@UKA

>The FLUKA User Routines:
how to tailor FLUKA to specific user’s
needs.

~User programming in the FLUKA

environment

6th FLUKA Course
CERN, June 23-27, 2008

N

| Why User Routines

Unlike some other Monte Carlo particle transport codes, Fluka gets its input
mainly from a simple file. It offers a rich choice of options for scoring most
quantities of possible interest and for applying different variance reduction
echniques, without requiring the users to write a single line of code.

However, although normally there is no need for any “user code”, there are
special cases where this is unavoidable, either because of the complexity of

e problem, or because the desired information is too unusual or too
problem-specific to be offered as a standard option.

And on the other hand, even when this is not strictly necessary, experienced
programmers may like to create customised input/output interfaces.

A number of user routines (available on LINUX and UNIX platforms in
directory usermvax) allow to define non-standard input and output, and in
some cases even to modify to a limited extent the normal particle transport.

Most of them are already present in the Fluka library as dummy or template
ro;u_tin:;:séI and require a special command in the standard input file to be
activated.

Users can modify any one of these routines, and even insert into them further
calls to their own private ones, or to external packages (at their own risk!).

This increased flexibility must be balanced against the advantage of using as
far as possible the Fluka standard facilities, which are known to be reliable
and well tested.

6t FLUKA Course, CERN, June 23-27, 2008

What is available for the users

JAA

and linking of user routines to build a user-specific FLU

e Flair is able to help the user in managing editing, compilillza
executable

However the user has better to be aware that:

e The T“skeleton” of all possible user routines in
SFLUPRO/usermvax

e The include files containing the COMMON blocks with all
relevant variables to access particle stack, secondary
products and their kinematics, particle and material
properties, etc. in $FLUPRO/flukapro (see later)

e The compiling and Ilinking scripts which are in
$FLUPRO/flutil

6t FLUKA Course, CERN, June 23-27, 2008

Something more that users need

JAA

L/

e The "“theoretical” background and the proper
know-how to implement a correct algorithm for
the specific user problem

e The "“rules” to achieve a good programming
style inside FLUKA

e The knowledge of a certain humber of utilities
already existing in FLUKA (mathematics,
random number, general utilities, etc.)

6t FLUKA Course, CERN, June 23-27, 2008

A first look to the correspondence between
the user routines and FLUKA commands

» usrglo.f

(usrein.f)

source.f

usrmed.f \ Emphasis of this

lecture is here
mgdraw.f /

1o¢

comscw.f But many other
fluscw.f correspondences
usrrnc.f

exist as explained
) later

6t FLUKA Course, CERN, June 23-27, 2008

¢

N

abscff.f
comscw.f
dffcff.f
endscp.f
fldscp.f
fluscw.f
formfu.f
frghns.f
fusrbv.f
lattic.f
lusrbl.f
magfld.f
mdstck.f

mgdraw.f

musrbr.f

ophbdx.f

pshckp.f
queffc.f
rflctv.f
rfrndx.f
soevsv.f
source.f
stupre.f
stuprf.f

The full list of user routines

ubsset.f
udcdrl.f
usimbs.f
usrein.f
usreou.f
usrini.f
usrmed.f
usrout.f
usrrnc.f
ustckv.f
usrglo.f

6t FLUKA Course, CERN, June 23-27, 2008

A possible classification in terms of their

—¢use (1)

User run control
e usrini.f

Event generation, physics,

kinematics
e lusrein.f B SUiee f
e usrout.f e ey f
¢ usreagg o udcdrl.f
e formfu.f

Properties of medium |jgqr global settings

° magfld.f e usrglo.f
e usrmed.f

6t FLUKA Course, CERN, June 23-27, 2008

A possible classification In terms of their
| use (2)

N

In_association to FLUKA output

o comscw.f

o fluscw.f Intercepting particle stack
o endscp.f e mdstck.f

o fldscp.f ® stupre.f

e musrbr.f ® stuprt.f

e lusrbl.f Biasing

o fusrbv.f o usbset.f

e usrrnc.f o usimbs.f

6t FLUKA Course, CERN, June 23-27, 2008

A possible classification in terms of their

—cuse(3)

To drive optical photon transport
» abscff.f
» dffcff.f

e frghns.f
e ophbdx.f

o queffc.f
o rfictv.f! The access to (almost) everything

o rfrndx.f e mgdraw.f

To manage lattice geometry
o lattic.f

See the relevant chap. of manual

N, June 23-27, 2008

Help by FLAIR

e The new version of FLAIR has a button in the Compile frame
which allows to scan the input file for possible/cards that
demand the use of a user routine

e It then proposes the user to copy the standard /routine from
$FLUPRO/usermvax to the project directory

N

Compile Executable

File | Size | Date | &
ANy
Ei=
&3]
8 -
v
Link: [fluka ¥ | Exe: | ﬂl Main: |
Options: | _i DLine W Bound Check
Build | Compile | Clean |

