Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even $^{124-134}$Xenon Nuclei

N. Pietralla*+$&1, L. Coquard*1, G. Rainovski+%, T. Ahn*1,3, C. Bauer*1, J. Leske$1, O. Möller*1, Th. Möller*1, and the ANL Gammasphere group

1Institut für Kernphysik, TU Darmstadt, 64289 Darmstadt, Germany
2Faculty of Physics, St.Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria
3A.W.Wright Nuclear Structure Laboratory, Yale Univ., New Haven, CT-06520, U.S.A.

Vibrational proton-neutron mixed-symmetry states (MSSs) of heavy nuclei are sensitive to the residual proton-neutron quadrupole-quadrupole interaction and have recently been identified in various experimental approaches (see [1] for a review). The technique of projectile-Coulomb excitation is particularly suited for the study of one-phonon and multi-phonon quadrupole excitations in the proton-neutron symmetric and the mixed-symmetry sector. After having demonstrated this approach at the ATLAS facility at ANL on the N=80 nucleus 138Ce [2] we have studied projectile-Coulomb excitation of Xe isotopes at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2$^+$ MSS has been traced in the stable N=80 isotones down to 134Xe [3]. First, the data on absolute E2 and M1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the one-phonon 2$^+$ MSS has been studied along the sequence of stable even-even $^{124-134}$Xe isotopes [4] that are believed to form a shape transition path from vibrational nuclei with U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data [4,5] on more than 40 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.

[4] L. Coquard et al., to be submitted for publication.

*supported by the DFG under grant No. Pi 393/2-1 and by the Helmholtz International Center for FAIR (HIC for FAIR).
+supported by the Bulgarian-German exchange programme under grants D/06/05918 and DAAD-09.
%supported by the BMBF under grant No. 06DA2141.
&supported by the DFG under grant No. SFB 634.
$supported by the BGNSF under contract DO 02-219.