Fluka:
a multi-particle transport code

(Program version 2018)

Alfredo Ferrari, Paola R. Sala, Alberto Fassò, Johannes Ranft
Abstract

This report describes the 2018 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner’s guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.
Preface

The INFN–CERN Collaboration Agreement for the Maintenance and Development of the Fluka Code of December 2003 called for the publication of two major reports, focused respectively more on the technical aspects (this report), and on the description of the physics models embedded into the Code (to be published next year).

This document is a reference guide for the users of the Fluka particle transport code, so as to provide them with a tool for the correct input preparation and use of the code, a description of the basic code structure, and of the history of its evolution. In particular, this guide is intended to document the 2014 version of Fluka, an update of the 2005 version, which represented a fundamental evolution in Fluka development with respect to the previous releases, from both the scientific and technical points of view. This development is one of the main tasks carried out under the INFN–CERN Collaboration Agreement for the Maintenance and Development of the Fluka Code of December 2003. Notwithstanding the efforts of the authors, it is not possible to guarantee that this guide is free from error. Furthermore, since the Fluka code is continually evolving, this guide will also evolve with time. The 2005 version of this document also represents the first and basic reference to be used in citation of Fluka, together with Ref. [41] (a full list of References starts on page 423). In using the code, the user agrees on the authorship and copyright and hence is bound to quote the above references.

This guide is organized as follows. After the Fluka Licence, which the user is required to read carefully, Part I contains a summary description of what Fluka is and what its capabilities are (Chapter 1), a Beginner’s Guide (Chapter 2), the Installation Guide (Chapter 3), and a list of the main modules (Fortran files) of which Fluka is composed (Chapter 4).

Part II is the real User Guide, where the user can find a detailed description of what is needed to run Fluka: particles and materials considered in the code (Chapter 5), the rules for building Fluka input (Chapter 6), each single Fluka command and corresponding parameters (Chapter 7), the Geometry system (Chapter 8), the standard Fluka output (Chapter 9), how to write the user routines (Chapter 13), etc.

At the end of Part II, the history of Fluka is reported, putting emphasis on the third generation of the code evolution (from 1988 to the present version), giving more details about the code structure and all the fundamental physics models used in Fluka.

It must be noted that early versions of the Fluka hadronic event generator as implemented in other codes (in particular GEANT3) should be referenced as such (e.g. GEANT-FLUKA) and not as Fluka. They have little in common with the present version and should be considered virtually obsolete. The proper reference to GEANT-FLUKA is Ref. [68].

Please contact A. Ferrari or A. Fassò (see email addresses below) for any comment on or criticism about this manual and/or the code.

The Fluka Authors:

Alfredo Ferrari, CERN (Alfredo.Ferrari@cern.ch)
Paola R. Sala, INFN Milan (Paola.Sala@mi.infn.it)
Alberto Fassò, ELI Beamlines, Prague (Alberto.Fasso@fzu.cz)
Johannes Ranft, Germany (Johannes.Ranft@cern.ch)
The Fluka Contributing Authors:

Giuseppe Battistoni, INFN Milan
Till Tobias Böhlen, MedAustron
Francesco Cerutti, CERN
Mary Chin, CERN
Anton Empl, Houston University
Maria Vittoria Garzelli, Italy
Mattias Lantz, Uppsala University
Andrea Mairani, CNAO
Silvia Muraro, INFN Milan
Vincenzo Patera, Sapienza University, Rome
Stefan Roesler, CERN
Philippe Schoofs, CERN
George Smirnov, CERN
Vasilis Vlachoudis, CERN
Acknowledgements

The authors would like to thank all the members of the FLUKA Collaboration for their invaluable help and patience in reading, checking, and amending the manuscript.

The FLUKA Collaboration:

INFN, Milan, Italy Giuseppe Battistoni, Francesco Broggi, Mauro Campanella, Silvia Muraro, Paola Sala
Italy Ettore Gadioli, Maria Vittoria Garzelli
Papa Giovanni 23mo Hospital, Bergamo, Italy Paolo Colleoni
INFN, Pavia, Italy Andrea Fontana
CNAO, Pavia, Italy Andrea Mairani, Maurizio Pelliccioni
INFN, Legnaro, Italy Lucia Sarchiapone
INFN, Bologna, and University of Bologna, Italy Annarita Margiotta, Maximiliano Sioli
Sapienza University, Rome, Italy Vincenzo Patera
University of Rome Tor Vergata, Italy Maria Cristina Morone
CERN DGS-RP, Geneva, Switzerland Matteo Magistris, Stefan Roesler, Chris Theis, Heinz Vincke, Helmut Vincke, Joachim Vollaire
ELI-Beamlines, Prague, Czech Republic Alberto Fassò, Roberto Versaci
ESS, Lund, Sweden Luisella Lari
SLAC, Stanford, USA Mario Santana Leitner
Jefferson Lab, Newport News, USA Pavel Degtiarenko, George Kharashvili
Houston University, USA Toni Empl, Son Hoang, Martin Kroupa, John Idarraga, Lawrence S. Pinsky
NASA, Houston, USA Amir Alexander Bahadori, Kerry Lee, Brandon Reddell, Edward Semones, Nicholas Stoffle, Neal Zapp
TRIUMF, Vancouver, Canada Mary Chin, Mina Nozar, Michael Trinczek, Anne Trudel
Ludwig Maximilian University (LMU), Faculty of Physics, Munich, Germany Georgios Dedes, Katia Parodi
LMU and Heidelberg University Hospital, Heidelberg, Germany Ilaria Rinaldi
Helmholtz-Zentrum Dresden-Rossendorf, Germany Anna Ferrari, Stefan Müller
Germany Johannes Ranft
Uppsala University, Sweden Mattias Lantz
Austrian Institute of Technology, Vienna, Austria Sofia Rollet, Andrej Sipaj
MedAustron, Austria Till Tobias Böhlen
PSI, Villigen, Switzerland Stefania Trovati
Switzerland Vittorio Boccone

This work has been supported by INFN and CERN in the framework of the Collaboration Agreement for the development, maintenance and release of the FLUKA software. This work was partially supported under DOE contract DE-AC02-76-SF00515, NASA Grant NAG8-1901.
Depending on whether the Licensee requested and got approval for a User or Trial FLUKA version, the FLUKA User license or the FLUKA Trial Version license applies respectively (see below). For commercial user, ad hoc licenses are agreed, hence none of the licenses below applies.

FLUKA User license, as established by the FLUKA Coordination Committee

FLUKA User license

Copyright notice and license conditions

Copyright Italian National Institute for Nuclear Physics (INFN) and European Organization for Nuclear Research (CERN), 1989–2018.

All rights not expressly granted under this license are reserved.

Requests for permissions not granted under this license shall be addressed to the FLUKA Collaboration Committee, through fcc@fluka.org. Any permission may only be granted in writing.

This software results in particular from work performed by Alberto Fassò, Alfredo Ferrari, Johannes Ranft, Paola Sala (the “Authors”), and their collaborators (the “Collaborators”). The Flair user interface results in particular from work performed by Vasilis Vlachoudis (the “Flair Author”) and collaborators (also the “Collaborators”). The FLUKA Authors and Flair Author are jointly referred to as “Authors”.

INFN and CERN are the exclusive source of distribution of the code, bug fixes and documentation of the FLUKA software (http://www.fluka.org), and may authorise distribution by mirror sites.

This license cancels and replaces any prior license conditions but their warranty and liability provisions shall continue to apply to any use or modifications made under such prior license conditions.

DEFINITIONS

FLUKA means the fully integrated particle physics Monte Carlo simulation software package being developed since 1989, available from the official FLUKA website (http://www.fluka.org) and authorised mirror sites. FLUKA includes FLUKA core code, FLUKA User Routines (as defined below), and the Flair user interface.

The FLUKA Copyright Holders means both CERN and INFN.

FLUKA User Routines means the set of subroutines collected in the usermvax section of FLUKA and forming part of the standard distribution of FLUKA.

The Licensee means any person acting individually within a non-profit organisation, exercising any permission granted by this license.

LICENSE GRANT

1. Subject to the terms and conditions of this license, the FLUKA Copyright Holders herewith grant to the Licensee a worldwide, non-exclusive, royalty-free, source and object code license to use and reproduce FLUKA for internal scientific non-commercial non-military purposes only. Notwithstanding the foregoing, the Licensee shall not execute FLUKA in a manner that produces an output whose contents are directly useable or easily employable to simulate the physics models embedded within FLUKA in a generic manner, or excise portions of FLUKA source or object code, and execute them independently of FLUKA. Extracting specific isolated results from any of the individual internal physics models embedded within FLUKA is not permitted. Permitted use and reproduction are referred to below as “Use”.

2. Modification (including translation) of FLUKA, in whole or in part, is not permitted, except for modification of FLUKA User Routines that do not circumvent, replace, add to or modify any of the functions of the FLUKA core code. Permitted modifications are referred to below as “Modifications”.

3. FLUKA is licensed for Use by the Licensee only, and the Licensee shall not market, distribute, transfer, license or sub-license, or in any way make available (“Make Available”) FLUKA or Modifications, in whole or in part, to third parties, without prior written permission. The Licensee shall not assign or transfer this license.

4. Notwithstanding section 3, the Licensee may Make Available his Modifications of FLUKA User Routines to third parties under these license conditions.
5. The Licensee shall not insert FLUKA code or Modifications, in whole or in part, into other codes without prior written permission.

6. Any use of FLUKA outside the scope of this license is subject to prior written permission.

GRANT BACK

7. The Licensee shall in a timely fashion notify to fcc@fluka.org any Modifications carried out by him. Except for Authors, Collaborators, and employees of the FLUKA Copyright Holders, the copyright in whose Modifications shall automatically be vested in the FLUKA Copyright Holders, the Licensee herewith grants the FLUKA Copyright Holders a perpetual, royalty-free, irrevocable and non-exclusive license to his Modifications, with no limitation of use. The Licensee acknowledges that the FLUKA Copyright Holders may insert such Modifications into future releases of FLUKA, subject to appropriate acknowledgment of the Licensee’s contribution.

8. The Licensee shall report as soon as practical any errors or bugs found in any portion of FLUKA to fluka-discuss@fluka.org

PUBLICATIONS AND ACKNOWLEDGEMENT

9. The Licensee shall explicitly acknowledge his use of FLUKA in any publication or communication, scientific or otherwise, relating to such use, by citing the FLUKA set of references (http://www.fluka.org, see below) and the FLUKA copyright notice.

10. The Licensee shall ensure that the FLUKA set of references, the FLUKA copyright notice and these license conditions are not altered or removed from FLUKA and that all embodiments of FLUKA and Modifications contain in full the FLUKA set of references, the FLUKA copyright notice, and these license conditions.

11. Any insertion of FLUKA code or Modifications, in whole or in part, into other codes with permission under section 5 shall preserve the FLUKA set of references, the FLUKA copyright notice and these license conditions in the FLUKA code or Modifications concerned, and must also reproduce these within any additional global notices included along or embedded within the software into which the FLUKA code or the Modifications have been integrated, in whole or in part. Any part of the FLUKA code or Modifications so inserted shall continue to be subject to these license conditions.

12. Publication of any results of comparisons of specific internal physics models extracted from FLUKA with permission under section 6 with data or with other codes or models is subject to prior written permission.