6t FLUKA Course, CERN, June 23-27, 2008 10

@—N FLUKA User routines @E

File & Size Date Desc

abscff.f 14649 Fri Aug 18 19:29:45 200 absorption coefficient (for optical photons)

comscw.f 5146 Fri Aug 18 19:29:45 200Eresponse functions, user dependent selection for density-lik
dffcrf.f 14649 Fri Aug 18 19229:45 200t diffusion coefficient (for optical photons)

endscp.f 4055 Fri Aug 18 19:29:45 2008 energy density distributed - change of positions

fdscp.f 3418 Fri Aug 18 19229:45 200t fluence distributed - change of positions

fluscyw.f 4201 Fri Aug 18 19:29:45 2008 response functions, user dependent selection for flux-like g
Fornnfu.F 2488 Fri Aug 18 19:29:46 200 nuclear charge form factors

firghns.f 1463 Fri Aug 18 19:29:46 200f material roughness (for optical photons)

fusrbv.f 1476 Fri Aug 18 19:29:46 200t defines a continuous variable for 3-D binnings

ladtic.f 21039 Fna Aug 18 19:29:46 200t symimetry transformation for lattice geomety

lusrbl.f 1369 Fri Aug 18 19:29:46 200 defines a discrete variable for 3-D binnings

magfld.f 3406 Fri Aug 18 19:29:46 200t use a magnetic field map

mdstck.f 1306 Fri Aug 18 19:29:46 2008 management of secondary stack

mgdraw.f 14329 Fnr Aug 18 19:29:46 2000 dump trajectories, etc.

mugrbr.f 1367 Fri Aug 18 19:29:46 200f defines a discrete variable for 3-D binnings

ophbdx.f 1767 Fri Aug 18 19:29:46 200f boundary crossing properties (for optical photons)

pshckp.f 1274 Fr Aug 18 19:29:46 200t

queffc.f 1605 Fri Aug 18 19:29:46 2008 guantum efficiency (for optical photons)

iflcte.f 14649 Fri Aug 18 19:29:46 200¢ reflectivity (for optical photons)

fmdx.f 1469 Fri Aug 18 19:29:46 200f refraction index (for optical photons)

Copy to Project Scan lnput View Close

6t FLUKA Course, CERN, June 23-27, 2008 11

Basic news about FLUKA routines/functions

written in Fortran 77

Double Precision everywhere (Real*8), except for variables
beginning with a letter within (i-n)

May have arguments

Most variables passed through common blocks

Common blocks are in files which are charged by INCLUDE
statement

All include files of common blocks are in $SFLUPRO/flukapro

Common blocks have names which correspond to include files.

Each routine has at the least the following includes/common
blocks:

INCLUDE '(DBLPRC)’
INCLUDE '(DIMPAR)’

INCLUDE '(IOUNIT)’
Note the parentheses which are an integral part of the Fluka INCLUDE
file names
The user may add his own common which may reside in

I 6th FLUKA C CERN, June 23-27, 2008
different places ourse, CERN, June 23-27,

Fundamental FLUKA Common Blocks

JAA

DBLPRC: included in all routines of Fluka, contains (as
PARAMETERS) the most common physical and
mathematical constants and the declaration
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMPAR: dimensions of the most important arrays

IOUNIT: logical input and output unit numbers (FLUKA
uses from 1 to 19, they must be considered as
reserved)

e Users are strongly encouraged to adhere to “Fluka style” by
using systematically double precision (except for very good
reasons such as calling external single precision scoring
packages), and to use constants defined in this file for maximum
accuracy.

e Important: take some time to study the content of DBLPRC

6t FLUKA Course, CERN, June 23-27, 2008

Other important COMMON blocks in short (1)

BEAMCM: properties of primary particles as defined by options
BEAM and BEAMPOS

CASLIM: number of primary particles followed (needed for
normalisation)

EMFSTK: particle stack for electrons and photons

SOURCM: user variables and information for a user-written
source

EVTFLG: event flags

FHEAVY: stack of heavy secondaries created in nuclear
evaporation

GENSTK: properties of each secondary created iIin a
hadronic event

LTCLCM: LaTtice CelLl CoMmon (needed when writing
symmetry transformations for Lattice Geometry)

FLKMAT: material properties

FLKSTK: main Fluka particle stack

6t FLUKA Course, CERN, June 23-27, 2008

Other important COMMON blocks in short (2)

SOUEVT: \variables concerning the source event: useful when

primary particles (source particles) are taken from an external
file or event generator

TRACKR: variables concerning the properties of transported
particle (track) at run time

PAPROP: particle properties

SCOHLP: variables concerning the current estimator type
USRBDX: variables related to USRBDX scoring

USRYLD: \variables related to USRYIELD scoring

USRBIN: variables related to USRBIN scoring

USRTRK: variables related to USRTRACK scoring

6t FLUKA Course, CERN, June 23-27, 2008

JAA

Names and Numbers

e FLUKA converts all Names given in the input file to Numbers: all
the corresponding arguments that you will find in user routines
are numeric (except of in the case of SDUMs)

6t FLUKA Course, CERN, June 23-27, 2008

16

usrini (USeR INItialization)

Argument list

WHAT(1),(2),(3),(4),(5),(6) : user-provided numerical parameters
SDUM : user-provided character string (8 characters)

Subroutine USRINI is called every time a USRICALL card
IS read in input. It can be used to do any kind of
initialisation: reading and manipulating data from one or
more files, calling other private routines, etc.

The calling parameters can carry any kind of useful
information or can be used as flags to choose between
different possible actions to be performed before any
particle transport takes place.

