Simulate neutron fluence spectra

I'm using FLUKA to simulate the Neutron fluence or flux spectra form lead target bombarded by 600MeV Proton. I considered several SCORE methods of Fluka, such as USRBIN, USRYIELD, however, they all seem unsuitable. The following is a description of my problems.

- 1. The result I need is neutron fluence, $\phi(\vec{r}, E_{kinetic})$ or neutron density $n(\vec{r}, E_{kinetic})$. or neutron flux $\mathbf{J}(\vec{r}, E_{kinetic})$. The coordinate system may be Cylindrical, Spherical or Cartesian, but a Cylindrical is better.
- 2. I noticed that the USRBIN card can be used to estimate $\phi(\vec{r})$, but it lose the Energy distribution. The USRYIELD card may estimate $\mathbf{J}_{surface}(E,\theta)$ from one region to the other, but what I need is $\mathbf{J}_{surface}(E,\theta,\varphi)$, in which θ,φ identify the position in a spherical surface. It seems: $\mathbf{J}_{surface}(E,\theta) = \int\limits_{0}^{2\pi} \mathbf{J}_{surface}(E,\theta,\varphi) d\varphi$.
- 3. My questions are: Is there any card can solve the problem? Or how can I solve the problem?
- 4. Another problem: Could I get $\phi(\vec{r}, E_{kinetic}, t)$ if I knew the time information of Proton beam, such as that the energy of Proton beam varies with time?