13. Contributions to any formal code comparisons and validation exercises pertaining to FLUKA, sponsored by recognised bodies or within the framework of recognised conferences and workshops, are subject to prior written permission.

WARRANTY AND LIABILITY

14. DISCLAIMER FLUKA IS PROVIDED BY THE FLUKA COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY, OF SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE OR USE ARE DISCLAIMED. THE FLUKA COPYRIGHT HOLDERS AND THE AUTHORS MAKE NO REPRESENTATION THAT FLUKA AND MODIFICATIONS THEREOF WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADE SECRET OR OTHER PROPRIETARY RIGHT.

15. LIMITATION OF LIABILITY THE FLUKA COPYRIGHT HOLDERS AND ANY CONTRIBUTOR SHALL HAVE NO LIABILITY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, EXEMPLARY, PUNITIVE OR OTHER DAMAGES OF ANY CHARACTER INCLUDING, WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOWEVER
CAUSED AND ON ANY THEORY OF CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF FLUKA, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND THE LICENSEE SHALL HOLD THE COPYRIGHT HOLDERS AND ANY CONTRIBUTOR FREE AND HARMLESS FROM ANY LIABILITY, INCLUDING CLAIMS BY THIRD PARTIES, IN RELATION TO SUCH USE.

TERMINATION

16. This license shall terminate with immediate effect and without notice if the Licensee fails to comply with any of the terms of this license, or if the Licensee initiates litigation against any of the FLUKA Copyright Holders or any contributors with regard to FLUKA. It shall also terminate with immediate effect from the date on which a new version of FLUKA becomes available. In either case sections 14 and 15 above shall continue to apply to any Use or Modifications made under these license conditions.

FLUKA Trial Version license

6 MONTHS TRIAL VERSION

END-USER LICENSE AGREEMENT
FOR FLUKA SOFTWARE

Copyright Italian National Institute for Nuclear Physics (INFN) and European Organization for Nuclear Research (CERN), 1989–2018.

All rights not expressly granted under this license are reserved.

Requests for permissions not granted under this license shall be addressed to the FLUKA Collaboration Committee, through fcc@fluka.org. Any permission may only be granted in writing.

This software results in particular from work performed by Alberto Fassò, Alfredo Ferrari, Johannes Ranft, Paola Sala (the “Authors”), and their collaborators (the “Collaborators”).

INFN and CERN are the exclusive source of distribution of the code, bug fixes and documentation of the FLUKA software (FLUKA website). By installing, or otherwise using the Trial Version of FLUKA software, you agree to be bound by the terms of this Agreement.

If you do not agree to the terms of this Agreement, you should refrain from installing or using the Trial Version of FLUKA software.

DEFINITIONS

The Licensors means both CERN and INFN.

The Licensee means any person or entity exercising any permission granted by this license.

The FLUKA software (“FLUKA”) means the last updated version of the fully integrated particle physics Monte Carlo simulation software package being developed since 1989, available from the official FLUKA website http://www.fluka.org and authorised mirror sites. FLUKA includes FLUKA User Routines (as defined below) and accompanying documentation. Output does not form part of FLUKA as herein defined.

FLUKA User Routines (“User Routines”) means the set of subroutines collected in the usermvax section of FLUKA and forming part of the standard distribution of FLUKA.

The Trial Version of FLUKA software (“FLUKA Trial Version”) means a version of the FLUKA software to be used only to review, demonstrate and evaluate the FLUKA software. The FLUKA Trial Version has an expiration date which is set out in the title of the Agreement at the sole discretion of the Licensors and which starts as from the date of its downloading by the Licensee (“the Expiration Date”). The FLUKA Trial Version features a built in limitation that purposely impedes unlimited use of the software. It therefore runs...
in a sub optimal way and limits the computational time to what is deemed adequate for the Purpose as described below.

The Purpose should be defined as the willingness of the Licensee to use the Trial version of the FLUKA software in order to evaluate the suitability of FLUKA software for commercial applications and to determine whether to purchase FLUKA under commercial license conditions.

Make Available means to market, distribute, transfer, license or sub-license, or in any way dispose of or make available.

Output means results and data generated using FLUKA Trial Version, or any procedure or algorithm making use of results and data generated with FLUKA Trial Version, but excludes Comparisons (as defined below).

Comparisons means results of benchmark comparisons of the FLUKA Trial Version physics models.

LICENSE GRANT

1. The Parties agree that the copyright and all other rights related to FLUKA, in whatever form, including but not limited to the object code, source code and user interface, are vested in Licensors, and that Licensors retain all title, copyright and any other proprietary rights in FLUKA.

2. All rights not expressly granted under this Agreement are reserved.

3. Subject to the terms and conditions of this Agreement, Licensors herewith grant to the Licensee a non-exclusive, non-transferable object code license to use the FLUKA Trial Version for the Purpose.

4. The scope of the license granted under this Agreement is strictly limited to the use of the FLUKA Trial Version for the Purpose and specifically excludes any scientific or commercial applications.

5. The Licensee shall under no circumstances circumvent the built in limitations contained in the FLUKA Trial version.

6. FLUKA Trial Version is licensed for use by the Licensee only, at the Licensee’s site, and the Licensee shall not Make Available FLUKA Trial Version, in whole or in part, either separately or with a product or service, to third parties, without Licensors’ prior written permission.

7. The Licensee may not modify, translate, decompile, disassemble, decrypt, extract, or otherwise reverse engineer FLUKA Trial Version, nor may the Licensee attempt to create the source code from the object code of FLUKA Trial Version. The Licensee may not insert FLUKA Trial Version code, in whole or in part, into other codes. The Licensee may not create derivative works of FLUKA Trial Version. It is understood that Output is not considered derivative works.

8. Without prejudice to article 5, the Licensee may modify FLUKA User routines to the extent that the purpose of the modifications is limited to the adaptation of input and output interfaces of FLUKA. Any such modifications are permitted only to the extent that they do not circumvent, replace, add to, or modify any of the functions of FLUKA, or extract specific isolated results from any of the individual internal physics models embedded within FLUKA.

9. The Licensee may use FLUKA Trial Version to generate Output for the Purpose only. The Licensee shall not Make Available such Output to third parties.

10. The Licensee may use FLUKA Trial Version to generate Comparisons for the Purpose but may not Make Available such Comparisons.

11. Any use of FLUKA Trial Version outside the scope of articles 3 to 7 is subject to prior written permission from Licensors. No Party may assign or transfer this Agreement to a third party.

12. The Licensee shall not use FLUKA Trial Version, Output, or Comparisons for military purposes.

13. The Licensee shall not copy FLUKA Trial Version, in whole or in part, for distribution purposes.

PAYMENT
14. The FLUKA Trial Version is provided to Licensee free of charge.

MAINTENANCE AND SUPPORT

15. The Licensors are under no obligation to correct any problems or errors of FLUKA Trial Version.

WARRANTY AND LIABILITY

16. DISCLAIMER: FLUKA TRIAL VERSION IS PROVIDED BY LICENSORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY, OF SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE OR USE ARE DISCLAIMED. LICENSORS AND THE AUTHORS MAKE NO REPRESENTATION THAT FLUKA TRIAL VERSION WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADE SECRET OR OTHER PROPRIETARY RIGHT. LICENSORS ARE NOT AWARE OF ANY FACTS THAT WOULD LEAD A REASONABLE PERSON TO BELIEVE THAT USE OF FLUKA TRIAL VERSION WOULD INFRINGE THIRD PARTY RIGHTS. THE LICENSEE ACKNOWLEDGES THAT LICENSORS AND THE AUTHORS HAVE NOT PERFORMED ANY SEARCHES OR INVESTIGATIONS INTO THE EXISTENCE OF ANY THIRD PARTY RIGHTS THAT MAY AFFECT FLUKA TRIAL VERSION.

17. LIMITATION OF LIABILITY: EXCEPT AS MAY BE MANDATED BY LAW, IN CASE OF GROSS NEGLIGENCE OR WILFUL MISCONDUCT, LICENSORS AND ANY CONTRIBUTOR SHALL HAVE NO LIABILITY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, EXEMPLARY, PUNITIVE OR OTHER DAMAGES OF ANY CHARACTER INCLUDING, WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOWEVER CAUSED AND ON ANY THEORY OF CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE, ARISING IN ANY WAY FROM THE USE, INCLUDING ANY INABILITY TO USE, FLUKA TRIAL VERSION AND/OR OUTPUT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND THE LICENSEE SHALL HOLD LICENSORS AND ANY CONTRIBUTOR FREE AND HARMLESS FROM ANY LIABILITY, INCLUDING CLAIMS BY THIRD PARTIES, IN RELATION TO SUCH USE.

18. The Parties shall take all necessary measures to prevent any infringement of the terms of this Agreement. The Licensee shall be liable to Licensors for any such infringement by the Licensee and shall hold Licensors free and harmless and indemnify them for any and all claims or lawsuits which may result there from.

DURATION AND TERMINATION

19. This Agreement shall enter into force on the day of its downloading by the Licensee.

20. This Agreement shall terminate and the license shall lapse after the Expiration date of the FLUKA Trial Version.

21. This Agreement may terminate if the Licensee fails to comply with any of the terms of this Agreement such termination having been notified in writing by the Licensors and being effective within thirty (30) days unless within that period the breach is remedied by the Licensee, or if the Licensee institutes litigation against any of Licensors or any contributors with regard to FLUKA Trial Version, without any compensation being due by either Licensor to the Licensee.

22. In any case of termination of the Agreement the license shall lapse and the Licensee shall uninstall and delete all copies of the Software, including the user documentation.

23. In case of termination of this Agreement for any reason whatsoever and at the request of either Party, the other Party shall promptly return any confidential information belonging to the first Party.

24. Notwithstanding termination of the Agreement howsoever caused, its provisions shall continue to bind the Parties in so far and for as long as may be necessary to give effect to their respective rights and obligations accrued prior to termination.

25. The provisions of this Agreement shall be interpreted in accordance with its true meaning and effect. Without prejudice to CERN’s status as an Intergovernmental Organization, reference shall be made to Swiss substantive law where (i) a matter is not specifically covered by this Agreement; or (ii) a
provision is ambiguous or unclear. Such reference shall be made exclusively for the matter or provisions concerned, and shall in no event apply to the other provisions of this Agreement.

26. Any dispute under this Agreement that fails to be settled amicably shall be referred to arbitration, drawn up by CERN in accordance with its status as an Intergovernmental Organization, in accordance with the procedure defined at: http://legal.web.cern.ch/procedures/arbitration. Notwithstanding reference of any dispute to arbitration, the Parties shall continue to be bound by their obligations under this Agreement.

FLUKA set of references, subject to change

“FLUKA: a multi-particle transport code”,
A. Ferrari, P.R. Sala, A. Fassò and J. Ranft,

“The FLUKA Code: Developments and Challenges for High Energy and Medical Applications”,
T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov and V. Vlachoudis,
Nuclear Data Sheets 120, 211–214 (2014)

Use of Flair must be acknowledged using the following reference:

Additional FLUKA references can be added, provided they are relevant for the FLUKA version under consideration.

This set of references is subject to change in time. New ones will be communicated, when necessary, in the Release Notes of new FLUKA versions.