6t FLUKA Course, CERN, June 23-27, 2008

usrein (USeR Event INitialization)

Subroutine USREIN is called just before the first source
particle of an event is unloaded from stack and begins to
be transported. An event is the full history of a group of
related particles and their descendants.

If primaries are loaded into stack by the input option
BEAM, there is only one source particle per event; but
there can be more if the user routine SOURCE is used to
load particles into stack. USREIN does not need any
special command to be activated, but the default version
of USREIN does nothing: the user can write here any kind
of initialisation.

6t FLUKA Course, CERN, June 23-27, 2008

usrout (USeR OUTput)

Argument list

WHAT (1), (2),(3),(4),(5),(6) : user-given mumerical parameters
SDUM : user-given character string (% characters)

Subroutine USROUT is called every time a USROCALL card
IS read in input. It is used to print special user-written
output in addition to the standard one provided by default.
The calling parameters can carry any kind of useful
information or can be used as flags to choose between
different possible actions to be performed after all particle
transport has taken place.

6t FLUKA Course, CERN, June 23-27, 2008

JAA

usreou (USeR Event OUtput)

Subroutine USREOU is called at the end of each event, namely
after all event primary particles and their descendants have
been transported. (See USREIN above for a definition of an
event).

USREOU does not need any special command to be activated,
but the default version of USREOU does nothing: the user can
write here any kind of event analysis, output, etc.

6t FLUKA Course, CERN, June 23-27, 2008

source (user written source: generation of
initial kinematics)

Argument list

NOMORE : 1f set = 1, no more calls will oceur (the run will be terminated
after exhansting the primary particles loaded onto stack in the
present call). The history number lmit set with option START

will be overridden

Subroutine SOURCE is probably the most frequently used user
routine. It is activated by option SOURCE and is used to
sample primary particle properties from distributions (in
space, energy, time, direction or mixture of particles) too
complicated to be described with the BEAM, BEAMPOS and
BEAMAXES cards alone. For each phase-space variable, a
value must be loaded onto COMMON FLKSTK (particle bank)
before returning control. These values can be read from a file,

generated by some sampling algorithm, or just assigned.
6t FLUKA Course, CERN, June 23-27, 2008

Using source

Option SOURCE allows the user to input up to 18 numerical

values (WHASOU(1),(2). . . (18)) and one 8-character string
(SDUSOU) which can be accessed by the subroutine by
including the following line:

INCLUDE ‘(SOURCM)’

The user can insert any initialization within the following IF

block:
T e *
* | First call initialisations:
IF { LFIRST » THEN
* | ##+ The following 3 cards are mandatory **#

TEESTUM = ZERZER
LFIEST = .FALSE.
LUSSRC = . TRUE.
* | #*x* User initialisation *+*=*
END IF

6t FLUKA Course, CERN, June 23-27, 2008

Using source (continues...)

JAA

Th

user can load onto the FLKSTK stack one or more source particles

each call: for each particle loaded the pointer must be increased by 1.
NFFLEA = NFFLEA + 1 | increases the polnter

séts the weight of the particle (values different from 1 —»advanced users)

W

up

TFLE (NFFLEA) = ONEOMNE

date the total weight of the primaries (don’t change):

WEIPRI = WEIPRI + WTFLE (NFFLEA)

6t FLUKA Course, CERN, June 23-27, 2008

at

d

Using source (continues...)

W LJ
* | (Radioactive) isotope:
IF (IJBEAM .EQ. -2 .AND. LRDBEA) THEN by _default sets the type_ of
IARES = IPROA particle equal to the one defined
. T by the BEAM card (plus HI-PRO|if
CALL STISBM (IARES, IZRES, IISRES) this is the case). If no BEAM card
IJHION = IPROZ * 1000 + IPROA o . ‘e —
TIHION = THATON § 108 - IOHERY IS given in Input, IJBEAM is ='1
IONID = IJHION (proton).
CALL DCDION (IONID)
CALL SETION (IONID)
<
W Otherwise can be set inside the
ELSE I EN source (may be different event by

IJHION = IJHION * 100 + KXH event

IONID = IJHION

CALL DCDION (IONID)

CALL SETION (IONID)

ILOFLK (NPFLKA) = IJHION <€—
Flag this is prompt radiation

LRADDC (NPFLKA) = .FALSE.

Heavy ion

\\} 174 .
Normal hadron: NOI’ma| partIC|e
ELSE
IONID = IJBEAM
ILOFLK (NPFLKA) = IJBEAM

Flag this is prompt radiation
LRADDC (NPFLKA) = .FALSE. urse, CERN, June 23-27, 2008 24
END IF

JAA

100

200

Using source (continues...)

Never change the following lines:

* From this point ...

LOFLE (NFFLEA) =
LOUSE (NFFLEA) =

1
0

DO 100 ISPR = 1, MEEMXA

SPAREE (1 ,NFFLEA) = ZERZER

CONTINUE

Do 200 ISPRE = 1, MEEMXEZ

ISPARK (ISPR,NPFLEA) = O

CONTINUE
HNPARMA = NPAREMA

NMPAR (NPFLEA) =
NEVENT (NPFLEA) =
LFNEAR (NPFLEA) =

1

NFARMA
0

+ZERZER

Gemeraticon i1s 1 for source particles
Mzar variables: the user can sat
different wvaluss in the STUPEF or

=IUPRE routine, but it is better
not to do it here

More user variables (integer)

Tpdating the paximm particle number
oetting the current particle number
Resetting the current event number
Resetting the distance to the
nearest boundary

. To this point: don’t change anything

6t FLUKA Course, CERN, June 23-27, 2008

Using source (continues...)

