
CombLayer
a fast CSG geometry builder

Stuart Ansell
and

Konstantin Batkov

MAX IV Laboratory
Lund University

October 28, 2024
Karlsruhe

Outline

1 Introduction

2 Geometry

3 Export

4 Examples

Outline

1 Introduction

2 Geometry

3 Export

4 Examples

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 3 / 23

Introduction

The purpose of CombLayer
To easily and rapidly build complex geometric models
which are fast to run
in Monte Carlo codes
utilising Constructive Solid Geometries.

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 4 / 23

Introduction

CombLayer allows:
prepare input files with C++, defining:

geometry
materials and their mixtures
source term
estimators
physics settings
magnetic fields
variance reduction
everything — no need to post-edit the generated input files

export models into different formats:
FLUKA
MCNP
PHITS → STEP
POV-Ray → STEP
VTK → ROOT (see my mc-tools talk)

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 5 / 23

Introduction

CombLayer helps you build
easily manageable

fully parametric and fast Monte Carlo models.

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 6 / 23

Introduction

Main author: Stuart Ansell
since 2011

KB: since 2015

∼ 500 k lines of code
GPL 3 licence
Daily used at MAX IV, ESS, ISIS

+ some projects at SNS, Delft and PIK
Very stable code

is used to build detailed models of facilities

https://github.com/SAnsell/CombLayer

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 7 / 23

https://github.com/sansell/comblayer

Outline

1 Introduction

2 Geometry

3 Export

4 Examples

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 8 / 23

Geometry

Geometry is described in object-oriented approach
whole model is built from objects of C++ classes

Individual components are assembled together much like
the LEGO bricks
Each component is described in its own coordinate system

can be placed anywhere with arbitrary orientation
can be flipped with respect to arbitrary plane

Each component is described in its own surface and region
space

no need to care about overlaps in surface/region naming
with other components

Each component can be reused multiple times
copies may differ from each other

Depending on needs,
only specific parts of the whole geometry can be built

significantly improves tracking speed
Whole model can be arbitrary rotated and translated

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 9 / 23

Geometry

C++ allows a user to benefit from its object-oriented
programming approach:

reuse the code through inheritance and polymorphism

This enables rapid geometry construction,
which is easy to modify

all variables (e.g. geometry dimensions and materials) are
parametric and can be changed runtime
(as command line arguments or .xml file entries)

— optimisation calculations
— modelling various scenarios

Big warehouse of already-built components and a library of
pre-defined materials

accelerator, reactor, neutron guides, x-ray beamlines
shared among users

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 10 / 23

Geometry optimisation

CombLayer performs a two factor Boolean optimisation to
minimise the number of literals in the region description

removal of duplicated implicants
partial disjunctive normal form optimisation

In intersection it removes unnecessary surfaces and allows
the regions to be split or merged as needed minimising
Monte Carlo run-time cost

e.g. complex-shaped walls can be split by layers for
importance biasing

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 11 / 23

Geometry
Intersection of components

Intersection of components is done just by specifying
which component goes into which one

all the low-level math is handled by the code,
allowing users to spend their time more efficiently

Spoon->InsertTo(Cup);

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 12 / 23

Geometry
Tracking system

CombLayer has a built-in geometry tracking system, that allows
internal geometry debugging
efficient intersection of components
removal of zero-volume regions
weight-window generation (see next slide)

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 13 / 23

Biasing

CombLayer has a built-in deterministic mesh-based weight
window generator for FLUKA, MCNP and PHITS

3D mesh of importances superimposed with geometry
handy for deep penetration calculations
not as powerful as e.g. ADVANTAG,
but very quick to setup and run
nested meshes are possible

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 14 / 23

Outline

1 Introduction

2 Geometry

3 Export

4 Examples

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 15 / 23

Export

As indicated above, one can define whole input file with
CombLayer and export it to one of the listed Monte Carlo
codes (MCNP, FLUKA, PHITS), and POV-Ray and VTK
However, due to difference between Monte Carlo codes, it
is sometimes not possible to export exactly the same
model to different codes

some estimators and surfaces exist in some codes,
but not in the others
source term, physics and biasing settings don’t completely
overlap between the codes

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 16 / 23

Export same settings to different Monte Carlo codes

Geometry
geometry of any complexity can be exported to all codes
provided that all required surfaces are supported by the
given code

i.e. single cones exist in MCNP but not in FLUKA

Materials
material composition can be exported to all codes
temperature and S(α, β): only MCNP and PHITS

Estimators and Physics settings
typically to be individually defined for each code

Magnetic fields
currently, only FLUKA

Biasing
to be individually defined for each code

+ built-in weight window generation for all supported codes

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 17 / 23

POV-Ray
Persistence of Vision Raytracer

POV-Ray is a CSG-based raytracer that produces realistic
3D images

CombLayer only exports geometry and materials as simple
textures, so all scene setup must be prepared manually
http://povray.org

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 18 / 23

http://povray.org

Outline

1 Introduction

2 Geometry

3 Export

4 Examples

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 19 / 23

Examples
ESS target wheel

The target wheel consists of 36
sectors (numbered)

Each sector is a C++ class
instance

⇒ the wheel is made of 36
copies of the same object

All sectors are made of Tungsten
bricks (see sectors 0, 1, 35)

The brick surfaces and regions
are defined with the for loops

To speed-up calculations, other
sectors are made of
homogenised Tungsten

 10/18/19 11:02:16
Input File:

probid = 10/18/19 11:01:50
basis: XY
(0.000000, 1.000000, 0.000000)
(1.000000, 0.000000, 0.000000)
origin:
(0.00, 50.00, 0.00)
extent = (70.00, 70.00)

0

1

2

3

35

34

33

the switch is implemented just by setting the BricksActive variable to
false in the command line

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 20 / 23

Examples
ESS moderators

 10/18/19 11:03:12
Input File:

probid = 10/18/19 11:02:57
basis: XY
(0.000000, 1.000000, 0.000000)
(1.000000, 0.000000, 0.000000)
origin:
(0.00, 0.00, 13.70)
extent = (40.00, 40.00)

Moderator 1

 10/18/19 11:02:39
Input File:

probid = 10/18/19 11:01:50
basis: XY
(0.000000, 1.000000, 0.000000)
(1.000000, 0.000000, 0.000000)
origin:
(0.00, 0.00, 13.70)
extent = (40.00, 40.00)

Moderator 2

To maximise neutron production, the ESS
target-moderator-reflector assembly have been optimised
Different geometries of neutron moderators were studied

two of them are shown above

The moderator geometry is selected by setting a single
command line variable, i.e.
-v ModeratorType BF1

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 21 / 23

Examples
Accelerator beamline

Part of an accelerator beamline with complex outer region:

The same geometry with outer region split into simpler
regions to speedup tracking (and reduce the DNF length):

CombLayer does it semi-automatically, almost without user
intervention

only need to indicate the bounding box dimensions
and the start/end surfaces of each component

this is anyway needed to attach other components

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 22 / 23

Conclusion

CombLayer is a powerful and user-friendly tool for building
fully parameterised and fast CSG Monte Carlo models
Source code and documentation:
https://github.com/SAnsell/CombLayer

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer | 23 / 23

https://github.com/SAnsell/CombLayer

	Introduction
	Geometry
	Export
	Examples

