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IX. VOLUMES AND AREAS114

The particle flux in Monte Carlo transport problems often is estimated as the track length per
unit volume or the number of particles crossing a surface per unit area. Therefore, knowing the
volumes and surface areas of the geometric regions in a Monte Carlo problem is essential.
Knowing volumes is useful in calculating the masses and densities of cells and thus in
calculating volumetric or mass heating. Furthermore, calculation of the mass of a geometry is
frequently a good check on the accuracy of the geometry setup when the mass is known by other
means.

Calculating volumes and surface areas in modern Monte Carlo transport codes is nontrivial.
MCNP allows the construction of cells from unions and/or intersections of regions defined by
an arbitrary combination of second-degree surfaces, toroidal fourth-degree surfaces, or both.
These surfaces can have different orientations or be segmented for tallying purposes. The cells
they form even can consist of several disjoint subcells. Cells can be constructed from
quadralateral or hexagonal lattices or can be embedded in repeated structures universes.
Although such generality greatly increases the flexibility of MCNP, computing cell volumes and
surface areas understandably requires increasingly elaborate computational methods.

MCNP automatically calculates volumes and areas of polyhedral cells and of cells or surfaces
generated by surfaces of revolution about any axis, even a skew axis. If a tally is segmented, the
segment volumes or areas are computed. For nonrotationally symmetric or nonpolyhedral cells,
a stochastic volume and surface area method that uses ray tracing is available. See page 2–182.

A. Rotationally Symmetric Volumes and Areas

The procedure for computing volumes and surface areas of rotationally symmetric bodies
follows:

1. Determine the common axis of symmetry of the cell.114If there is none and if the cell
is not a polyhedron, MCNP cannot compute the volume (except stochastically) and the
area of each bounding surface cannot be computed on the side of the asymmetric cell.

2. Convert the bounding surfaces to q-form:

ar2 + br + cs2 + ds+ e = 0 ,

wheres is the axis of rotational symmetry in ther-s coordinate system. All MCNP
surfaces except tori are quadratic surfaces and therefore can be put into q-form.

3. Determine all intersections of the bounding surfaces with each other in ther-s
coordinate system. This procedure generally requires the solution of a quartic
equation.22 For spheres, ellipses, and tori, extra intersection points are added so that
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these surfaces are not infinite. The list of intersections are put in order of increasing
s-coordinate. If no intersection is found, the surface is infinite; its volume and area on
one side cannot be computed.

4. Integrate over each bounding surface segment between intersections:

for volumes;

for surface areas.

A bounding surface segment lies between two intersections that bound the cell of interest.

A numerical integration is required for the area of a torroidal surface;  all other integrals are
directly solved by integration formulas. The sense of a bounding surface to a cell determines the
sign ofV. The area of each surface is determined cell-by-cell twice, once for each side of the
surface. An area will be calculated unless bounded on both sides by asymmetric or infinite cells.

B. Polyhedron Volumes and Areas

A polyhedron is a body bounded only by planes that can have an arbitrary orientation. The
procedure for calculating the volumes and surface areas of polyhedra is as follows:

1. For each facet side (planar surface), determine the intersections (ri,si) of the other
bounding planes in ther-scoordinate system. Ther-scoordinate system is redefined
for each facet to be an arbitrary coordinate system in the plane of the facet.

2. Determine the area of the facet:

,

and the coordinates of its centroid,rc, sc:

.

.

The sums are over all bounding edges of the  facet wherei andi + 1 are the ends of
the bounding edge such that, in going fromi to i + 1 , the facet is on the right side. As
with rotationally symmetric cells, the area of a surface is determined cell-by-cell
twice, once for each side. The area of a surface on one side is the sum over all facets
on that side.
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3. The volume of a polyhedron is computed by using an arbitrary reference plane.
Prisms are projected from each facet normal to the reference plane, and the volume of
each prism isV = da cos  where

d = distance from reference plane to facet centroid;
a = facet area; and

= angle between the external normal of the facet and the positive
normal of the reference plane.

The sum of the prism volumes is the polyhedron cell volume.

C. Stochastic Volume and Area Calculation

MCNP cannot calculate the volumes and areas of asymmetric, nonpolyhedral, or infinite cells.
Also, in very rare cases, the volume and area calculation can fail because of roundoff errors. For
these cases a stochastic estimation is possible by ray tracing. The procedure is as follows:

1. Void out all materials in the problem (VOID card).

2. Set all nonzero importances to one and all positive weight windows to zero.

3. Use a planar source with a source weight equal to the surface area to flood the
geometry with particles. This will cause the particle flux throughout the geometry to
statistically approach unity. Perhaps the best way to do a stochastic volume estimation
is to use an inward-directed, biased cosine source on a spherical surface with weight
equal toπr2.

4. Use the cell flux tally (F4) to tabulate volumes and the surface flux tally (F2) to
tabulate areas. The cell flux tally is inversely proportional to cell volume. Thus in cells
whose volumes are known, the unit flux will result in a tally of unity and in cells whose
volume is uncalculated, the unit flux will result in a tally of volumes. Similarly, the
surface flux tally is inversely proportional to area so that the unit flux will result in a
tally of unity wherever the area is known and a tally of area wherever it is unknown.

X. PLOTTER

The MCNP plotter draws cross-sectional views of the problem geometry according to
commands entered by the user. See Appendix B for the command vocabulary and examples of
use. The pictures can be drawn on the screen of a terminal or on some local or remote hard copy
graphics device, as directed by the user. The pictures are drawn in a square viewport on the
graphics device. The mapping between the viewport and the portion of the problem space to be
plotted, called the window, is user–defined. A plane in problem space, the plot plane, is defined
by specifying an origin and two perpendicular basis vectors and . The size of the window
in the plot plane is defined by specifying two extents. The picture appears in the viewport with
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