JAA

The following lines can remain at their standard

AGESTE (NPFLEA) = +ZERZER
AKNSHR (NPFLEA) = -TWOTWO

Particle age is zero by default
Resets the Kshort component of
E0/EObar. Usually not to be changad.
Group number for low-energy

neutrons: if set to 0, the program
derives it from the kKinetic ensergy

IGROUF (NPFLEA) = O

6t FLUKA Course, CERN, June 23-27, 2008

Using source (continues...)

JAA

Assigning momentum/enerqgy

In the template routine, the momentum is assumed to be assigned
by BEAM option (its value, PBEAM, is taken from COMMON
BEAMCM, which contains all values defined by options BEAM and
BEAMPOS.

FMOFLE (NPFLEA) = PEEAM
* Kinetic energy of the particle (GeV)
TKEFLK (NPFLKA) = SORT (PBEAM**2 + AM (IONID)**2) - AM (IONID)

Here the user can make direct assignment of momentum, read
from an external file or introduce code lines to sample from a
distribution

Alternatively the user can make sample kinetic energy and derive
the momentum. Be coherent!
TKEFLK (NPFLKA) = ENSAMP
PMOFLK (NPFLKA) SQRT (TKEFLK (NPFLKA) * (TKEFLK (NPFLKA)
& + TWOTWO * AM (IONID)))

Using source (continues...)

JAA
\U

Here direction cosines are aSS|gned [read/sampled:

TXFLE (NFFLEA} = UBEAM Assumed heres to be the same as
TYFLE (NFFLEA} = VEEAM ! defined by option EEAMPOS. UBEAM,
TZFLE (NFFLEA} = WBEAM | VEBEEAM, WBEAM are scme among the bean

| properties in COMMON BEAMCHM

Be careful to ensure the proper normalization within
machine accuracy!!

6t FLUKA Course, CERN, June 23-27, 2008

Beware of the normalization of direction
. cosines!

ote that in any case the direction cosines must be properly
ormalised in double precision.

good algorithm is the following:

TNORM = SQRT (TXFLK(NPFLKA)**2 + TYFLK(NPFLKA)**2 + TZFLK(NPFLKA)
$ **2)

TXFLK (NPFLKA) = TXFLK(NPFLKA) / TNORM

TYFLK (NPFLKA) = TYFLK(NPFLKA) / TNORM

TZFLK (NPFLKA) = TZFLK(NPFLKA) / TNORM]

The need for an high accuracy normalization of direction cosines
is a general rule in FLUKA: there are checks that in case of bad
normalization produce a lot of error messages (and time loss...)

6t FLUKA Course, CERN, June 23-27, 2008

Using source (continues...)

JAA

It is also possible to assign a polarization:

TEXPOL (NPFLEA) = -TWOTWO | =2 is a flag for "no peolarisation”
TYPOL (NPFLEA) = +ZERZER
TZPOL (NPFLEA) = +ZERZER

Finally, initial space coordinate assigned/read/sampled:

XFLE (NFFLEA) = XBEAM | Assumed hers to be the same as
YFLE (NFFLEA) = YBEAM I defined by option BEAMPOS. XBEAM,
ZFLE (NFFLEA) = ZBEAM I YBEAM, ZBEAM are also in COMMON BEAMCM

6t FLUKA Course, CERN, June 23-27, 2008

Using source (continues...)

The last line calls the SOEVSV user routine to save the stack
for possible further use.

The values of beam characteristics defined by commands
BEAM and POLARIZAti are available in COMMON BEAMCM:
the angular divergence (variable DIVBM), beam width
(XSPOT and YSPOT), and the polarisation vector (UBMPOL,
VBMPOL, WBMPOL) can help to set up a scheme to sample
the corresponding quantities from user-defined distributions.
But sampling from the distributions pre-defined by BEAM and
POLARIZALti is not simply inherited by subroutine SOURCE: it
is the responsibility of the user to write such a scheme! For
this task, it may be useful to define a "beam reference frame”
by means of option BEAMAXES.

6t FLUKA Course, CERN, June 23-27, 2008

JAA

Using source (continues...)

eVery Important:

when using SOURCE, remember that the use of the BEAM card
remains mandatory:

In that case the momentum (or energy) in WHAT(1) is meant

as the maximum possible value of momentum (or energy) of
your problem: this is used by FLUKA at initialization time to
perform tabulations.

If, at run time, an energy greater than the maximum
established in BEAM is sampled, an abort will be generated.

6t FLUKA Course, CERN, June 23-27, 2008

JAA

Exercise and homework

e Study the BEAMCM, SOURCM, SOUEVT commons

e Write your own source to generate a gaussian spread in energy
of a beam (possible also just with BEAM card, but just to verify
your capabilities...)

