMMON SCOHLP (binning or
detector number, estimator type). The estimator type is given
by the flag ISCRNG (in COMMON SCOHLP):
ISCRNG = 1 −! Boundary crossing estimator
ISCRNG = 2 −! Track-length binning
ISCRNG = 3 −! Track-length estimator
ISCRNG = 4 −! Collision density estimator
ISCRNG = 5 −! Yield estimator

Exercise and homework

Prepare the use of COMSCW to obtain a
USRBIN output in local dose.
Try to make use of USRINI and USROUT
Give a look to (FLKMAT) and (SCOHLP)

magfld (definition of a magnetic field)

MAGFLD is activated by option MGNFIELD with WHAT(4-
6)=0.0 and is used to return intensity and direction of a
magnetic field based on the current position and region. It is
called only if the current region has been flagged as having a
non-zero magnetic field by option ASSIGNMAt , with WHAT(5)
= 1.0.

The magnetic field spatial distribution is often read and
interpolated from an external field map.

Beware of the normalization of direction cosines!

Note that in any case the direction cosines must be properly
normalised in double precision even if B = 0.0.
The recommended algorithm is:

The need for an high accuracy normalization of direction cosines
is a general rule in FLUKA: there are checks that in case of bad
normalization produce a lot of error messages (and time loss...)

source (user written source: generation of initial
kinematics)

Subroutine SOURCE is probably the most frequently used
user routine. It is activated by option SOURCE and is used to
sample primary particle properties from distributions (in
space, energy, time, direction or mixture of particles) too
complicated to be described with the BEAM, BEAMPOS and
BEAMAXES cards alone. For each phase-space variable, a
value must be loaded onto COMMON FLKSTK (particle bank)
before returning control. These values can be read from a file,
generated by some sampling algorithm, or just assigned.

Using source

Option SOURCE allows the user to input up to 12 numerical
values (WHASOU(1),(2). . . (12)) and one 8-character string
(SDUSOU) which can be accessed by the subroutine by
including the following line:

INCLUDE ’(SOURCM)’

The user can insert any initialization within the following IF
block:

Using source (continues...)

The user can load onto the FLKSTK stack one or more source particles at
each call: for each particle loaded the pointer must be increased by 1.

sets the weight of the particle = 1.0

update the total weight of the primaries (don’t change):

by default sets the type of particle equal to the one
defined by the BEAM card. If no BEAM card is given in
input, IJBEAM is = 1 (proton).

Using source (continues...)

Never change the following lines:

Using source (continues...)

The following lines can remain at their standard

Using source (continues...)

Assigning momentum/energy
In the template routine, the momentum is assumed to be assigned
by BEAM option (its value, PBEAM, is taken from COMMON
BEAMCM, which contains all values defined by options BEAM and
BEAMPOS.

Here the user can make direct assignment of momentum, read
from an external file or introduce code lines to sample from a
distribution

Alternatively the user can make sample kinetic energy and derive
the momentum. Be coherent!

Using source (continues...)

Here direction cosines are assigned/read/sampled:

Be careful to ensure the proper normalization within
machine accuracy!! (see the case of MAGFLD)

It is also possible to assign a polarization:

Finally, initial space coordinate assigned/read/sampled:

Using source (continues...)

The last line calls the SOEVSV user routine to save the stack
for possible further use.

The values of beam characteristics defined by commands
BEAM and POLARIZAti are available in COMMON BEAMCM:
the angular divergence (variable DIVBM), beam width
(XSPOT and YSPOT), and the polarisation vector (UBMPOL,
VBMPOL, WBMPOL) can help to set up a scheme to sample
the corresponding quantities from user-defined distributions.
But sampling from the distributions pre-defined by BEAM and
POLARIZAti is not simply inherited by subroutine SOURCE: it
is the responsibility of the user to write such a scheme! For
this task, it may be useful to define a “beam reference frame”
by means of option BEAMAXES.

Using source (continues...)

Very Important:
when using SOURCE, remember that the use of the BEAM
card remains mandatory:
In that case the momentum (or energy) in WHAT(1) is
meant as the maximum possible value of momentum (or
energy) of your problem: this is used by FLUKA at
initialization time to perform tabulations.

If, at run time, an energy greater than the maximum
established in BEAM is sampled, an abort will be generated.