Note: The Nuclear Energy Agency Data Bank is an authorized distributor of the code

For questions/clarifications/problems about the license or in general the use of FLUKA please contact the joint INFN/CERN FLUKA Coordination Committee at fcc@fluka.org, or one of the Authors.
Table of contents

I A summary description of FLUKA

1 Introduction ... 3
 1.1 What is FLUKA? ... 3
 1.2 A quick look at FLUKA's physics, structure and capabilities 3
 1.2.1 Physics ... 4
 1.2.1.1 Hadron inelastic nuclear interactions 4
 1.2.1.2 Elastic Scattering 4
 1.2.1.3 Nucleus-Nucleus interactions 5
 1.2.1.4 Transport of charged hadrons and muons 5
 1.2.1.5 Low-energy neutrons 6
 1.2.1.6 Electrons 6
 1.2.1.7 Photons 6
 1.2.1.8 Optical photons 7
 1.2.1.9 Neutrinos 7
 1.2.2 Geometry ... 7
 1.2.3 Transport .. 8
 1.2.4 Biasing .. 8
 1.2.5 Optimisation 9
 1.2.6 Scoring ... 9
 1.2.7 Code structure, technical aspects 9
 1.2.8 Main differences between FLUKA and earlier codes with same name 9
 1.2.8.1 Applications 10

2 A FLUKA beginner's guide 11
 2.1 Introduction ... 11
 2.2 Installing FLUKA 11
 2.3 Building a FLUKA input 11
 2.3.1 Generalities about FLUKA input 11
 2.3.2 Input alignment 12
 2.3.3 A simple example 13
 2.3.4 The title .. 13
 2.3.5 Definition of the primary particles 14
 2.3.6 The geometry 14
 2.3.7 Materials .. 16
 2.3.8 Assigning materials to regions 18
 2.3.9 Production Thresholds 18
 2.3.10 Estimators and Detectors 19
 2.3.11 Initialisation of the random number sequence 21
 2.3.12 Starting signal and number of requested histories 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.13 The sample input file</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Running FLUKA</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Accessing results</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1 Boundary crossing estimator</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2 Track length estimator</td>
<td>31</td>
</tr>
<tr>
<td>2.5.3 Binning estimator</td>
<td>31</td>
</tr>
<tr>
<td>2.5.4 Readout of other FLUKA estimators</td>
<td>32</td>
</tr>
<tr>
<td>2.6 Various settings</td>
<td>32</td>
</tr>
<tr>
<td>2.7 Biasing</td>
<td>32</td>
</tr>
<tr>
<td>2.8 Flair</td>
<td>33</td>
</tr>
<tr>
<td>3 Installation</td>
<td>35</td>
</tr>
<tr>
<td>3.1 Requirements</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Installation instructions</td>
<td>35</td>
</tr>
<tr>
<td>3.2.1 Installation of the tar.gz packages</td>
<td>35</td>
</tr>
<tr>
<td>3.2.2 Installation of the RPM package</td>
<td>36</td>
</tr>
<tr>
<td>3.3 Package content</td>
<td>37</td>
</tr>
<tr>
<td>3.4 Pre-connected I/O files</td>
<td>38</td>
</tr>
<tr>
<td>4 FLUKA modules (Fortran files)</td>
<td>39</td>
</tr>
<tr>
<td>II User Guide</td>
<td>41</td>
</tr>
<tr>
<td>5 Particle and material codes</td>
<td>43</td>
</tr>
<tr>
<td>5.1 Particles transported by FLUKA</td>
<td>43</td>
</tr>
<tr>
<td>5.2 Pre-defined materials</td>
<td>46</td>
</tr>
<tr>
<td>5.3 Physical units</td>
<td>48</td>
</tr>
<tr>
<td>6 General features of FLUKA input</td>
<td>49</td>
</tr>
<tr>
<td>6.1 The input preprocessor</td>
<td>51</td>
</tr>
<tr>
<td>6.1.1 Syntax</td>
<td>51</td>
</tr>
<tr>
<td>6.1.2 Definition of Constants</td>
<td>51</td>
</tr>
<tr>
<td>6.1.3 Conditional directives</td>
<td>52</td>
</tr>
<tr>
<td>6.1.4 Include directive</td>
<td>53</td>
</tr>
<tr>
<td>6.1.5 Parametric expressions</td>
<td>53</td>
</tr>
<tr>
<td>7 Description of FLUKA input options</td>
<td>55</td>
</tr>
<tr>
<td>7.1 Introduction to the FLUKA input options</td>
<td>55</td>
</tr>
<tr>
<td>7.1.1 Summary of the available options</td>
<td>55</td>
</tr>
<tr>
<td>7.1.2 Basic commands</td>
<td>57</td>
</tr>
<tr>
<td>7.1.2.1 Definition of the radiation source</td>
<td>58</td>
</tr>
<tr>
<td>7.1.2.2 Description of the geometry</td>
<td>58</td>
</tr>
<tr>
<td>7.1.2.3 The FLUKA reference frame</td>
<td>59</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>7.22</td>
<td>EMFRAY</td>
</tr>
<tr>
<td>7.23</td>
<td>EVENTBIN</td>
</tr>
<tr>
<td>7.24</td>
<td>EVENTDAT</td>
</tr>
<tr>
<td>7.25</td>
<td>EXPTRANS</td>
</tr>
<tr>
<td>7.26</td>
<td>FIXED</td>
</tr>
<tr>
<td>7.27</td>
<td>FLUKAFIX</td>
</tr>
<tr>
<td>7.28</td>
<td>FREE</td>
</tr>
<tr>
<td>7.29</td>
<td>GCR-SPE</td>
</tr>
<tr>
<td>7.30</td>
<td>GEOBEGIN</td>
</tr>
<tr>
<td>7.31</td>
<td>GEOEND</td>
</tr>
<tr>
<td>7.32</td>
<td>GLOBAL</td>
</tr>
<tr>
<td>7.33</td>
<td>HI–PROPErt</td>
</tr>
<tr>
<td>7.34</td>
<td>IONFLUCT</td>
</tr>
<tr>
<td>7.35</td>
<td>IONTRANS</td>
</tr>
<tr>
<td>7.36</td>
<td>IRRPROFILE</td>
</tr>
<tr>
<td>7.37</td>
<td>LAM–BIAS</td>
</tr>
<tr>
<td>7.38</td>
<td>LOW–BIAS</td>
</tr>
<tr>
<td>7.39</td>
<td>LOW–DOWN</td>
</tr>
<tr>
<td>7.40</td>
<td>LOW–MAT</td>
</tr>
<tr>
<td>7.41</td>
<td>LOW–NEUT</td>
</tr>
<tr>
<td>7.42</td>
<td>LOW–PWXSI</td>
</tr>
<tr>
<td>7.43</td>
<td>MATERIAL</td>
</tr>
<tr>
<td>7.44</td>
<td>MAT–PROP</td>
</tr>
<tr>
<td>7.45</td>
<td>MCSTHRES</td>
</tr>
<tr>
<td>7.46</td>
<td>MGNFIELD</td>
</tr>
<tr>
<td>7.47</td>
<td>MULSOPT</td>
</tr>
<tr>
<td>7.48</td>
<td>MUPHOTON</td>
</tr>
<tr>
<td>7.49</td>
<td>MYRQMD</td>
</tr>
<tr>
<td>7.50</td>
<td>OPEN</td>
</tr>
<tr>
<td>7.51</td>
<td>OPT–PROD</td>
</tr>
<tr>
<td>7.52</td>
<td>OPT–PROP</td>
</tr>
<tr>
<td>7.53</td>
<td>PAIRBREM</td>
</tr>
<tr>
<td>7.54</td>
<td>PART–THRES</td>
</tr>
<tr>
<td>7.55</td>
<td>PHOTONUC</td>
</tr>
<tr>
<td>7.56</td>
<td>PHYSICS</td>
</tr>
<tr>
<td>7.57</td>
<td>PLOTGEOM</td>
</tr>
<tr>
<td>7.58</td>
<td>POLARIZAti</td>
</tr>
<tr>
<td>7.59</td>
<td>RAD–BIOL</td>
</tr>
<tr>
<td>7.60</td>
<td>RADDECAY</td>
</tr>
<tr>
<td>7.61</td>
<td>RANDOMIZE</td>
</tr>
<tr>
<td>7.62</td>
<td>RESNUCLEi</td>
</tr>
<tr>
<td>7.63</td>
<td>ROT–DEFini</td>
</tr>
</tbody>
</table>
8 Combinatorial Geometry

8.1 Introduction ... 293
8.2 Combinatorial Geometry input .. 293
 8.2.1 GEOBEGIN card ... 294
 8.2.2 Geometry Title line .. 295
 8.2.3 Body data ... 295
 8.2.3.1 Fixed format body input 295
 8.2.3.2 Free format body input 296
 8.2.4 Body types .. 296
 8.2.4.1 Rectangular Parallelepiped. Code: RPP 296
 8.2.4.2 General Rectangular Parallelepiped. Code: BOX 297
 8.2.4.3 Sphere. Code: SPH ... 298
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.4.4</td>
<td>Right Circular Cylinder</td>
<td>RCC</td>
<td>298</td>
</tr>
<tr>
<td>8.2.4.5</td>
<td>Right Elliptical Cylinder</td>
<td>REC</td>
<td>299</td>
</tr>
<tr>
<td>8.2.4.6</td>
<td>Truncated Right Angle Cone</td>
<td>TRC</td>
<td>300</td>
</tr>
<tr>
<td>8.2.4.7</td>
<td>Ellipsoid of Revolution</td>
<td>ELL</td>
<td>301</td>
</tr>
<tr>
<td>8.2.4.8</td>
<td>Right Angle Wedge</td>
<td>WED or RAW</td>
<td>302</td>
</tr>
<tr>
<td>8.2.4.9</td>
<td>Arbitrary Convex Polyhedron</td>
<td>ARB</td>
<td>303</td>
</tr>
<tr>
<td>8.2.4.10</td>
<td>Infinite half-space delimited by a coordinate plane</td>
<td>XYP, XZP, YZP</td>
<td>304</td>
</tr>
<tr>
<td>8.2.4.11</td>
<td>Generic infinite half-space</td>
<td>PLA</td>
<td>305</td>
</tr>
<tr>
<td>8.2.4.12</td>
<td>Infinite Circular Cylinder parallel to a coordinate axis</td>
<td>XCC, YCC, ZCC</td>
<td>306</td>
</tr>
<tr>
<td>8.2.4.13</td>
<td>Infinite Elliptical Cylinder parallel to a coordinate axis</td>
<td>XEC, YEC, ZEC</td>
<td>306</td>
</tr>
<tr>
<td>8.2.4.14</td>
<td>Generic Quadric</td>
<td>QUA</td>
<td>307</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Geometry directives</td>
<td></td>
<td>308</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Body END line</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Region data</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Region END line</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>8.2.9</td>
<td>Region Volumes</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>8.2.10</td>
<td>LATTICE card</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>8.2.11</td>
<td>LATTNSGL card</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>8.2.12</td>
<td>GEOEND card</td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>8.2.12.1</td>
<td>Geometry debugger</td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>8.3</td>
<td>Voxel geometry</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>8.4</td>
<td>The Flair Geometry Editor</td>
<td></td>
<td>319</td>
</tr>
</tbody>
</table>