6t FLUKA Course, CERN, June 23-27, 2008

Using FLUKA Random Number Generator in
user routines

e Fundamental for SOURCE!!! No other external random
ﬂenerators must be used, otherwise the reproducibility of
istories is lost

¢... = FLRNDM(XDUMMY)

returns a 64-bit random number (0-1)

oCALL FLNRRN (RGAUSS)

returns a normally distributed random number RGAUSS
oCALL FLNRR2 (RGAUS1,RGAUS2)

returns an uncorrelated pair of normally distributed random numbers:
RGAUS1 and RGAUS2

»CALL SFECFE(SINT,COST)

returns a pair of random numbers, SINT and COST such that:
SINT**2+COST**2 = 1.D+00

»CALL RACO (TXX, TYY, TZZ)

returns a random 3D direction (TXX, TYY, TZZ) such that:
TXX*F*2+TYY**2 + TZZ*E LQJF's'eQ&RN, June 23-27, 2008

A useful routine to be used in source for
-——cosmic ray problems

e CALL SFLOOD (XXX, YYY, ZZ2Z, UXXX, VYYY, W2Z2Z)

returns in XXX, YYY, ZZZ a random position ON the
surface of a sphere of radius 1 and center 0 (multiply
XXX, YYY, ZZZ by the actual radius and add the center
coordinates) and UXXX, VYYY, WZZZ are random cosines
according to a diffusive distribution

e properly distributed so that to generate an uniform and
iIsotropic fluence inside the sphere (of course in absence
of material inside the sphere), numerically given by

1/(r R?)
R being the sphere radius.

6t FLUKA Course, CERN, June 23-27, 2008

Mathematical library in FLUKA

JAA

e FLUKA contains many mathematical routines of general utility, so
in general there should not be the need to call external
mathematical libraries:

flgaus: Gaussian adaptative integration

simpsn: Simpson integration

gamfun: Gamma fuction

radcub: Real solutions of 3 order algebric equation
flgndr: Legendre polinomials

yinter, finter: interpolation routines

splinw: Spline interpolation

rordin, rordde: Sorting of vector values

Also: expansion in Laguerre and Chebyshev polynomials, Bezier fit,
and many others...

For users who access FLUKA source: they are in mathmvax directory
At some time it will be possible to have a short-writeup for their use.

6t FLUKA Course, CERN, June 23-27, 2008

Other useful routines

JAA

oCALL OAUXFI (‘file’, LUN, ‘CHOPT’, IERR)

to open an auxiliary file (to read data or parameters)
looking automatically for the file in some default
locations (temporary directory, working directory,
$FLUPRO, $HOME) without the need of giving the full
path

oCALL FLABRT('name’,'message’)

this allows to force a FLUKA abort on user request: it
might be useful to perform a debugging (using gdb for
instance)

6t FLUKA Course, CERN, June 23-27, 2008

Compiling and linking FLUKA user
“routines

oA FLUKA executable with user routines is in general application
s;{ﬁclzgc It has to be named and kept separately from the standard

eoEverything is managed today by FLAIR, however it is important to
know the following details (managed automatically inside FLAIR):

$FLUPRO/flutil/fff is the compiling script which Ijas the right
definition of the path to the include subdirectory and all the necessary
list of g77 options

Example: $SFLUPRO/flutil /fff usrini.f generates usrini.o

then $FLUPRO/flutil/Ifluka —m fluka —o flukamy usrini.o will perform
the proper linking generating the executable here called flukamy

Tip: $FLUPRO/flutil/Ifluka —m fluka -0 flukamy usrini.f will
automatically call $FLUPRO/flutil / fff

6t FLUKA Course, CERN, June 23-27, 2008

comscw (weighting energy or star
deposit)

Arpument list (all variables are input only)

IJ - particle tvpe (1 = proton, 8 = neutron, ete.; see code in 5.1)
¥A,YAL,ZA : ourrent particle position

MREG : current geometry region

RULL : amonut to be deposited (unweighted)

LLO . particle generation

ICALL : mmternal code calling flag (not for general use)

This function is activated by option USERWEIG with WHAT(6) > 0.0.
Energy and star densities obtained via SCORE and USRBIN, energy and
stars obtained via EVENTBIN and production of residual nuclei obtained
via RESNUCLEI are multiplied by the value returned by this function.
The user can implement any desired logic to differentiate the returned
value according to any information contained in the argument list
(particle type, position, region, amount deposited, particle generation),
or information available in COMMON SCOHLP (binning number, type of
scored quantity). The scored quantity is given by the flag ISCRNG (in
SCOHLP):

ISCRNG = 1 - Energy density binning

ISCRNG = 2 — Star density-BiRning cxy june 2327, 2008
ISCRNG = 3 — Residual nuclei scorina

comscw (continues...)

The binning/detector number is given by JSCRNG (in SCOHLP)
and is printed in output between the estimator type and the
detector name:

Note that a detector of residual nuclei can have the same
JSCRNG number as a binning (use the value of ISCRNG to
discriminate).

Further information can be obtained including COMMON
TRACKR (for instance particle’s total energy, direction cosines,
age). TRACKR contains also special user variables (both integer
and in double precision) which can be used to save information
about particles which have undergone some particular event.

If data concerning the current material are needed, it can be
accessed as MEDIUM(MREG) if file SFLKMAT is included.

