Cluster-Gas States in Light Nuclei

Hisashi Horiuchi
Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
International Institute for Advanced Studies, Kizugawa 619-0225, Japan

In self-conjugate $4n$ nucleus, the α cluster states with highest excitation energies are expected to lie near or above the $n\alpha$ dissociation threshold energy. One of the recent developments of nuclear cluster physics is the proposal and the investigation of the existence of the $n\alpha$ cluster-gas states near the $n\alpha$ dissociation threshold energy. In former days, although the second 0^+ state of ^{12}C (Hoyle state) was concluded to have 3α cluster-gas structure [1], the generality of the α-gas state was not pursued in other $4n$ nuclei. Now the α-gas character of cluster states is widely investigated mostly in relation with the viewpoint of Bose-Einstein condensation of alpha particles [2]. Cluster-gas states are now also investigated in non-α nuclei and in heavy-mass nuclei [3]. In contrast to the nucleon-gas state whose excitation energy is very high (about 100 MeV for ^{12}C), cluster-gas states in light nuclei are expected to show up in low excitation-energy region where spectroscopic studies are possible. Thus cluster-gas states present us with an entirely new and important subject of nuclear structure in general.

In this talk we discuss studies of alpha-condensate-like states in ^{12}C and in ^{16}O which have been made by using THSR wave functions [2] and also by OCM approach. The Hoyle state of ^{12}C is almost confirmed as the 3α condensate-like state and the 6th 0^+ state at 15.1 MeV excitation energy in ^{16}O is suggested strongly as the the 4α condensate-like state. We also comment on possible existence of excited cluster states having the structures including ^{12}C cluster in Hoyle state.

References