9 Output

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Main output</td>
<td>320</td>
</tr>
<tr>
<td>9.2</td>
<td>Scratch file</td>
<td>328</td>
</tr>
<tr>
<td>9.3</td>
<td>Random number seeds</td>
<td>328</td>
</tr>
<tr>
<td>9.4</td>
<td>Error messages</td>
<td>328</td>
</tr>
<tr>
<td>9.5</td>
<td>Estimator output</td>
<td>329</td>
</tr>
<tr>
<td>9.5.1</td>
<td>DETECT output</td>
<td>330</td>
</tr>
<tr>
<td>9.5.2</td>
<td>EVENTBIN output</td>
<td>330</td>
</tr>
<tr>
<td>9.5.3</td>
<td>EVENTDAT output</td>
<td>331</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>9.5.4</td>
<td>RESNUCLEI output</td>
<td>332</td>
</tr>
<tr>
<td>9.5.5</td>
<td>USRBDX output</td>
<td>333</td>
</tr>
<tr>
<td>9.5.6</td>
<td>USRBIN output</td>
<td>334</td>
</tr>
<tr>
<td>9.5.7</td>
<td>USRCOLL output</td>
<td>334</td>
</tr>
<tr>
<td>9.5.8</td>
<td>USRTRACK output</td>
<td>335</td>
</tr>
<tr>
<td>9.5.9</td>
<td>USRYIELD output</td>
<td>335</td>
</tr>
<tr>
<td>9.6</td>
<td>USERDUMP output</td>
<td>336</td>
</tr>
<tr>
<td>9.7</td>
<td>RAY output</td>
<td>336</td>
</tr>
<tr>
<td>9.8</td>
<td>User-generated output</td>
<td>336</td>
</tr>
<tr>
<td>10</td>
<td>Low-energy neutrons in FLUKA</td>
<td>337</td>
</tr>
<tr>
<td>10.1</td>
<td>Multigroup neutron transport</td>
<td>337</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Possible artefacts</td>
<td>337</td>
</tr>
<tr>
<td>10.2</td>
<td>Pointwise transport</td>
<td>338</td>
</tr>
<tr>
<td>10.3</td>
<td>Secondary particle production</td>
<td>338</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Gamma generation</td>
<td>338</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Secondary neutrons</td>
<td>338</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Generation of charged particles</td>
<td>339</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Residual nuclei</td>
<td>339</td>
</tr>
<tr>
<td>10.4</td>
<td>The FLUKA neutron cross section library</td>
<td>339</td>
</tr>
<tr>
<td>10.4.1</td>
<td>260 neutron, 42 gamma group library</td>
<td>340</td>
</tr>
<tr>
<td>10.4.1.1</td>
<td>Neutron and gamma energy groups</td>
<td>340</td>
</tr>
<tr>
<td>10.4.1.2</td>
<td>New library: Available materials</td>
<td>342</td>
</tr>
<tr>
<td>11</td>
<td>Collision tape</td>
<td>348</td>
</tr>
<tr>
<td>11.1</td>
<td>What is a collision tape and what is its purpose</td>
<td>348</td>
</tr>
<tr>
<td>11.2</td>
<td>How to write a collision tape</td>
<td>348</td>
</tr>
<tr>
<td>12</td>
<td>Generating and propagating optical photons</td>
<td>351</td>
</tr>
<tr>
<td>12.1</td>
<td>Cherenkov transport and quantum efficiency</td>
<td>352</td>
</tr>
<tr>
<td>12.2</td>
<td>Handling optical photons</td>
<td>352</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Example of SOURCE routine for optical photons</td>
<td>353</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Routine assigning a continuous Refraction Index as a function of Wavelength</td>
<td>355</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Input Example no. 1: Only Cherenkov light is generated</td>
<td>356</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Input Example no. 2: Only Scintillation light is concerned</td>
<td>357</td>
</tr>
<tr>
<td>12.2.5</td>
<td>User output for optical photons from USERDUMP</td>
<td>358</td>
</tr>
<tr>
<td>12.2.6</td>
<td>Readout of the sample user output</td>
<td>362</td>
</tr>
<tr>
<td>13</td>
<td>User routines</td>
<td>365</td>
</tr>
<tr>
<td>13.1</td>
<td>How to write, compile and link a user routine</td>
<td>365</td>
</tr>
<tr>
<td>13.1.1</td>
<td>INCLUDE files</td>
<td>366</td>
</tr>
<tr>
<td>13.2</td>
<td>Description of available user routines</td>
<td>367</td>
</tr>
<tr>
<td>13.2.1</td>
<td>ABSCFF: user-defined ABSorption CoEfficient</td>
<td>367</td>
</tr>
</tbody>
</table>
14 Use of RAY pseudo-particles ... 367
13.2.2 COMSCW: weighting deposited energy or stars 367
13.2.3 DFFCFF: user-defined DiFFusion CoEfficient 368
13.2.4 ENDSCP: Energy density DiStributed — Change of Positions . 368
13.2.5 FLDSCP: Fluence DiStributed — Change of Positions 369
13.2.6 FLUSCW: weighting fluence, current and yield 369
13.2.7 FORMFV: nuclear FORM Factor User-defined 370
13.2.8 FRGHNS: material roughness (for optical photons) 370
13.2.9 MUSBRB, LUSRBL, FUSRBV: user-defined quantities for special binning 371
13.2.10 LATTIC: (symmetry transformation for lattice geometry) 372
13.2.11 MAGFLD: definition of a magnetic field 373
13.2.12 MDSTCK: management of the stack of secondaries 374
13.2.13 MDRAW: general event interface 374
13.2.14 OPHBDX: user-defined Optical PHoton BoundDary-(X)crossing properties 379
13.2.15 QUEFFC: user-defined QUantum EFFiciency 379
13.2.16 RFLCTV: user-defined ReFLectivity 379
13.2.17 RFRNDX: user-defined ReFRaction iNDeX 380
13.2.18 SOEVSV: SSource EVent SAving 380
13.2.19 SOURCE: user-written source 380
13.2.19.1 Reading from a file 380
13.2.19.2 Direct assignment 381
13.2.19.3 Sampling from a uniform distribution 381
13.2.19.4 Sampling from a generic distribution 381
13.2.19.5 Sampling from a biased distribution 382
13.2.20 STUPRE, STUPRF: SeT User PROperties for EMF and FLUKA particles 385
13.2.21 UBSSET: User BiasSing SETting 385
13.2.22 UDCORL: User defined DeCay DiRection biasing and Lambda (for \(\nu \) only) 388
13.2.23 USIMBS: USeR defined IMportance BiasSing 388
13.2.24 USREIN: USeR Event INitialisation (called before each event) 389
13.2.25 USREQU: USeR Event OUtput (called at the end of each event) 389
13.2.26 USRGLO: USeR GLObal settings 389
13.2.27 USRINI: USeR INitialisation 389
13.2.28 USRMED: USeR MEDium dependent directives 390
13.2.29 USROUT: USeR OUtput 390
13.2.30 USRRNC: USeR Residual NuClei 391

14 Use of RAY pseudo-particles ... 392

15 Special source: colliding beams ... 395

16 Special source: cosmic rays .. 398
16.1 Primary spectrum ... 398
16.1.1 The All-Particle Spectrum 399
16.1.2 The High Energy All-Nucleon Spectrum 399
16.1.3 Solar modulation .. 399
16.1.4 Atmospheric model: geometry 399
 16.1.4.1 Earth atmosphere model 399
 16.1.4.2 Local atmosphere model 400
16.1.5 Atmospheric model: density 400
16.1.6 Geomagnetic field ... 401
16.2 Scoring .. 402
16.3 The various SDUM options available with command SPECSOUR ... 402
16.4 Example of input data cards 404

17 Special source: synchrotron radiation 407

18 History of FLUKA 409

18.1 Introduction ... 409
18.2 First generation (the CERN SPS Project, 1962-1978) 409
18.3 Second generation (development of new hadron generators, 1978-1988) .. 409
18.4 Third generation (the modern multiparticle/multipurpose code, 1989 to present) 410
 18.4.1 Code structure .. 411
 18.4.2 Geometry ... 412
 18.4.3 Particle transport ... 412
 18.4.4 Particle decays ... 413
 18.4.5 Magnetic fields .. 413
 18.4.6 Multiple Coulomb scattering 413
 18.4.7 Ionisation losses ... 413
 18.4.8 Time dependence .. 414
 18.4.9 Nuclear data and cross sections 414
 18.4.10 Electron and photon transport (EMF) 414
 18.4.11 Low-energy neutrons .. 415
 18.4.12 Hadron event generators 416
 18.4.12.1 High energy model improvements 417
 18.4.12.2 Cascade-Preequilibrium model (Peanut) 418
 18.4.12.3 Evaporation/Fission and Fermi Break-Up 419
 18.4.13 Radioactivity ... 420
 18.4.14 Biasing ... 420
 18.4.15 Scoring ... 421
 18.4.16 Heavy ions .. 421
 18.4.16.1 DPMJET interface 421
 18.4.16.2 RQMD interface .. 422
 18.4.17 Neutrino interactions 422
 18.4.18 Code size ... 422

References 423
Part I

A summary description of FLUKA
Chapter 1

Introduction

1.1 What is FLUKA?

FLUKA is a general purpose tool for calculations of particle transport and interactions with matter, covering an extended range of applications spanning from proton and electron accelerator shielding to target design, calorimetry, activation, dosimetry, detector design, Accelerator Driven Systems, cosmic rays, neutrino physics, radiotherapy etc.

The highest priority in the design and development of FLUKA has always been the implementation and improvement of sound and modern physical models. Microscopic models are adopted whenever possible, consistency among all the reaction steps and/or reaction types is ensured, conservation laws are enforced at each step, results are checked against experimental data at single interaction level. As a result, final predictions are obtained with a minimal set of free parameters fixed for all energy/target/projectile combinations. Therefore results in complex cases, as well as properties and scaling laws, arise naturally from the underlying physical models, predictivity is provided where no experimental data are directly available, and correlations within interactions and among shower components are preserved.

FLUKA can simulate with high accuracy the interaction and propagation in matter of about 60 different particles, including photons and electrons from 100 eV–1 keV to thousands of TeV, neutrinos, muons of any energy, hadrons of energies up to 20 TeV (up to 10 PeV by linking FLUKA with the DPMJET code) and all the corresponding antiparticles, neutrons down to thermal energies and heavy ions. The program can also transport polarised photons (e.g., synchrotron radiation) and optical photons. Time evolution and tracking of emitted radiation from unstable residual nuclei can be performed on line.

FLUKA can handle even very complex geometries, using an improved version of the well-known Combinatorial Geometry (CG) package. The FLUKA CG has been designed to track correctly also charged particles (even in the presence of magnetic or electric fields). Various visualisation and debugging tools are also available.

For most applications, no programming is required from the user. However, a number of user interface routines (in Fortran 77) are available for users with special requirements.

The FLUKA physical models are described in several journal and conference papers; on the technical side the stress has been put on four apparently conflicting requirements, namely efficiency, accuracy, consistency and flexibility.

Efficiency has been achieved by having a frequent recourse to table look-up sampling and a systematic use of double precision has had a great impact on overall accuracy: both qualities have benefited from a careful choice of the algorithms adopted. To attain a reasonable flexibility while minimising the need for user-written code, the program has been provided with a large number of options available to the user, and has been completely restructured introducing dynamical dimensioning.

