*$ CREATE SOURCE.FOR *COPY SOURCE * *=== source ===========================================================* * SUBROUTINE SOURCE ( NOMORE ) INCLUDE '(DBLPRC)' INCLUDE '(DIMPAR)' INCLUDE '(IOUNIT)' * *----------------------------------------------------------------------* * * * Copyright (C) 1990-2010 by Alfredo Ferrari & Paola Sala * * All Rights Reserved. * * * * * * New source for FLUKA9x-FLUKA20xy: * * * * Created on 07 January 1990 by Alfredo Ferrari & Paola Sala * * Infn - Milan * * * * Last change on 17-Oct-10 by Alfredo Ferrari * * * * This is just an example of a possible user written source routine. * * note that the beam card still has some meaning - in the scoring the * * maximum momentum used in deciding the binning is taken from the * * beam momentum. Other beam card parameters are obsolete. * * * * Output variables: * * * * Nomore = if > 0 the run will be terminated * * * *----------------------------------------------------------------------* * INCLUDE '(BEAMCM)' INCLUDE '(FHEAVY)' INCLUDE '(FLKSTK)' INCLUDE '(IOIOCM)' INCLUDE '(LTCLCM)' INCLUDE '(PAPROP)' INCLUDE '(SOURCM)' INCLUDE '(SUMCOU)' * c Maximum dimension of the spectrum PARAMETER ( NDMAX = 4100 ) * LOGICAL LFIRST c defining spectrum arrays and dimention DIMENSION ENE(0:NDMAX), FLX(0:NDMAX), CUM(0:NDMAX) CHARACTER*80 LINE * saving spectrum dimension and arrays SAVE LFIRST, ENE, FLX, CUM, NMAX c initation of LFIRST DATA LFIRST, NMAX / .TRUE., 0 / *======================================================================* * * * BASIC VERSION * * * *======================================================================* NOMORE = 0 * +-------------------------------------------------------------------* * | First call initializations: IF ( LFIRST ) THEN * | *** The following 3 cards are mandatory *** TKESUM = ZERZER LFIRST = .FALSE. LUSSRC = .TRUE. * | *** user initialization *** WRITE( LUNOUT, *) WRITE( LUNOUT, *) 'READING SPECTRUM' C Reading the spectrum DO I = 0, NDMAX READ( 80, '(A)', ERR = 1198, END = 1200) LINE READ( LINE, *, ERR = 1199) ENE(I), FLX(I) NMAX = I END DO 1198 CALL FLABRT( 'SOURCE', 'SPECTRUM LINE READING FAILED') 1199 CALL FLABRT( 'SOURCE', 'SPECTRUM PAIRS READING FAILED') 1200 CONTINUE CLOSE(80) WRITE( LUNOUT, *) 'READING SPECTRUM COMPLETE' WRITE( LUNOUT, *) 'SPECTRUM DIMENTION: ', NMAX WRITE( LUNOUT, *) 'MAX ENERGY: ', ENE(NMAX) WRITE( LUNOUT, *) 'MAX FLUX: ', FLX(NMAX) CUM(0) = ZERZER C Building cumulative spectrum DO I = 1, NMAX CUM(I) = (FLX(I - 1) + FLX(I)) * (ENE(I) - ENE(I - 1)) & + CUM(I - 1) END DO C Normalizing cumulative spectrum DO I = 1, NMAX CUM(I) = CUM(I) / CUM(NMAX) END DO WRITE( LUNOUT, *) 'MAX CUM: ', CUM(NMAX) END IF * | * +-------------------------------------------------------------------* * Push one source particle to the stack. Note that you could as well * push many but this way we reserve a maximum amount of space in the * stack for the secondaries to be generated * Npflka is the stack counter: of course any time source is called it * must be =0 NPFLKA = NPFLKA + 1 * Wt is the weight of the particle WTFLK (NPFLKA) = ONEONE WEIPRI = WEIPRI + WTFLK (NPFLKA) * Particle type (1=proton.....). Ijbeam is the type set by the BEAM * card * +-------------------------------------------------------------------* * | (Radioactive) isotope: IF ( IJBEAM .EQ. -2 .AND. LRDBEA ) THEN IARES = IPROA IZRES = IPROZ IISRES = IPROM CALL STISBM ( IARES, IZRES, IISRES ) IJHION = IPROZ * 1000 + IPROA IJHION = IJHION * 100 + KXHEAV IONID = IJHION CALL DCDION ( IONID ) CALL SETION ( IONID ) * | * +-------------------------------------------------------------------* * | Heavy ion: ELSE IF ( IJBEAM .EQ. -2 ) THEN IJHION = IPROZ * 1000 + IPROA IJHION = IJHION * 100 + KXHEAV IONID = IJHION CALL DCDION ( IONID ) CALL SETION ( IONID ) ILOFLK (NPFLKA) = IJHION * | Flag this is prompt radiation LRADDC (NPFLKA) = .FALSE. * | Group number for "low" energy neutrons, set to 0 anyway IGROUP (NPFLKA) = 0 * | * +-------------------------------------------------------------------* * | Normal hadron: ELSE IONID = IJBEAM ILOFLK (NPFLKA) = IJBEAM * | Flag this is prompt radiation LRADDC (NPFLKA) = .FALSE. * | Group number for "low" energy neutrons, set to 0 anyway IGROUP (NPFLKA) = 0 END IF * | * +-------------------------------------------------------------------* * From this point ..... * Particle generation (1 for primaries) LOFLK (NPFLKA) = 1 * User dependent flag: LOUSE (NPFLKA) = 0 * No channeling: LCHFLK (NPFLKA) = .FALSE. DCHFLK (NPFLKA) = ZERZER * User dependent spare variables: DO 100 ISPR = 1, MKBMX1 SPAREK (ISPR,NPFLKA) = ZERZER 100 CONTINUE * User dependent spare flags: DO 200 ISPR = 1, MKBMX2 ISPARK (ISPR,NPFLKA) = 0 200 CONTINUE * Save the track number of the stack particle: ISPARK (MKBMX2,NPFLKA) = NPFLKA NPARMA = NPARMA + 1 NUMPAR (NPFLKA) = NPARMA NEVENT (NPFLKA) = 0 DFNEAR (NPFLKA) = +ZERZER * ... to this point: don't change anything C Sampling from cumulative spectrum XI = FLRNDM(XDUMMY) DO I = 1, NMAX IF (XI .LT. CUM(I)) GOTO 1201 END DO CALL FLABRT( 'SOURCE', 'SAMPLING SPECTRUM FAILED') 1201 CONTINUE C Determaining the energy inside bin I according to linear spectrum XI = (XI - CUM(I - 1)) / (CUM(I) - CUM(I - 1)) IF (FLX(I) .EQ. FLX(I - 1)) THEN ENERGY = XI ELSE ENERGY = XI * (FLX(I) - FLX(I - 1)) * (FLX(I) + FLX(I - 1)) ENERGY = SQRT(ENERGY + FLX(I - 1) ** 2) - FLX(I - 1) ENERGY = ENERGY / (FLX(I) - FLX(I - 1)) END IF ENERGY = ENERGY * (ENE(I) - ENE(I - 1)) + ENE(I - 1) * Particle age (s) AGESTK (NPFLKA) = +ZERZER AKNSHR (NPFLKA) = -TWOTWO * Kinetic energy of the particle (GeV) TKEFLK (NPFLKA) = ENERGY * EMVGEV * TKEFLK (NPFLKA) = SQRT ( PBEAM**2 + AM (IONID)**2 ) - AM (IONID) * Particle momentum c PMOFLK (NPFLKA) = PBEAM PMOFLK (NPFLKA) = SQRT ( TKEFLK (NPFLKA) * ( TKEFLK (NPFLKA) & + TWOTWO * AM (IONID) ) ) * +----------------------------------------------------------------------* Call SFLOOD ( XXX, YYY, ZZZ, UXXX, VYYY, WZZZ ) UBEAM = UXXX VBEAM = VYYY WBEAM = WZZZ * Cosines (tx,ty,tz) TXFLK (NPFLKA) = UBEAM TYFLK (NPFLKA) = VBEAM TZFLK (NPFLKA) = WBEAM * TZFLK (NPFLKA) = SQRT ( ONEONE - TXFLK (NPFLKA)**2 * & - TYFLK (NPFLKA)**2 ) * Polarization cosines: TXPOL (NPFLKA) = -TWOTWO TYPOL (NPFLKA) = +ZERZER TZPOL (NPFLKA) = +ZERZER * Particle coordinates ( radius of sphere = 60 cm) XBEAM = XXX * 60.D0 YBEAM = YYY * 60.D0 ZBEAM = ZZZ * 60.D0 XFLK (NPFLKA) = XBEAM YFLK (NPFLKA) = YBEAM ZFLK (NPFLKA) = ZBEAM * Calculate the total kinetic energy of the primaries: don't change IF ( ILOFLK (NPFLKA) .EQ. -2 .OR. ILOFLK (NPFLKA) .GT. 100000 ) & THEN TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA) ELSE IF ( ILOFLK (NPFLKA) .NE. 0 ) THEN TKESUM = TKESUM + ( TKEFLK (NPFLKA) + AMDISC (ILOFLK(NPFLKA)) ) & * WTFLK (NPFLKA) ELSE TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA) END IF RADDLY (NPFLKA) = ZERZER * Here we ask for the region number of the hitting point. * NREG (NPFLKA) = ... * The following line makes the starting region search much more * robust if particles are starting very close to a boundary: CALL GEOCRS ( TXFLK (NPFLKA), TYFLK (NPFLKA), TZFLK (NPFLKA) ) CALL GEOREG ( XFLK (NPFLKA), YFLK (NPFLKA), ZFLK (NPFLKA), & NRGFLK(NPFLKA), IDISC ) * Do not change these cards: CALL GEOHSM ( NHSPNT (NPFLKA), 1, -11, MLATTC ) NLATTC (NPFLKA) = MLATTC CMPATH (NPFLKA) = ZERZER CALL SOEVSV RETURN *=== End of subroutine Source =========================================* END