Exercise and homework

Study the BEAMCM, SOURCM, SOUEVT
commons
Write your own source to generate a
gaussian spread in energy of a beam
(possible also just with BEAM card, but
just to verify your capabilities...)

mgdraw (general event interface)

The most general interface to FLUKA content (if you
know how to use it...)

Subroutine MGDRAW, activated by option USERDUMP with
WHAT(1)≥100.0, usually writes a “collision tape”, i.e., a file
where all or selected transport events are recorded. The
default version (unmodified by the user) offers several
possibilities, selected by WHAT(3) in USERDUMP.

mgdraw (continues...)

The different ENTRY points of MGDRAW

Additional flexibility is offered by a user entry USDRAW,
interfaced with the most important physical events
happening during particle transport.

The user can modify of course also any other entry of this
subroutine:
BXDRAW called at boundary crossings,
EEDRAW called at event end,
MGDRAW for trajectory drawing,
ENDRAW for recording of energy deposition events
SODRAW for recording of source events):

mgdraw (continues...)

Possibilities the format of the output file can be
changed, and different combinations of events can be
written to file.

But the most interesting aspect of the routine is that
the six entries (all of which, if desired, can be activated
at the same time by setting USERDUMP with WHAT(3)
=0.0 and WHAT(4)≥1.0) constitute a complete
interface to the whole Fluka transport. Therefore,
MGDRAW can be used not only to write a collision tape,
but to do any kind of complex analysis. Typical: event
by event output (common for HEP applications.

GB1

Slide 44

GB1 Giuseppe Battistoni, 3/22/2006

mgdraw: the MGDRAW entry

MTRACK: number of energy deposition events along the track
JTRACK: type of particle
ETRACK: total energy of the particle
WTRACK: weight of the particle
NTRACK: values of XTRACK, YTRACK, ZTRACK: end of each track

segment
MTRACK: values of DTRACK: energy deposited at each deposition

event
CTRACK: total length of the curved path

Other variables are available in TRACKR (but not written by
MGDRAW unless the latter is modified by the user: particle
momentum, direction cosines, cosines of the polarisation vector,
age, generation, etc. (see a full list in the comment in the INCLUDE
file).

mgdraw: the BXDRAW entry

Called at Boundary Crossings

mgdraw: the EEDRAW entry

Called at Event End

mgdraw: the ENDRAW entry

Called at
pointlike Energy
Deposition dumps

(for example:
stopping particles,
photoelectric eff.,
etc.)

mgdraw: the SODRAW entry

SODRAW writes by default, for each source or beam particle:
-NCASE: (in COMMON CASLIM, with a minus sign to identify SODRAW

output) number of primaries followed so far
NPFLKA: (in COMMON FLKSTK) stack pointer
NSTMAX: (in COMMON FLKSTK) highest value of the stack pointer

encountered so far
TKESUM: (in COMMON SOURCM) total kinetic energy of the primaries of a

user written source, if applicable. Otherwise = 0.0
WEIPRI: (in COMMON SUMCOU) total weight of the primaries handled so

far

mgdraw: the USDRAW entry

USDRAW is called
after each
particle interaction
(requested by the
user with option
USERDUMP,
WHAT(4)≥1.0)

Exercise

Give a look at COMMONS: FLKSTK,
GENSTK, EMFSTK, FHEAVY
Make use of entry BXDRAW of mgdraw.f
to prepare an event by event output at a
boundary crossing
Look at the examples on the web site to
understand how to use mgdraw.f to
create outputs in other environments (for
istance HBOOK, Root)

When mgdraw should never be used

When biasing is requested
Whenever low-energy neutrons (E<20
MeV) are used

(or at least one has to be a real very experienced user
to manage these cases without making mistakes...)