Another feature of FLUKA, probably not found in any other Monte Carlo program, is its double capability to be used in a biased mode as well as a fully analogue mode. That means that while it can be used to predict fluctuations, signal coincidences and other correlated events, a wide choice of statistical techniques are also available to investigate punchthrough or other rare events in connection with attenuations by many orders of magnitude.

1.2 A quick look at FLUKA’s physics, structure and capabilities

Here we only give a very short summary list of the capabilities and limitations of FLUKA, since this is meant to be mainly a practical guide. More detailed descriptions of the physical models, algorithms and techniques will be found in cited references.
1.2.1 Physics

1.2.1.1 Hadron inelastic nuclear interactions

The FLUKA hadron-nucleon interaction models are based on resonance production and decay below a few GeV, and on the Dual Parton model above. Two models are used also in hadron-nucleus interactions. At momenta below 3–5 GeV/c the PEANUT package includes a very detailed Generalised Intra-Nuclear Cascade (GINC) and a preequilibrium stage, while at high energies the Gribov-Glauber multiple collision mechanism is included in a less refined GINC. Both modules are followed by equilibrium processes: evaporation, fission, Fermi break-up, gamma deexcitation. FLUKA can also simulate photonuclear interactions (described by Vector Meson Dominance, Delta Resonance, Quasi-Deuteron and Giant Dipole Resonance), electronuclear interactions, photonucleon production and electromagnetic dissociation. A schematic outline is presented below:

- Inelastic cross sections for hadron-hadron interactions are represented by parameterised fits based on available experimental data [142].
- For hadron-nucleus interactions, a mixture of tabulated data and parameterised fits is used [21, 129, 146, 147, 190].
- Elastic and charge exchange reactions are described by phase-shift analyses and eikonal approximation.
- Inelastic hadron-hadron interactions are simulated by different event generators, depending on energy:
 - Momentum < 20 TeV/c and > 5 GeV/c:
 - Dual Parton Model (DPM) [47]. The version used in FLUKA has been derived by A. Ferrari and P.R. Sala [71, 83, 84, 87] from the original version by J. Ranft and collaborators [161, 162]. A description of modifications and improvements can be found in [56, 87]
 - Momentum from threshold to 5 GeV/c:
 - Resonance production and decay model [87] (Improved version of Hänssgen et al. model [100–106])
- Inelastic hadron-nucleus interactions are simulated by different event generators depending on energy and projectile:
 - Momentum < 20 TeV/c and > 5 GeV/c:
 - Glauber-Gribov multiple scattering followed by Generalised Intraneuclear Cascade (GINC)
 - Below 5 GeV/c for nucleons, anti-nucleons and pions; below 1.5 GeV kinetic for kaons:
 - Preequilibrium-cascade model PEANUT (Ferrari-Sala) [71, 83]
 - In between PEANUT and DPM for kaons: K. Hänssgen et al. GINC modified to take into account correlations among cascade particles and more refined nuclear effects (Ferrari-Sala)
- All three models include evaporation and gamma deexcitation of the residual nucleus [85, 86]. Light residual nuclei are not evaporated but fragmented into a maximum of 6 bodies, according to a Fermi break-up model.
- Treatment of antiparticle capture: the basic antinucleon-nucleon process is modeled through the production and decay of two or more intermediate states whose branchings are adjusted to reproduce experimental pion/kaon/resonances multiplicities. In nuclei, all nuclear effects (density, Fermi motion, Pauli-blocking, reinteraction of secondaries...) are treated by the PEANUT model as for all other hadronic interactions. Annihilations occur at shallow depths inside the nucleus. The depth is chosen as a function of the atomic number, the interaction being more and more peripheral as the nuclear mass increases. In case of compounds, the relative annihilation probabilities are calculated following [144] for hydrogenated compounds, and [58] for other compounds.

1.2.1.2 Elastic Scattering

- Parameterised nucleon-nucleon cross sections.
- Tabulated nucleon-nucleus cross sections [146, 147].
- Tabulated phase shift data for pion-proton and phase-shift analysis for kaon-proton scattering.
- Detailed kinematics of elastic scattering on hydrogen nuclei and transport of proton recoils (Ferrari-Sala).
1.2.1.3 Nucleus-Nucleus interactions

Nuclear interactions generated by ions are treated through interfaces to external event generators.

- Above 5 GeV per nucleon: DPMJET-II or DPMJET-III [180], with special initialisation procedure.
- Between 0.125 and 5 GeV per nucleon: modified RQMD (Relativistic Quantum Molecular Dynamics) [191–193]
- Below 0.125 GeV per nucleon: BME (Boltzmann Master Equation) [49,51,52]

1.2.1.4 Transport of charged hadrons and muons

An original treatment of multiple Coulomb scattering and of ionisation fluctuations allows the code to handle accurately some challenging problems such as electron backscattering and energy deposition in thin layers even in the few keV energy range.

Energy loss:

- Bethe-Bloch theory [27–29,38,39]. Barkas Z^3 effect [19,20] and Bloch Z^4 effect [38]. Mott correction to the Rutherford scattering cross section [111,139]. Improved ionisation potential, handling of porous substances, ranging out particles below energy cutoff [72].
- Optional delta-ray production and transport with account for spin effects and ionisation fluctuations. The present version includes a special treatment [73] which combines delta-ray production with properly restricted ionisation fluctuations and includes corrections for particle spin and electrons/positrons and “distant collision” straggling corrections (similar to Blunck-Leisegang ones). Original approach making use of very general statistical properties of the problem. Within this framework “practical” solutions have been implemented into the code with very satisfactory results. This approach exploits the properties of the cumulants of distributions, and in particular of the cumulants of the distribution of Poisson distributed variables.
- Shell and other low-energy corrections derived from Ziegler [209].
- Ionisation potentials and density effect parameters according to Sternheimer, Berger and Seltzer [195].
- Non-ionising energy losses (NIEL) [111,196]
- Displacements Per Atom (DPAs) [78]
- Special transport algorithm, based on Molière’s theory of multiple Coulomb scattering improved by Bethe [30,137,138], with account of several correlations:
 - between lateral and longitudinal displacement and the deflection angle
 - between projected angles
 - between projected step length and total deflection
- Accurate treatment of boundaries and curved trajectories in magnetic and electric fields
- Automatic control of the step
- Path length correction
- Spin-relativistic effects at the level of the second Born approximation [81].
- Nuclear size effects (scattering suppression) on option (simple nuclear charge form factors are implemented, more sophisticated ones can be supplied by the user).
- Fano correction for heavy charged particle multiple scattering.
- Single scattering: algorithm based on the Rutherford formula with a screening factor in the form used by Molière (for consistency with the multiple scattering model used by FLUKA), integrated analytically without any approximation. Nuclear form factors and spin-relativistic corrections at the first or second Born approximation level accounted for by a rejection technique.
- Correction for cross section variation with energy over the step.
- Bremsstrahlung and electron pair production at high energy by heavy charged particles, treated as a continuous energy loss and deposition or as discrete processes depending on user choice.
- Muon photonuclear interactions, with or without transport of the produced secondaries.
1.2.1.5 Low-energy neutrons

For neutrons with energy lower than 20 MeV, FLUKA uses its own neutron cross section library (P5 Legendre angular expansion, 260 neutron energy groups) containing more than 250 different materials, selected for their interest in physics, dosimetry and accelerator engineering and derived from the most recently evaluated data:

- multigroup P5 cross sections with 260 groups [57].
- Gamma-ray generation and different temperatures available.
- Doppler broadening for temperatures above 0 K.

Transport:

- Standard multigroup transport with photon and fission neutron generation.
- Detailed kinematics of elastic scattering on hydrogen nuclei
- Transport of proton recoils and protons from N(n,p) reaction.
- Capture photons generated according to the multigroup treatment, but transported with the more accurate EMF package which performs continuous transport in energy and allows for secondary electron generation.

For nuclei other than hydrogen, kerma factors are used to calculate energy deposition (including from low-energy fission). For details about the available materials, group structure etc., see Chap. 10.

1.2.1.6 Electrons

- FLUKA uses an original transport algorithm for charged particles [81], including a complete multiple Coulomb scattering treatment giving the correct lateral displacement even near a boundary (see hadron and muon transport above).
- The variations with energy of the discrete event cross sections and of the continuous energy loss in each transport step are taken into account exactly.
- Differences between positrons and electrons are taken into account concerning both stopping power and bremsstrahlung [114].
- The bremsstrahlung differential cross sections of Seltzer and Berger [188, 189] have been extended to include the finite value at “tip” energy, and the angular distribution of bremsstrahlung photons is sampled accurately.
- The Landau-Pomeranchuk-Migdal suppression effect [119,120,126,127] and the Ter-Mikaelyan polarisation effect in the soft part of the bremsstrahlung spectrum [198] are also implemented.
- Electrohadron production (only above ρ mass energy 770 MeV) via virtual photon spectrum and Vector Meson Dominance Model [132]. (The treatment of the latter effect has not been checked with the latest versions, however).
- Positron annihilation in flight and at rest
- Delta-ray production via Bhabha and Møller scattering

Note: the present lowest transport limit for electrons is 1 keV. Although in high-Z materials the Molière multiple scattering model becomes unreliable below 20-30 keV, a single-scattering option is available which allows to obtain satisfactory results in any material also in this low energy range.

The minimum recommended energy for primary electrons is about 50 to 100 keV for low-Z materials and 100-200 keV for heavy materials, unless the single scattering algorithm is used. Single scattering transport allows to overcome most of the limitations at low energy for the heaviest materials at the price of some increase in CPU time.

1.2.1.7 Photons

- Pair production with actual angular distribution of electrons and positrons.
A quick look at Fluka

- Landau-Pomeranchuk-Migdal pair production suppression effect [119, 120, 126, 127]
- Compton effect with Doppler broadening using a fit of the Compton profiles [31, 174], and account for atomic bonds through use of inelastic Hartree-Fock form factors.
- Photoelectric effect with actual photoelectron angular distribution [186], according to the fully relativistic theory of Sauter. Interactions sampled separately for each component element and for each edge. The edge fine structure is taken into account. Parameterisations/tabulations for photoelectric cross sections including all known edges up to Z = 100 and down to a few eV. Optional emission of fluorescence photons and approximate treatment of Auger electrons for all K and most L lines.
- Rayleigh scattering
- Photon polarisation taken into account for Compton, Rayleigh and Photoelectric effects.
- Photohadron production:
 - Vector Meson Dominance Model (Ranft [168]), modified and improved (Ferrari-Sala) using PEANUT below 770 MeV [71].
 - Quasideuteron interactions
 - Giant Dipole Resonance

Note: the present lowest transport limit for photons is 100 eV. However, fluorescence emission may be underestimated at energies lower than the K-edge in high-Z materials, because of lack of Coster-Kronig effect.

The minimum recommended energy for primary photons is about 1 keV.

1.2.1.8 Optical photons

- Generation and transport (on user’s request) of Cherenkov, Scintillation and Transition Radiation.
- Transport of light of given wavelength in materials with user-defined optical properties.

1.2.1.9 Neutrinos

- Electron and muon (anti)neutrinos are produced and tracked on option, without interactions.
- Neutrino interactions however are implemented, but independently from tracking.

1.2.2 Geometry

A part of the code where efficiency, accuracy, consistency and flexibility have combined giving very effective results is the Fluka geometry. Derived from the Combinatorial Geometry package, it has been entirely rewritten. A completely new, fast tracking strategy has been developed, with special attention to charged particle transport, especially in magnetic fields. New bodies have been introduced, resulting in increased rounding accuracy, speed and even easier input preparation.

