*$ CREATE SOURCE.FOR *COPY SOURCE * *=== source ===========================================================* * SUBROUTINE SOURCE ( NOMORE ) INCLUDE '(DBLPRC)' INCLUDE '(DIMPAR)' INCLUDE '(IOUNIT)' * *----------------------------------------------------------------------* * * * Copyright (C) 1990-2010 by Alfredo Ferrari & Paola Sala * * All Rights Reserved. * * * * * * New source for FLUKA9x-FLUKA20xy: * * * * Created on 07 January 1990 by Alfredo Ferrari & Paola Sala * * Infn - Milan * * * * Last change on 17-Oct-10 by Alfredo Ferrari * * * * This is just an example of a possible user written source routine. * * note that the beam card still has some meaning - in the scoring the * * maximum momentum used in deciding the binning is taken from the * * beam momentum. Other beam card parameters are obsolete. * * * * Output variables: * * * * Nomore = if > 0 the run will be terminated * * * * Read source term from a histogram * * Author: Vasilis.Vlachoudis@cern.ch * * * *----------------------------------------------------------------------* * INCLUDE '(BEAMCM)' INCLUDE '(FHEAVY)' INCLUDE '(FLKSTK)' INCLUDE '(IOIOCM)' INCLUDE '(LTCLCM)' INCLUDE '(PAPROP)' INCLUDE '(SOURCM)' INCLUDE '(SUMCOU)' * PARAMETER (NMAX=1000) DIMENSION ERG(NMAX), CUM(NMAX) CHARACTER*250 LINE SAVE N, ERG, CUM * LOGICAL LFIRST * SAVE LFIRST DATA LFIRST / .TRUE. / *======================================================================* * * * BASIC VERSION * * * *======================================================================* NOMORE = 0 * +-------------------------------------------------------------------* * | First call initializations: IF ( LFIRST ) THEN * | *** The following 3 cards are mandatory *** TKESUM = ZERZER LFIRST = .FALSE. LUSSRC = .TRUE. * | *** User initialization *** LUNRD = NINT(WHASOU(1)) ! Logical unit from input file *** read histogram *** as pairs Energy Value *** WARNING first value should have be 0 *** in order to define the lower energy limit N = 0 SUM = ZERZER ! Build cumulative sum EPREV = ZERZER 10 CONTINUE READ (LUNRD, '(A)', ERR=9999, END=20 ) LINE READ (LINE, *, ERR=10) E, H N = N + 1 IF (N .GT. NMAX) & CALL FLABRT('SOURCE','Please increase NMAX') IF (N .EQ. 1 .AND. ABS(H).GT.AZRZRZ) & CALL FLABRT( & 'SOURCE','ZERO was was expected as first value') *** Create cummulative sum of events! dN=dE*V SUM = SUM + H*(E-EPREV) EPREV = E ERG(N) = E CUM(N) = SUM GO TO 10 20 CONTINUE CLOSE (LUNRD) END IF * | * +-------------------------------------------------------------------* * Push one source particle to the stack. Note that you could as well * push many but this way we reserve a maximum amount of space in the * stack for the secondaries to be generated * Npflka is the stack counter: of course any time source is called it * must be =0 NPFLKA = NPFLKA + 1 * Wt is the weight of the particle WTFLK (NPFLKA) = ONEONE WEIPRI = WEIPRI + WTFLK (NPFLKA) * Particle type (1=proton.....). Ijbeam is the type set by the BEAM * card * +-------------------------------------------------------------------* * | (Radioactive) isotope: IF ( IJBEAM .EQ. -2 .AND. LRDBEA ) THEN IARES = IPROA IZRES = IPROZ IISRES = IPROM CALL STISBM ( IARES, IZRES, IISRES ) IJHION = IPROZ * 1000 + IPROA IJHION = IJHION * 100 + KXHEAV IONID = IJHION CALL DCDION ( IONID ) CALL SETION ( IONID ) * | * +-------------------------------------------------------------------* * | Heavy ion: ELSE IF ( IJBEAM .EQ. -2 ) THEN IJHION = IPROZ * 1000 + IPROA IJHION = IJHION * 100 + KXHEAV IONID = IJHION CALL DCDION ( IONID ) CALL SETION ( IONID ) ILOFLK (NPFLKA) = IJHION * | Flag this is prompt radiation LRADDC (NPFLKA) = .FALSE. * | Group number for "low" energy neutrons, set to 0 anyway IGROUP (NPFLKA) = 0 * | * +-------------------------------------------------------------------* * | Normal hadron: ELSE IONID = IJBEAM ILOFLK (NPFLKA) = IJBEAM * | Flag this is prompt radiation LRADDC (NPFLKA) = .FALSE. * | Group number for "low" energy neutrons, set to 0 anyway IGROUP (NPFLKA) = 0 END IF * | * +-------------------------------------------------------------------* * From this point ..... *** Select a random energy interval C = CUM(N) * FLRNDM(C) *** Find interval (no need to check first interval CUM=0) DO I=2,N IF (CUM(I) .GT. C) THEN *** Found interval I, select a random energy inside E = ERG(I-1) + (ERG(I)-ERG(I-1))*FLRNDM(C) GO TO 90 END IF END DO *** It should never come here CALL FLABRT('SOURCE','C .GT. CMAX!') 90 CONTINUE * Particle generation (1 for primaries) LOFLK (NPFLKA) = 1 * User dependent flag: LOUSE (NPFLKA) = 0 * No channeling: LCHFLK (NPFLKA) = .FALSE. DCHFLK (NPFLKA) = ZERZER * User dependent spare variables: DO 100 ISPR = 1, MKBMX1 SPAREK (ISPR,NPFLKA) = ZERZER 100 CONTINUE * User dependent spare flags: DO 200 ISPR = 1, MKBMX2 ISPARK (ISPR,NPFLKA) = 0 200 CONTINUE * Save the track number of the stack particle: ISPARK (MKBMX2,NPFLKA) = NPFLKA NPARMA = NPARMA + 1 NUMPAR (NPFLKA) = NPARMA NEVENT (NPFLKA) = 0 DFNEAR (NPFLKA) = +ZERZER * ... to this point: don't change anything * Particle age (s) AGESTK (NPFLKA) = +ZERZER AKNSHR (NPFLKA) = -TWOTWO * Kinetic energy of the particle (GeV) * TKEFLK (NPFLKA) = SQRT ( PBEAM**2 + AM (IONID)**2 ) - AM (IONID) TKEFLK (NPFLKA) = E * EMVGEV * Particle momentum PMOFLK (NPFLKA) = SQRT ( TKEFLK (NPFLKA) * ( TKEFLK (NPFLKA) & + TWOTWO * AM (IONID) ) ) * Cosines (tx,ty,tz) ************************************************************* ******** FROM ALBERTO FASSO********************************** * Sample the cosine of the polar angle * COSTHE = TWOTWO * FLRNDM(energy) - ONEONE * SINTHE = SQRT(ONEONE - COSTHE**2) * IF(FLRNDM(energy) .LE. HLFHLF) SINTHE = -SINTHE ** Samples the azimuthal angle * PHI = TWOPIP * FLRNDM(COSTHE) * COSPHI = COS(PHI) ** Cosines (tx,ty,tz) (make sure they are properly normalized) * TZFLK (NPFLKA) = COSTHE * TYFLK (NPFLKA) = SINTHE * COSPHI * TXFLK (NPFLKA) = SQRT(ONEONE - TZFLK(NPFLKA)**2 * & - TYFLK(NPFLKA)**2) * IF(FLRNDM(energy) .LE. HLFHLF) * & TXFLK(NPFLKA) = -TXFLK(NPFLKA) * commented by Kelly 05/03/10 * CALL RACO(UUU,VVV,WWW) * TZFLK (NPFLKA) = 1.0 * TYFLK (NPFLKA) = 0.0 * TXFLK (NPFLKA) = 0.0 * Cosines (tx,ty,tz) TXFLK (NPFLKA) = UBEAM TYFLK (NPFLKA) = VBEAM TZFLK (NPFLKA) = WBEAM * TZFLK (NPFLKA) = SQRT ( ONEONE - TXFLK (NPFLKA)**2 * & - TYFLK (NPFLKA)**2 ) * Polarization cosines: TXPOL (NPFLKA) = -TWOTWO TYPOL (NPFLKA) = +ZERZER TZPOL (NPFLKA) = +ZERZER * Particle coordinates DX = 4.0D+00 DY = 4.0D+00 XFLK (NPFLKA) = XBEAM + DX * FLRNDM(energy) YFLK (NPFLKA) = YBEAM + DY + FLRNDM(energy) ZFLK (NPFLKA) = ZBEAM * XFLK (NPFLKA) = XBEAM * YFLK (NPFLKA) = YBEAM * ZFLK (NPFLKA) = ZBEAM * Calculate the total kinetic energy of the primaries: don't change IF ( ILOFLK (NPFLKA) .EQ. -2 .OR. ILOFLK (NPFLKA) .GT. 100000 ) & THEN TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA) ELSE IF ( ILOFLK (NPFLKA) .NE. 0 ) THEN TKESUM = TKESUM + ( TKEFLK (NPFLKA) + AMDISC (ILOFLK(NPFLKA)) ) & * WTFLK (NPFLKA) ELSE TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA) END IF RADDLY (NPFLKA) = ZERZER * Here we ask for the region number of the hitting point. * NREG (NPFLKA) = ... * The following line makes the starting region search much more * robust if particles are starting very close to a boundary: CALL GEOCRS ( TXFLK (NPFLKA), TYFLK (NPFLKA), TZFLK (NPFLKA) ) CALL GEOREG ( XFLK (NPFLKA), YFLK (NPFLKA), ZFLK (NPFLKA), & NRGFLK(NPFLKA), IDISC ) * Do not change these cards: CALL GEOHSM ( NHSPNT (NPFLKA), 1, -11, MLATTC ) NLATTC (NPFLKA) = MLATTC CMPATH (NPFLKA) = ZERZER CALL SOEVSV RETURN 9999 CALL FLABRT('SOURCE', 'Error reading source file') RETURN *=== End of subroutine Source =========================================* END