Using Random Numbers in user routines

… = FLRNDM(XDUMMY)
returns a 64-bit random number (0-1)
CALL FLNRRN (RGAUSS)

returns a normally distributed random number RGAUSS
CALL FLNRR2 (RGAUS1,RGAUS2)

returns an uncorrelated pair of normally distributed
random numbers: RGAUS1 and RGAUS2
CALL SFECFE(SINT,COST)

returns a pair of random numbers, SINT and COST
such that: SINT**2+COST**2 = 1.D+00
CALL RACO (TXX. TYY, TZZ)

returns 3 random numbers (TXX, TYY, TZZ) such that:
TXX**2+TYY**2 + TZZ**2= 1.D+0

Mathematical library in FLUKA

FLUKA contains many mathematical routines of general
utility, so in general there should not be the need to call
external mathematical libraries:

flgaus: Gaussian adaptative integration
simpsn: Simpson integration
gamfun: Gamma fuction
radcub: Real solutions of 3rd order algebric equation
flgndr: Legendre polinomials
yinter, finter: interpolation routines
splinw: Spline interpolation
rordin, rordde: Sorting of vector values
...
Also: expansion in Laguerre and Chebishev polynomials,

Bezier fit, and many others...

At some time it will be possible to have a short-writeup for
their use.

Other useful routines

CALL OAUXFI (‘file’, LUN, ‘CHOPT’, IERR)
to open an auxiliary file (to read data or parameters)
looking automatically for the file in some default
locations (temporary directory, working directory,
$FLUPRO, $HOME) without the nee of givin the full path.
(see also OPEN data card)

CALL FLABRT(‘name’,’message’)
this allows to force a FLUKA abort on user request: it
might be useful to perform a debugging (using gdb for
instance)

Compiling and linking FLUKA user routines

Each user routine in FLUKA loads commons in the include
subdirectory $FLUPRO/flukapro/ etc.

$FLUPRO/flutil/fff has the right definition of the path to the
include subdirectory and the necessary list of g77 options

Example: $FLUPRO/flutil/fff usrini.f generates usrini.o

then $FLUPRO/flutil/lfluka –m fluka usrini.o –o flukamy will
perform the proper linking generating the executable here
called flukamy

Tip: $FLUPRO/fluitl/lfluka –m fluka usrini.f –o flukamy will
automatically call $FLUPRO/flutil/fff

Producing a user’s library

Sometimes the number of user routines may be large.
In this case the use of an object collection (library) is
advisable
lfluka is organized so as to look for libraries called:
libnnnn.a
Tipically the steps are the following:

1. compile with fff each user routine producing the *.o
objects

2. build the library: ar –rv libnnnn.a *.o
3. link with the command: $FLUPRO/flutil/lfluka –m fluka

–o name_executable -O nnnn

-O has to be used when adding objects and in
particular when replacing modules whichalready exist
in libflukahp.a (as the user routines)

	The FLUKA User Routines
	Why User Routines
	What is available for the users
	Something more that users may need
	A first look to the correspondece bewteensome of the user routines and FLUKA commands
	The full list of user routines
	A possible classification in terms of their use (1)
	A possible classification in terms of their use (2)
	A possible classification in terms of their use (3)
	Programming in FLUKA
	Programming in FLUKA
	Other important COMMON blocks in short (1)
	Other important COMMON blocks in short (2)
	Other important COMMON blocks in short (2)
	Exercise and homework
	usrini (USeR INItialization)
	usrein (USeR Event INitialization)
	usrou (USeR OUtput)
	usreou (USeR Event OUtput)
	comscw (weighting energy or star deposit)
	comscw (continues...)
	typical example of the use of comscw
	Let’s give a look to the (TRACKR) include
	TRACKR (continues...)
	TRACKR (continues...)
	TRACKR (continues...)
	fluscw (weighting fluence, current and yield)
	fluscw (continues...)
	Exercise and homework
	magfld (definition of a magnetic field)
	Beware of the normalization of direction cosines!
	source (user written source: generation of initial kinematics)
	Using source
	Using source (continues...)
	Using source (continues...)
	Using source (continues...)
	Using source (continues...)
	Using source (continues...)
	Using source (continues...)
	Using source (continues...)
	Exercise and homework
	mgdraw (general event interface)
	mgdraw (continues...)
	mgdraw (continues...)
	mgdraw: the MGDRAW entry
	mgdraw: the BXDRAW entry
	mgdraw: the EEDRAW entry
	mgdraw: the ENDRAW entry
	mgdraw: the SODRAW entry
	mgdraw: the USDRAW entry
	Exercise
	When mgdraw should never be used
	Using Random Numbers in user routines
	Mathematical library in FLUKA
	Other useful routines
	Compiling and linking FLUKA user routines
	Producing a user’s library