- Combinatorial Geometry (CG) from MORSE [60], with additional bodies (infinite circular and elliptical cylinder parallel to X,Y,Z axis, generic plane, planes perpendicular to the axes, generic quadrics).
- Possibility to use body and region names instead of numbers.
- Possibility of using body combinations inside nested parentheses .
- Geometry directives for body expansions and roto-translation transformations
- Distance to nearest boundary taken into account for improved performance.
- Accurate treatment of boundary crossing with multiple scattering and magnetic or electric fields.
- The maximum number of regions (without recompiling the code) is 10000.
- The tracking strategy has been substantially changed with respect to the original CG package. Speed has been improved and interplay with charged particle transport (multiple scattering, magnetic and electric field transport) has been properly set.
- A limited repetition capability (lattice capability) is available. This allows to avoid describing repetitive structures in all details. Only one single module has to be described and then can be repeated as many
times as needed. This repetition does not occur at input stage but is hard-wired into the geometry package, namely repeated regions are not set up in memory, but the given symmetry is exploited at tracking time using the minimum amount of bodies/regions required. This allows in principle to describe geometries with even tens of thousands regions (e.g., spaghetti calorimeters) with a reasonable number of region and body definitions.

- Voxel geometry is available on option, completely integrated into CG.

Special options:

- Geometry debugger.
- Plotting of selected sections of the geometry, based on the Ispra PLOTGEOM program.
- Pseudo-particle RAY to scan the geometry in a given direction.

1.2.3 Transport

- Condensed history tracking for charged particles, with single scattering option.
- Time cutoff.
- Legendre angular expansion for low-energy neutron scattering.
- Transport of charged particles in magnetic and electric fields.

Transport limits:

<table>
<thead>
<tr>
<th>Secondary particles</th>
<th>Primary particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>charged hadrons</td>
<td>1 keV–20 TeV (*)</td>
</tr>
<tr>
<td>neutrons</td>
<td>thermal–20 TeV (*)</td>
</tr>
<tr>
<td>antineutrons</td>
<td>1 keV–20 TeV (*)</td>
</tr>
<tr>
<td>muons</td>
<td>1 keV–1000 TeV</td>
</tr>
<tr>
<td>electrons</td>
<td>1 keV–1000 TeV</td>
</tr>
<tr>
<td>photons</td>
<td>100 eV–100000 TeV</td>
</tr>
<tr>
<td>heavy ions</td>
<td>< 10000 TeV/n</td>
</tr>
<tr>
<td></td>
<td>100 keV–20 TeV (*)</td>
</tr>
<tr>
<td></td>
<td>thermal–20 TeV (*)</td>
</tr>
<tr>
<td></td>
<td>10 MeV–20 TeV (*)</td>
</tr>
<tr>
<td></td>
<td>100 keV–10000 TeV (†)</td>
</tr>
<tr>
<td></td>
<td>70 keV–1000 TeV (low-Z materials) (†)</td>
</tr>
<tr>
<td></td>
<td>150 keV–1000 TeV (high-Z materials) (†)</td>
</tr>
<tr>
<td></td>
<td>< 100000 TeV</td>
</tr>
<tr>
<td></td>
<td>1 keV–10000 TeV</td>
</tr>
<tr>
<td></td>
<td>< 10000 TeV/n</td>
</tr>
</tbody>
</table>

(*) upper limit 10 PeV with the DPMJET interface
(†) lower limit 10 keV in single scattering mode

1.2.4 Biasing

- Leading particle biasing for electrons and photons: region dependent, below user-defined energy threshold and for selected physical effects.
- Russian Roulette and splitting at boundary crossing based on region relative importance.
- Region-dependent multiplicity reduction in high energy nuclear interactions.
- Region-dependent biased downscattering and non-analogue absorption of low-energy neutrons.
- Biased decay length for increased daughter production.
- Biased inelastic nuclear interaction length.
- Biased interaction lengths for electron and photon electromagnetic interactions
- Biased angular distribution of decay secondary particles.
- Region-dependent weight window in three energy ranges (and energy group dependent for low-energy neutrons).
- Bias setting according to a user-defined logics
- User-defined neutrino direction biasing
- User-defined step by step importance biasing
1.2.5 Optimisation

- Optimisation of the step length, user-defined or automatic, by material and/or by region.

1.2.6 Scoring

- Star density by producing particle and region.
- Energy density by region, total or from electrons/photons only.
- Star, energy and momentum transfer density and specific activity in a geometry-independent binning structure (Cartesian or cylindrical), averaged over the run or event by event.
- Energy deposition weighted by a quenching factor (Birks law).
- Step size independent of bin size.
- Time window.
- Coincidences and anti-coincidences.
- Fluence and current scoring as a function of energy and angle, via boundary crossing, collision and track-length estimators coincident with regions or region boundaries.
- Dose Equivalent via boundary-crossing, collision and track-length estimators coincident with regions or region boundaries, convoluted with conversion coefficients or obtained multiplying doses by a LET-dependent quality factor.
- Track-length fluence or Dose Equivalent in a binning structure (Cartesian or cylindrical) independent of geometry.
- Particle yield from a target or differential cross section with respect to several different kinematic variables.
- Residual nuclei.
- Fission density.
- Momentum transfer density.
- Neutron balance.
- No limit to the number of detectors and binnings within the total memory available (but a maximum number must be fixed at compilation time).
- Energy deposition can be scored on option disregarding the particle weights (useful for studying computer performance, etc.).
- All quantities from radioactive decay of residual nuclei can be scored according to user-defined irradiation and cooling time profiles.

1.2.7 Code structure, technical aspects

- The whole program, including the numerical constants, is coded in double precision (at least the versions for 32-bit word machines). The only exceptions are the low-energy neutron cross sections, which are stored in single precision to save space.
- Consistent use of the latest recommended set of physical constant values [142].
- Dynamical memory allocation is implemented as far as possible.
- Extensive use of INCLUDE and of constant parameterisation
- 64-bit random number generator [125]

1.2.8 Main differences between Fluka and earlier codes with same name

The history of Fluka, spanning more than 40 years, is narrated in detail in Chap. 18. It is possible to distinguish three different generation of “Fluka” codes along the years, which can be roughly identified as the Fluka of the ’70s (main authors J. Ranft and J. Routti), the Fluka of the ’80s (P. Aarnio, A. Fassò, H.-J. Möhring, J. Ranft, G.R. Stevenson), and the Fluka of today (A. Fassò, A. Ferrari, J. Ranft and P.R. Sala). These codes stem from the same root and of course every new “generation” originated from the previous one. However, each new “generation” represented not only an improvement of the existing program, but rather a quantum jump in the code physics, design and goals. The same name “Fluka” has
been preserved as a reminder of this historical development — mainly as a homage to J. Ranft who has been involved in it as an author and mentor from the beginning until the present days — but the present code is completely different from the versions which were released before 1990, and in particular from the last one of the second generation, FLUKA87 [3,4].

Major changes and additions have affected the physical models used, the code structure, the tracking strategy and scoring. Important additions, such as a wider range of biasing possibilities and some specialised tools for calorimeter simulation, have extended the field of its possible applications.

An exhaustive description of all these changes and new features along the years is reported in Chap. 18. However, the best gauge of the program evolution is probably the widening of the application fields, and the boost of its recognition and diffusion all over the world.

1.2.8.1 Applications

While FLUKA86-87 was essentially a specialised program to calculate shielding of high energy proton accelerators, the present version can be regarded as a general purpose tool for an extended range of applications. In addition to traditional target design and shielding, applications are now spanning from calorimetry to prediction of activation, radiation damage, isotope transmutation, dosimetry and detector studies.

Prediction of radiation damage has always been a traditional field of application of FLUKA, restricted however in earlier versions to hadron damage to accelerator components. The new capability to deal with the low-energy neutron component of the cascade has extended the field of interest to include electronics and other sensitive detector parts. In addition, radiation damage calculations and shielding design are not limited to proton accelerators any longer, but include electron accelerators of any energy, photon factories, and any kind of radiation source, be it artificial or natural.

The present version of FLUKA has been used successfully in such diverse domains as background studies for underground detectors, cosmic ray physics, shielding of synchrotron radiation hutchs, calculation of dose received by aircraft crews, evaluation of organ dose in a phantom due to external radiation, detector design for radiation protection as well as for high energy physics, electron, proton and heavy ion radiotherapy, nuclear transmutation, neutrino physics, shielding of free-electron lasers, calculation of tritium production at electron accelerators, energy amplifiers, maze design for medical accelerators, etc.
Chapter 2

A FLUKA beginner’s guide

2.1 Introduction

This Chapter is intended to provide a minimal set of instructions to install and run FLUKA for a beginner user, going through the different steps required to run a simple example. References to the relevant chapters of the manual are given to help the user in finding more detailed information on the different topics. After describing the installation procedure, instructions are given on how to build the input file for a simple case. Instructions for running and accessing the results are also reported. As a further step, the user is addressed to Chapter 13 to learn how to tailor FLUKA to specific needs by means of user routines.

2.2 Installing Fluka

A full description of the installation procedure is given in Chapter 3. The FLUKA packages are distributed as tar and RPM files which can be downloaded from the FLUKA Website http://www.fluka.org or other authorised mirror site.

2.3 Building a Fluka input

2.3.1 Generalities about Fluka input

FLUKA reads user input from an ASCII “standard input” file with extension .inp. The general characteristics and rules of FLUKA input are described in Chapter 6. The input consists of a variable number of “commands” (called also “options”), each consisting of one or more “lines” (called also “cards” for historical reasons).

Apart from FLUKA commands, the input file may contain also the description of the geometry of the simulated set-up. Also this description is provided by means of specific geometry “command cards” in a special format described in Chapter 8.

The geometry description can, on request, be kept in a separate ASCII file: this feature is especially useful when the same geometry is used in several different inputs, not only to save space but because modifications can be made in one single place.

The typical structure of a FLUKA input file is the following:

- Titles and comments for documentation purposes (optional, but recommended)
- Description of the problem geometry (solid bodies and surfaces, combined to partition space into regions) (mandatory)
- Definition of the materials (mandatory unless pre-defined materials are used)
- Material assignments (correspondence material–region, mandatory)
- Definition of the particle source (mandatory)
- Definition of the requested “detectors”. Each of these is a phase space domain (region of space, particle direction and energy) where the user wants to calculate the expectation value of a physical quantity such as dose, fluence, etc. Various kinds of detectors are available, corresponding to different quantities and to different algorithms used to estimate them (“estimators”). Detectors are optional, but one at least is expected, at least in the production phase
- Definition of biasing schemes (optional)
- Definition of problem settings such as energy cutoffs, step size, physical effects not simulated by default, particles not to be transported, etc. (optional)
- Initialisation of the random number sequence (mandatory if an estimation of the statistical error is desired)
- Starting signal and number of requested histories (mandatory)
In addition, special commands are available in FLUKA for more advanced problems involving magnetic fields, time-dependent calculations, writing of history files (so-called “collision tapes”), transport of optical photons, event by event scoring, calling user-written routines, etc. These options are expected to be requested only by users having some previous experience with the more common commands: therefore they will be mostly ignored in this beginner’s guide.

