Correlated Prompt Fission Data

Patrick Talou¹, T. Kawano¹, I. Stetcu¹, D. Neudecker²
¹Theoretical Division, Los Alamos National Laboratory, USA
²XCP-5, Computational Physics Division, Los Alamos National Laboratory, USA

14th Int. Conference on Nuclear Reaction Mechanisms
June 15-19, 2015, Varenna, Italy
One Fission Event = Vast and Rich Data Set

- Complete fission event, from pre- to post-scission
- Focus on prompt fission data only

Prompt Fission Neutrons & Photons

- Very important quantities for Applications:
 - Neutrons: average spectrum and multiplicity + $P(\nu)$ for neutron multiplicity counting
 - Photons: total γ-ray energy
- Fundamental Physics
 - Everything! New experiments and new theoretical tools to address those data
Theoretical Approach

- **Hauser-Feshbach formalism** applied to primary fission fragments
- **Monte Carlo implementation → CGMF code**
 - Probability distributions for evaporating neutron or photon sampled at each stage of the decay
 - Optical Model Calculation for neutrons
 - γ-ray Strength Function for photons
 - Nuclear structure information from RIPL-3 database
 - Correlations & distributions accessible
 - Important physics questions can be addressed
 - Important applications

![Graphs showing mass-energy distribution for cold fission events](image)
Recent experimental efforts

- **Prompt Fission Neutron Spectrum**
 - Chi-Nu (LANL), CEA-BRC, LiCORNE (Orsay), Gatchina
 - IAEA-CRP on PFNS being finalized

- **Prompt Fission γ rays**
 - DANCE (LANL, LLNL)
 - IRMM

Prompt Fission Neutron and Gamma Multiplicities

- $<\nu>$ very sensitive to $<\text{TKE}>$, $<\text{TKE}>(A,Z)$
- $<N_\gamma>$ very sensitive to energy threshold E_{cut}
- Monte Carlo Hauser-Feshbach calculations are very successful in reproducing observed multiplicity average values and distributions!
Total γ-Ray Energy vs. TKE

$$TXE = Q_f - TKE \simeq n (\epsilon_{cm} + B_n) + E_{\gamma}^{tot}$$

Distinct structures appear due to regularity in neutron binding energies in fission fragments.

- Recent DANCE experiment
- Analysis is ongoing
Results for Specific Fragments

- γ-ray Spectra
- Specific γ transitions \rightarrow study of isomeric ratios, fission yields, $P(\nu)$, etc.
- Hardening of γ spectra for near shell-closure nuclei

Experimental Results

PhD thesis work of R. Bilinert
Results for Specific Fragments

- Exclusive neutron spectra
- Very good agreement for most fragments
- Discrepancies near shell closures

n-LF and n-n Angular Correlations

Kinematic boost from FF

n-LF angular distributions for different (ν_L, ν_H)
Incident Neutron-Induced Fission

- $^{235}\text{U} (n,f)$ and $^{239}\text{Pu} (n,f)$ up to 20 MeV
- Simplified model to calculate pre-neutron fission fragments $Y(A,Z,TKE)$
- Multi-chance fission
- Pre-equilibrium neutrons

![Graph showing neutron energy distribution for ^{239}Pu](image)

- $E_{\text{inc}} = 17.5$ MeV
Implementation into MCNP6 Transport Code

- Integration of CGMF Monte Carlo Hauser-Feshbach code into MCNP6 Transport Code (in progress)
- Applications for detector response modeling, list-mode data analysis, non-proliferation, and a better understanding of the fission process
Open Questions

- Many quantities can be calculated accurately, but...
- Calculated average PFNS too soft?
- Input data need improvement
 - Fission fragment yields $Y(A,Z,KE)$ as a function of E_{inc}
 - Nuclear structure of fission fragments
- Physics questions not fully settled
 - Excitation energy sorting mechanism(s) at scission
 - Scission neutrons?
 - Angular momentum of the fragments
- Compensating errors?
A powerful simulation tool for many interesting applications and physics questions
Selected Publications