6t FLUKA Course, CERN, June 23-27, 200

| typical example of the use of comscw

Al common simple application of COMSCW is to renormalize energy
deposition to different units or to allow energy deposition scoring only for
selected cases. For example, let us select energy deposition only by
protons:

INCLUDE ‘(TRA%EEE::> ! In order to access to current particle properties

LSCZER = .FALSE.
COMSCW = ONEONE
* ======== In order to score energy deposition only by protons ==s======= *

K.

Check the scoring type: Energy deposition

.8

IF (ISCRNG .EQ. 1) THEN

Check if the current particle is a proton. Here JTRACK from

(TRACKR) common has to be included, since IJ = 208

If the particle is not a proton, then the energy deposition

scoring is disabled (LSCZER = .TRUE.).

The same result can be achieved giving COMSCW = ZERZER

IF (JTRACK .NE. 1) THEN

LSCZER = .TRUE.

ENDIF
ENDIF
RETURN

*=== End of function Comscw == ===

€ * % € %

Let’s give a look to the (TRACKR)

“include

PARAMETER (MXTRCK = 2500)

LOGICAL LFSSSC, LPKILL

COMMON / TRACKR / XTRACK (O:MXTRCK), YTRACK (O:MXTRCK),
ZTRACK (O:MXTRCK), TTRACK (MXTRCK),
DTRACK (MXTRCK), DPTRCK (3,MXTRCK),
ETRACK, PTRACK, CXTRCK, CYTRCK, CZTRCK, WTRACK,
CXTRPL, CYTRPL, CZTRPL, ZFFTRK, ZFRTTK, ATRACK,
CTRACK, CMIRCK, AKSHRT, AKLONG, WSCRNG, WNINOU,
SPAUSR(MKBMX1), STTRCK, SATRCK, NTRACK, MIRACK,
JTRACK, KTRACK, MMTRCK, LT1TRK, LT2TRK, IHSPNT,
LTRACK, LLOUSE, ISPUSR(MKBMX2), LFSSSC, LPKILL

EQUIVALENCE (SPAUSE, SPAUSR (1))

EQUIVALENCE (ISPUSE, ISPUSR (1))

SAVE / TRACKR /

o o oo oo oo

6t FLUKA Course, CERN, June 23-27, 2008

TRACKR (continues...)

A
N
¥ Ntrack = number of track segments
¥ Mtrack = number of energy deposition events along the track
* 0 < i < Ntrack
¥ Xtrack = end x-point of the ith track segment
¥ Ytrack = end y-point of the ith track segment
¥ Ztrack = end z-point of the ith track segment
¥ 1 < i < Ntrack
¥ Ttrack = length of the ith track segment
* 1 < j < Mtrack
Dtrack = energy deposition of the jth deposition event
¥ Dptrck = momentum loss of the jth deposition event
*
Jtrack = identity number of the particle
¥ Etrack = total energy of the particle
* Ptrack = momentum of the particle (not always defined, if
* < 0 must be obtained from Etrack)
* Cx,v,ztrck = direction cosines of the current particle
¥ Cx,v,ztrpl = polarization cosines of the current particle
Wtrack = weight of the particle
¥ Wscrng = scoring weight: it can differ from Wtrack if some
¥ biasing techniques are used (for example inelastic
interaction length biasing)
¥ Ctrack = total curved path
¥ Cmtrck = cumulative curved path since particle birth
¥ Lfftrk = <Z_eff> of the particle
¥ Zfrttk = actual Z_eff of the particle
g Atrack = age of the particle

%% o o %k % % o o o ok % o o o ok % W o o % % N % o % %

TRACKR (continues...)

N
\J

Akshrt
Aklong
Wninou
Spausr
Sttrck
Satrck

Ktrack

Ntrack

Ntrack

Mmtrck

¥ ¥

Ntrack >

-o— —— ——— g ———————

Kshrt amplltude for KO/KObar

Klong amplitude for KO/KObar

neutron algebraic balance of interactions (both
for "high" energy particles and "low" energy
neutrons)

user defined spare variables for the current
particle

macroscopic total cross section for low energy
neutron collisions

macroscopic absorption cross section for low energy*
neutron collisions (it can be negative for Pnab>1) *
if > 0 neutron group of the particle (neutron)

N ¥ ¥ N ¥ ¥ ¥ ¥

0, Mtrack > 0 : energy loss distributed along the
track

0 : no energy loss along the track

0 : local energy deposition (the
value and the point are not re-
corded in Trackr)

flag recording the material index for low energy

neutron collisions

0, Mtrack
0, Mtrack

N N K N ¥ N ¥ N ¥

6t FLUKA Course, CERN, June 23-27, 2008

JAA

Lt2trk
Thspnt
Ltrack
Llouse
Ispusr
Lfsssc

Lpkill

N ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ »

Ltltrk = initial lattice cell of the current track

TRACKR (continues...)