Let’s first recall the general structure of the FLUKA command lines (cards). The geometry commands will be reviewed later. Each card contains:

- one keyword,
- six floating point values (called WHATs),
- one character string (called SDUM)

Some WHATs represent numerical quantities (e.g. energy, coordinates), while others, converted to integers, are indices corresponding to a material, a type of particle, a region etc. In this latter case, it is possible to replace the number by the corresponding name (a character string).

Not necessarily all WHATs and SDUMs are used. In some cases, a command line can be followed by a line of text (for instance a filename path or a title). Any line having an asterisk (*) in the first position is treated as a comment. All lines (commands, text strings and comments) are echoed on the standard output (the file with extension .out). In case of problems, it is a good idea to check how every line has been printed in the standard output. Often, output reveals typing or format errors by showing how the program has misinterpreted them.

In addition to the simple echo, an “interpreted” feedback to all commands is provided in the next section of the standard output. Checking this part of the output is also very useful, because it helps making sure that the user’s intentions have been expressed correctly and understood by the code. See Chapter 9 on FLUKA output for a detailed description.

If a line contains an exclamation mark (!) all following characters are replaced by blanks. This feature can be used for short in-line comments which will not be echoed in output.

The order of input commands is generally free, with only a few exceptions reported in Chapter 6. Therefore, the order suggested in the following should not be considered as mandatory, but only one of the possible ways to write FLUKA input.

2.3.2 Input alignment

Be careful to properly align keywords and numbers. Format is not free, unless a command is issued at the beginning of input: see option GLOBAL in section 7.32 or FREE in section 7.28). Even in the free format for the input file, the part of the input describing the geometry can still be written in fixed format (which is different from the general FLUKA input format, see Chapter 8). There is the possibility of having free format also for the geometry part: this can also be activated using the GLOBAL command (see 7.32).

In fixed format, in order to ensure proper alignment, a comment line showing a scale can be used anywhere in the input file, for instance:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
```

In numerical fields, blanks are treated as zero. Therefore, numbers written with a decimal period and without an exponent (e.g., 1.2345) can be placed anywhere inside their respective format fields. For instance, the following two input lines are equally acceptable:

```
BEAM  200.  0.2  1.5  1.2  0.7  1.0 PROTON  
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
```

```
BEAM  200.  0.2  1.5  1.2  0.7  1.0*PROTON
```
If a number is written in exponential notation (e.g., 2.3E5) or in integer form (without decimal point), it must be aligned to the right of the field. Depending on the platform and the compiler, sometimes the number is correctly interpreted even if the alignment rule is not respected. However this is not guaranteed and the right alignment rule should always be followed. For instance in:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
BEAM 2.82  0.2  1.5  1.2  0.7  1   PROTON
```

the first value might be interpreted as 2.E200. Another case is the following:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
BEAM 200.  0.2  1.5  1.2  0.7  1   PROTON
```

here the last numerical field would be interpreted as 1000000000. To avoid mistakes due to this kind of input errors, the present FLUKA versions now recognize such potential problems and the program is forced to stop. At the same time a message is printed on the standard output file, as shown here for the above example:

```
*** The 6th field 1 of the following input card ***
BEAM 200. 0.2 1.5 1.2 0.7 1 PROTON
*** does not contain a valid formatted fortran real number!!! ***
*** It is ambiguous and it could be read differently on different compilers ***
*** depending how strictly the blank=0 formatted input rule is implemented ***
```

Keywords (character strings such as BEAM and PROTON) must be aligned to the left of their field and must be in upper case. An exception is the continuation character “&” used in some commands, which can be placed anywhere within its 10-characters field.

Non-numerical values of WHATs (“names”) can be aligned anywhere within the corresponding fixed-format fields. Sometimes a special option requires a region or a particle number to be entered with a negative sign: in this case the equivalent name must also be entered preceded by a minus sign.

2.3.3 A simple example

Let us now consider a simple starting application. We want to calculate the charged pion fluence produced by a monochromatic proton beam of momentum 50 GeV/c impinging on a 5 cm thick beryllium target of simple shape: a small parallelepiped (20 cm × 20 cm × 5 cm). A further simplification will be made for the purpose of this example, neglecting all the surrounding environment and substituting it with ideal vacuum.

We will guide the reader through the different parts of a possible input file suited for this application. The information which follows is meant to serve as a guide, but does not cover all the important points. It is recommended that for each option card selected, the user read carefully the relevant manual entry, and especially the explanatory notes.

2.3.4 The title

Typically, an input file begins with a TITLE card (p. 253) followed by one line of text describing the problem, or identifying that particular run, or providing some kind of generic information. In our case, for example

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
TITLE Charged pion fluence inside and around a proton-irradiated Be target
```

Further information can be provided by comment cards, but the title, because it is printed at the top of the standard output, is a useful reminder of what the corresponding file is about. In addition, the title is printed in all separate output files (error file, estimator files etc.) together with the date and time of the FLUKA run, allowing to keep track of their origin.

Commands such as GLOBAL and DEFAULTS, if needed, must immediately follow. Since this is intended as a beginner’s guide, these can be ignored here (for most common problems the defaults provided are sufficient). Let us recall that without specifying a DEFAULTS value, the NEW–DEFAults set of FLUKA parameters is loaded (see p. 95).
2.3.5 Definition of the primary particles

All “events” or “histories” are initiated by primary particles, which in the simplest case are monoenergetic, monodirectional and start from a single point in space (pencil beam). The card BEAM (p. 73) defines the particle energy (or momentum) while the card BEAMPOS (p. 78) controls their starting position and direction. These two commands can be used also to define particle beams having a simple angular or momentum distribution (Gaussian or rectangular), or a simple transverse profile (Gaussian, rectangular or annular), or a simple space distribution of starting points (spherical, cartesian or cylindrical shell). Isotropic or semi-isotropic angular emission can be described as a special case of an angular rectangular distribution.

For particle sources with more complex distributions in energy, space and direction, the user must write, compile and link a special routine (SOURCE), following the instructions given in 13.2.19, and input a card SOURCE (p. 236).

A summary of the input data concerning primary particles is printed in the standard output under the title “Beam properties”.

The beam definition for our example can be the following (monochromatic, monodirectional proton beam of momentum 50 GeV/c):

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
BEAM 50.E+00 PROTON
```

In our example, the beam starting point is given by:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
BEAMPOS 0.0 0.0 -50.0
```

In the cartesian geometry used by FLUKA, the previous card means that the beam is injected at x, y, z coordinates: 0, 0, -50 cm and is directed along the positive z axis. Of course, the choice of the point of injection, the direction, etc., must be coherent with the geometrical description of the set-up, as discussed in the following section.

2.3.6 The geometry

The input for the Combinatorial Geometry (bodies, regions and optional region volumes, see respectively 8.2.4, 8.2.7, 8.2.9) must be immediately preceded by a GEOBEGIN card (see 7.30 and 8.2.1) and immediately followed by a GEOEND card (see 7.31 and 8.2.12). These two cards follow the normal FLUKA format. It is recalled that the format for the geometry has its own special rules, described in Chapter 8.

Comment lines in the geometry input have an asterisk in first position as in the rest of FLUKA input (but on-line comments are not allowed). Body numerical data can be written in two different formats, a “short” one (field length 10) and a “long” one (field length 22). The latter one is to be preferred when higher precision is needed, for instance when using bodies such as truncated cones, cylinders or planes not aligned with axes. It must be realised that using too few decimals can cause geometry errors when bodies are combined into regions (portions of space not defined or doubly defined).

The whole geometry must be surrounded by a region of “blackhole” limited by a closed body (generally an RPP parallelepiped). It is often a good idea to make this body much larger than the minimum required size: this makes easier to introduce possible future extensions. In some cases, as in our basic example, it is also useful to surround the actual geometry by a region of ideal vacuum, and to have the blackhole region surrounding the vacuum. This can be useful, for instance, in order to start the trajectory of the primary particles outside the physical geometry (a particle may not be started on a boundary).

Both the body input section and the region input section must be ended with an END card (see 8.2.6 and 8.2.8). Optionally, region volumes can be input between the region END card and the GEOEND card (this option can be requested by setting a special flag in the Geometry title card, see 8.2.2). The only effect of specifying region volumes is to normalise per cm³ the quantities calculated via the SCORE option (see below):
for other estimators requiring volume normalisation the volume is input as part of the detector definition (USRTRACK, USRCOLL, USRYIELD), or is calculated directly by the program (USRBIN).

The GEOEND card indicates the end of the geometry description, but can also be used to invoke the geometry debugger.

The geometry output is an expanded echo of the corresponding input, containing information also on memory allocation and on the structure of composite regions made of several sub-regions by means of the OR operator.

A possible realisation of the geometry set up for our basic example can be seen in Fig. 2.1.

Only four bodies are used here: an RPP body (Rectangular Parallelepiped, body no. 3, see 8.2.4.1) to define a volume which will be the Be target region, inside another larger RPP body (no. 2), which will be filled with ideal vacuum and in turn is contained inside another larger RPP body (no. 1), to define the blackhole region. The fourth body, an XYP half-space (defined by a plane perpendicular to the z axis, see 8.2.4.10), will be used to divide the target into 2 different regions: the upstream half will be defined as the portion of body 3 contained inside the half-space, and the downstream half as the portion outside it. Therefore, region “3” (the upstream half of the target) is the part of body no. 3 which is also inside body 4, while region “4” (downstream half of the target) is the part of body no. 3 which is not inside body 4. Region “2” (the vacuum around the target) is defined as the inside of body no. 2 from which body no. 3 is subtracted. Region “1” is simply the interior of body no. 1 from which body no. 2 is subtracted.
Note that bodies and regions can be identified by numbers, as described above, or with names (alphabet-numeric strings). The latter option is recommended, since it makes the preparation of the geometry much easier, especially if free format is also chosen. Here below we will show both possibilities.

The beam starting point has been chosen so that it is in the vacuum, outside the target region. The geometry part of the input file can then be written as:

```
GEOBEGIN COMBINAT
  0 0  A simple Be target inside vacuum
RPP 1-5000000.0+5000000.0-5000000.0+5000000.0-5000000.0+5000000.0
RPP 2-1000000.0+1000000.0-1000000.0+1000000.0-100.0+1000000.0
RPP 3 -10.0  +10.0  -10.0  +10.0  0.0  +5.0
* plane to separate the upstream and downstream part of the target
XYP 4 2.5
END
```

```
GEOBEGIN COMBNAME
  0 0  A simple Be target inside vacuum
RPP blakhole -5000000.0 +5000000.0 -5000000.0 +5000000.0 -5000000.0 +5000000.0
RPP vacumbox -1000000.0 +1000000.0 -1000000.0 +1000000.0 -100.0 +1000000.0
RPP betarget -10.0  +10.0  -10.0  +10.0  0.0  +5.0
* plane to separate the upstream and downstream part of the target
XYP cutplane 2.5
END
```

The same geometry can be described in name-based free format as follows:

```
GEOBEGIN COMBINAT
  0 0  A simple Be target inside vacuum
RPP 1-5000000.0+5000000.0-5000000.0+5000000.0-5000000.0+5000000.0
RPP 2-1000000.0+1000000.0-1000000.0+1000000.0-100.0+1000000.0
RPP 3 -10.0  +10.0  -10.0  +10.0  0.0  +5.0
* plane to separate the upstream and downstream part of the target
XYP 4 2.5
END
```

```
GEOBEGIN COMBNAME
  0 0  A simple Be target inside vacuum
RPP blakhole -5000000.0 +5000000.0 -5000000.0 +5000000.0 -5000000.0 +5000000.0
RPP vacumbox -1000000.0 +1000000.0 -1000000.0 +1000000.0 -100.0 +1000000.0
RPP betarget -10.0  +10.0  -10.0  +10.0  0.0  +5.0
* plane to separate the upstream and downstream part of the target
XYP cutplane 2.5
END
```

2.3.7 Materials

Each geometry region is supposed to be filled with a homogeneous material, or with vacuum, or with “blackhole”. The latter is a fictitious material used to terminate particle trajectories: any particle is discarded when reaching a blackhole boundary. Materials can be simple elements or compounds, where an element can have either natural composition or consist of a single nuclide, and compound indicates a chemical compound or a mixture or an alloy (or an isotopic mixture) of known composition.