(or lattice cell for a point energy deposition)
final lattice cell of the current track

current geometry history pointer (not set if -1)
flag recording the generation number

user defined flag for the current particle

user defined spare flags for the current particle
logical flag for inelastic interactions ending with*
fission (used also for low energy neutrons) x
logical (user) flag for sudden particle death

* N % ¥ ¥ ¥ ¥

6t FLUKA Course, CERN, June 23-27, 2008

fluscw (weighting tluence, current and

vield)

JAA

Argument list (all variables are input only)

1J1 . particle tvpe

PLA : particle momentum (if > 0.0)
or -PLA = kinetic energy (if << 0.0]

TEX, TYY, TZZ : particle current direction cosines

WEE : particle weight

XX, YY, ZZ : particle position

NRGFLE : current reglon (after boundary erossing)

I0OLREG : previous region (before boundarv crossing). Useful onlv with
boundary crossing estimators (for other estimators 1t has no

meaning) _
LLO . particle generation

N3URF : mternal code calling flag (not for gemeral use)

Similar to COMSCW. Function FLUSCW is activated by option
USERWEIG, with WHAT(3) > 0.0. Yields obtained via
USRYIELD, fluences calculated with USRBDX, USRTRACK,
USRCOLL, USRBIN, and currents calculated with USRBDX are

multiplied by the value returned by this function.
6" FLUKA Course, CERN, June 23-27, 2008

fluscw (continues...)

The user can implement any desired logic to differentiate the
returned value according to any information contained in the
argument list (particle type, energy, direction, weight,
position, region, boundary, particle generation), or information
available in COMMON SCOHLP (binning or detector number,
estimator type). The estimator type is given by the flag
ISCRNG (in COMMON SCOHLP):

ISCRNG = 1 — Boundary crossing estimator

ISCRNG = 2 — Track-length binning

ISCRNG = 3 — Track-length estimator

ISCRNG = 4 - Collision density estimator

ISCRNG = 5 - Yield estimator

6t FLUKA Course, CERN, June 23-27, 2008

magfld (definition of a magnetic
field)

Argument list

X, ¥, Z : current positlon (Input only)
BTX, BTY, ETZ : direction cosines of the magnetic field vector (returned)

B - magnetic field intensity in tesla (returned)
NREG : cwrrent region (input only)
IDISC : if returned = 1, the particle will be discarded

MAGFLD is activated by option MGNFIELD with WHAT(4-
6)=0.0 and is used to return intensity and direction of a
magnetic field based on the current position and region. It is
called only if the current region has been flagged as having a
non-zero magnetic field by option ASSIGNMAt , with WHAT(5)
= 1.0.

The magnetic field spatial distribution is often read and
interpolated from an external field map.

6t FLUKA Course, CERN, June 23-27, 2008

Beware of the usual need for the normalization
7 of direction cosines!

Note that in any case the direction cosines must be properly
normalised in double precision even if B = 0.0.
The recommended algorithm is:

BINLEN = ONEONE/SQRT(BTX**2+BTY*%*2+BTZ%¥*2)
BTX BTX * BINLEN
BTY = BTY * BINLEN
BTZ BTZ * BINLEN

6t FLUKA Course, CERN, June 23-27, 2008

JAA

A very special user routine:
mgdraw.f

6t FLUKA Course, CERN, June 23-27, 2008

mgdraw (general event interface)

JAA
\U

The most general interface to FLUKA content (if you know how to use it...)

Argument list (all variables are input only)

ICODE : FLUKA phvsical compartment originating the call

= 1: eall from subroutine KASKAD (hadrons and muons)
= 2: call from subroutine EMFSC0 (e~. et and photons)
= 3 call from snbroutine KASNEU (low-energy neutrons)
= 4: call from subroutine KEASHEA (heavy lons)

= &: eall from snbroutine KASOFH (optical photons)

MREG : cwrrent region

Subroutine MGDRAW, activated by option USERDUMP with
WHAT(1)=100.0, usually writes a “collision tape”, i.e., a file
where all or selected transport events are recorded. The
default version (unmodified by the user) offers several
possibilities, selected bX WHAT(CZ in USERDUMP.

h FLUKA Course, CERN, June 23-27, 2008

mgdraw (continues...)

The different ENTRY points of MGDRAW

Additional flexibility is offered by a user entry USDRAW,
interfaced with the most important physical events
happening during particle transport.

The user can modify of course also any other entry of this
subroutine:

BXDRAW called at boundary crossings,

EEDRAW called at event end,

MGDRAW for trajectory drawing,

ENDRAW for recording of energy deposition events
SODRAW for recording, of source eyents; . -

ourse,

mgdraw (continues...)

Possibilities: the format of the output file can be
changed, and different combinations of events can be
written to file.

But the most interesting aspect of the routine is that
the six entries (all of which, if desired, can be activated
at the same time by setting USERDUMP with WHAT(3)
=0.0 and WHAT(4)=1.0) constitute a complete
interface to the whole Fluka transport. Therefore,
MGDRAW can be used not only to write a collision tape,
but to do any kind of complex analysis. Typical: event
by event output (common for HEP applications).

6t FLUKA Course, CERN, June 23-27, 2008

mgdraw: the MGDRAW entry

MTRACK: number of energy deposition events along the track
JTRACK: type of particle

ETRACK: total energy of the particle

WTRACK: weight of the particle

NTRACK: values of XTRACK, YTRACK, ZTRACK: end of each track
segment

MTRACK: values of DTRACK: energy deposited at each deposition
event

CTRACK: total length of the curved path

Other variables are available in TRACKR (but not written by
MGDRAW unless the latter is modified by the user: particle
momentum, direction cosines, cosines of the polarisation vector,
age, generation, etc. (see a full list in the comment in the INCLUDE

file). 6 FLUKA Course, CERN, June 23-27, 2008

mgdraw: the BXDRAW entry

JAA

Called at Boundary Crossings

Argument list (all variables are input only)

ICODE : physieal compartment originating the call, as in the MGDRAW entry

MREG : reglon from which the particle 1= exiting
NEWREG : region the particle is entering
X300, YSCO, Z3C0 : point where the boundary erossing ocours

6t FLUKA Course, CERN, June 23-27, 2008

mgdraw: the EEDRAW entry

JAA

Called at Event End

ICODE

Argument list (all variables are input only)

physical compartment originating the call, as in the HGDRAW entry

6t FLUKA Course, CERN, June 23-27, 2008

JAA

Called at
pointlike Energy
Deposition dumps

(for example:
stopping particles,
photoelectric eff,,
etc.)

mgdraw: the ENDRAW entry

ICODE
ICODE

ICODE

ICODE

ICODE

ICODE

MREG
RULL
A3C0,

Argument list (all variables are input only)

type of event originating energy deposition

1x:
10:
11:
12:
14:
2z
= 20:
=21
= 23:
= 3
= 30:
= 31:
= 3
= 4
= 40
= b
= Bk
= b1:

call from subroutine KASKAD (hadrons and muons);
elastic interaction recoil

inelastic mteraction recoll

stopping particle

particle escaping (energy deposited im blackhole)

call from subroutine EMFSCO0 (electrons, positrons and photons)
local energv deposition (1.e. photoelectric)
or 22: particle below threshold

particle escaping (energy deposited im blackhole)

call from subroutine KASNEU | low-energy neutrons)
target recoil

nentron below threshold

neutron escaping (energv deposited in blackhole)

call from subroutine KASHEA (heavy lons)

1on escaping (energy deposited in blackhole)

call from subroutine EASOPH (optical photons)

optical photon absorption

optical photon escaping (energy deposited in blackhole)

current reglon
energy amount deposited

YaCco,

Z3C0 : point where energy 1= deposited

| mgdraw: the SODRAW entry

Argument list
No argnments

SODRAW writes by default, for each source or beam particle:

NCASE: (in COMMON CASLIM, with a minus sign to identify
SODRAW output) number of primaries followed so far
NPFLKA: (in COMMON FLKSTK) stack pointer
NSTMAX: (in COMMON FLKSTK) highest value of the stack pointer
encountered so far
TKESUM: (in COMMON SOURCM) total kinetic energy of the primaries
of a user written source, if applicable. Otherwise = 0.0
WEIPRI: (in COMMON SUMCOU) total weight of the primaries
handled so far

NPFLEA times: ILOFLE: tvpe of source particle

(all variables in TEEFLE + AM: total particle energy (kinetic+mass)

COMMON FLESTE) WTFLK: sonree particle weight

¥FLE, YFLE, ZFLK: sonree particle position
TXFLE, TYFLE, TZFLE: source particle direction cosines

v 1 \JINv UU\.&IIJ\-, \.al_l\l‘, B A LE LI ST LI, [SASASAS)

JAA

mgdraw: the USDRAW entry

USDRAW is called
after each
article interaction

D
(requested by the
user with option
USERDUMP,
WHAT(4)=>1.0)

ICODE
ICODE = 10x:
= 100
= 101:
= 102:
= 103:
= 104:
= 105&:
ICODE = 20x:
= 208:
= 210:
= 212:
= 214:
= 215:
= 217
= 219
= 221
= 225
ICODE = 30x:
= 300
ICODE = 40x:
= 400;

MREG

Argument list (all variables are mput only)

tvpe of event

call from subroutine KASKAD (hadron and mmon interactions);
elastic interaction secondaries

inelastic imteraction secondaries

particle decay secondaries

delta ray generation secondaries

pair production secondaries

bremsstrahlung secondaries

call from subrontine EMF3C0 (electron, positron and photon interactions)
bremsstrahlung secondaries

Maller secondaries

Bhabha secondaries

in-flight annihilation secondaries

annihilation at rest secondaries

pair production secondaries

Compton scattering secondaries

photoeleciric secondaries

Rayleigh seattering secondaries

call from subroutine KASNED (low-energy neutron interactions)
neutron interaction secondaries

call from subrontine KASHEA (heavy 1on interactions)

delta ray generation secondaries

current region
XSCO, YSCOD, ZSCO0

mteraction point

O™ T'LUNA LLUUIDE, UCRIN, JUIIC £0~4/, LUUO

When mgdraw should never be used

JAA

e When biasing is requested

e Whenever low-energy neutrons (E<20 MeV) are used

(or at least one has to be a real very experienced user
to manage these cases without making mistakes...)

6t FLUKA Course, CERN, June 23-27, 2008

Converting Names«<Number regions

In—users routines

To get the number starting from a region name
CALL GEON2R (REGNAM, NREG, IERR)
Input variable:

Regnam = region name (CHAR*8)

Output variables:

.., Similar routines
lerr = error code (0 on success, 1 on failure) for Iattice geometry

To get the name of a region when you know the number:

*
*
*
*
*
*

CALL GEOR2N (NREG, REGNAM, IERR)
Input variable:
Nreg = region number

Output variables:
Regname = region name (CHAR*)

b3
*
%
b3
*
& Ierr = error code (0 on success, 1 on failure)

6t FLUKA Course, CERN, June 23-27, 2008