An element can be either pre-defined (see list in Table 5.3 on page 47) or defined by a MATERIAL card (p. 169) giving its atomic number, atomic weight, density, name and a material identification number > 2. The number of a non-pre-defined material can be chosen by the user, with the restriction that all lower numbers must also be defined (but not necessarily used). However, in a name-based input, it is convenient
to leave the number blank: in this case the user does not need to know the number, which is assigned automatically by the code and will be used only internally.

Number 1 is reserved for blackhole and 2 for ideal vacuum. There are 25 pre-defined materials; but each of the numbers from 3 to 25 can be redefined, overriding the default definition. However, if the input is explicitly number-based only (via command GLOBAL), a pre-defined material can only be redefined using the same name by explicitly assigning to it a number equal to the original one. If the input is name-based, it is better to leave the number blank.

Materials can also be defined with higher index numbers, provided no gaps are left in the numbering sequence. For instance a material cannot be defined to have number 28 unless also 26 and 27 have been defined. Again, assigning explicitly a number is not necessary if the input is fully name-based.

A compound is defined by a MATERIAL card plus as many COMPOUND cards (p. 86) as needed to describe its composition. The MATERIAL card used to define a compound carries only the compound name, density and, if input is explicitly number-based only, material number (atomic number and atomic weight having no meaning in this case). Some special pre-defined compounds are available: for them the stopping power is not calculated by a formula but is determined using the parameters recommended by ICRU [109]. Reference to these pre-defined compounds is normally by name and no MATERIAL and COMPOUND cards are needed: if the input is explicitly number-based only (via command GLOBAL), a number needs to be assigned to them using a MATERIAL card, of course leaving no gaps in the numbering sequence.

Materials pre-defined or defined in the standard input are referred to as “FLUKA materials”, to distinguish them from materials available in the low-energy neutron cross section library (called “low-energy cross section materials”).

When transport of low-energy neutrons (E < 20 MeV) is requested (explicitly or by the chosen defaults), a correspondence is needed between each elemental (i.e., not compound) “FLUKA material” and one of the “low-energy cross section materials” available in the FLUKA low-energy neutron library. The default correspondence is set by the name and if more than one material with that name exist in the neutron library, the first in the list with that name (see 10.3, p. 342) is assumed by default. The default can be changed using command LOW–MAT.

In the case of our example, only Beryllium is necessary, apart from blackhole and vacuum. In principle, since Beryllium is one of the pre-defined FLUKA materials, this part could even be omitted. However, for pedagogical reasons the following card is proposed, where index 5 is assigned to the target material:

```
*...*...1...*...2...*...3...*...4...*...5...*...6...*...7...*...8
MATERIAL 4.0 0.0 1.848 5.0 BERYLLIU
```

Notice that the chosen name is BERYLIU and not BERYLLIUM, in order to match the name in the list of “low-energy cross section materials” for low-energy neutrons (see Table 10.3), where material names have a maximum length of 8 characters.

The standard output concerning materials is very extended. First a list of multiple scattering parameters (printed by subroutine MULMIX) is reported for each material requested. This is mostly of scarce interest for the normal user, except for a table giving for each requested material the proportion of components, both by number of atoms (normalised to 1) and by weight (normalised to material density). The same information is repeated later on in another table entitled Material compositions.

If low-energy neutron transport has been requested (explicitly or by a chosen default), the following section reports the relevant material information: in particular, a table entitled ‘Fluka to low en. xsec material correspondence’ specifies which material in the neutron cross section library has been mapped to each input material. Note that a much more detailed cross section information can be obtained by setting a printing flag (WHAT(4)) in the LOW–NEUT command.

The Table Material compositions contains information about the requested materials, those predefined by default and the elements used to define compounds. In addition to effective atomic number and atomic weight, density and composition, the table shows the value of some typical quantities: inelastic and
Thresholds

elastic scattering length for the beam particles (not valid for electron and photon beams), radiation length and inelastic scattering length for 20 MeV neutrons.

The next table contains material data related to stopping power (average excitation energy, density effect parameters, and pressure in the case of gases) plus information about the implementation of various physical effects and the corresponding thresholds and tabulations.

The last material table is printed just before the beginning of the history calculations, and concerns the Correspondence of regions and EMF-FLUKA material numbers and names.

2.3.8 Assigning materials to regions

A material must be associated to each of the geometry regions, except to those defined as blackhole. This is done in a very straightforward way by command ASSIGNMAT. Assigning explicitly blackhole to a region is allowed, but is not necessary (except for region 2) because a region is blackhole by default unless another material has been associated to it. Region 2, if no material is assigned, is COPPER by default.

The table entitled Regions: materials and fields, in the standard output, can be consulted to check that material assignment has been done as desired.

For the present example the assignment could be:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
* Be target, 1st and 2nd half
ASSIGNMAT 5.0 3.0 4.0
* External Black Hole
ASSIGNMAT 1.0 1.0
* Vacuum
ASSIGNMAT 2.0 2.0

The same material assignments in a name-based input would be the following (BLCKHOLE and VACUUM are the pre-defined names of material 1 and 2):

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
* Be target, 1st and 2nd half
ASSIGNMAT BERYLLIU UpstrBe DwnstrBe
* External Black Hole
ASSIGNMAT BLCKHOLE Blckhole
* Vacuum
ASSIGNMAT VACUUM Vacarund

2.3.9 Production Thresholds

The implicit NEW–DEFA default setting, adopted in the example, sets, among other things, the production and transport threshold of heavy particles to 10 MeV. Production thresholds for e⁺e⁻ and photons must be explicitly set using the EMFCUT command for all materials in the problem, as described in detail on p. 116.

Let us choose also in this case a 10 MeV threshold for the single material of the example (previously marked with material index 5 and name BERYLLIU). Following the instructions about the EMFCUT option, the card can be written as:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
EMFCUT -0.010 0.010 1.0 5.0 PROD-CUT

where the first numerical field is the threshold for e⁺e⁻ (the minus sign meaning kinetic energy) and the second is for photons. The material number is given in the fourth numerical field. For details on all other parameters, and for other possibilities (for example how to introduce a transport cutoff different from production threshold) the user must accurately consult the Notes in Sec. 7.19.

In a name-based input, the above card could be:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
EMFCUT -0.010 0.010 1.0 BERYLLIU PROD-CUT
Production and transport threshold for all other particles can be overwritten using the PART–THRes command (p. 202).

2.3.10 Estimators and Detectors

Even though, for setting-up purposes, it is conceivable that no detector be requested in a preliminary run, in most cases FLUKA is used to predict the expectation value of one or more quantities, as determined by the radiation field and by the material geometry described by the user: for such a task several different estimators are available. The quantities which are most commonly scored are dose and fluence, but others are available. Dose equivalent is generally calculated from differential fluence using conversion coefficients.

The simplest estimator available to the user is a historical vestige, survived from the “ancient” FLUKA (pre-1988) where the only possible output quantities were energy deposition and star density in regions. It is invoked by option SCORE (p. 234), requesting evaluation of one to four different quantities. These can be different forms of energy density (proportional to dose), or of star density (approximately proportional to fluence of selected high-energy hadrons).

For this estimator, the detectors are pre-determined: the selected quantities are reported for each region of the geometry. The corresponding results, printed in the main output immediately after the last history has been completed, are presented in 6 columns as follows:

<table>
<thead>
<tr>
<th>region number</th>
<th>region name</th>
<th>region volume</th>
<th>first quantity</th>
<th>second quantity</th>
<th>third quantity</th>
<th>fourth quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

on a line for each geometry region. The region volumes (in cm3) have the value 1.0, or values optionally supplied by the user at the end of the geometry description (see 8.2.2). All other columns are normalised per region volume and per primary particle.

The input could be as follows:

```
*...+.+....1....+.+....2....+.+....3....+.+....4....+.+....5....+.+....6....+.+....7....+.+....8
* score in each region energy deposition and stars produced by primaries
SCORE 208.0 210.0
```

The same, in a name-based input:

```
*...+.+....1....+.+....2....+.+....3....+.+....4....+.+....5....+.+....6....+.+....7....+.+....8
SCORE ENERGY BEAMPART
```

Other estimators are more flexible: the corresponding detectors can be requested practically in any number, can be written as unformatted or text files, and in most cases can provide differential distributions with respect to one or more variables. On the other hand, their output is presented in a very compact array form and must generally be post-processed by the user. For this purpose several utility programs are available: but output in text format can even be exported to a spreadsheet for post-processing.

USRBIDX (see p. 260) is the command required to define a detector for the boundary-crossing estimator. It calculates fluence or current, mono- or bi-directional, differential in energy and angle on any boundary between two selected regions. The area normalisation needed to obtain a current in particles per cm2 is performed using an area value input by the user: if none is given, the area is assumed to be 1.0 cm2 and the option amounts simply to counting the total number of particles crossing the boundary. Similarly if fluence is scored, but in this case each particle is weighted with the secant of the angle between the particle trajectory and the normal to the boundary surface at the crossing point.

This is one of the estimators proposed for our example. We will request two boundary crossing detectors, one to estimate fluence and one for current, of particles crossing the boundary which separates the upstream and the downstream half of the target.
The following group of cards can be inserted:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
  * Boundary crossing fluence in the middle of the target (log intervals, one-way)
    USRBDX 99.0 209.0 -47.0 3.0 4.0 400. piFluenUD
    USRBDX +50.0 0.0 10.0 k
  *
  * Boundary crossing current in the middle of the target (log intervals, one-way)
    USRBDX -1.0 209.0 -47.0 3.0 4.0 400. piCurrUD
    USRBDX +50.0 0.0 10.0 k
```

The same, in a name-based input:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
  USRBDX 99.0 PIONS+- -47.0 UpstrBe DwnstrBe 400. piFluenUD
  USRBDX +50.0 0.0 10.0 k
  *
  USRBDX -1.0 PIONS+- -47.0 UpstrBe DwnstrBe 400. piCurrUD
  USRBDX +50.0 0.0 10.0 k
```

According to the instructions reported in Sec. 7.82, it can be seen that the combined fluence of π^+ and π^- is requested only when particles exit region “3” (“UpstrBe”, the upstream half of the target) to enter into region “4” (“DwnstrBe”, the downstream half). There is no interest in the reverse, therefore “one-way scoring” is selected. The scoring of the first detector will be inverse cosine-weighted, in order to define correctly the fluence. Results will be written unformatted on unit 47 for both quantities (so there will be two “Detectors” on the same output unit, but this is not mandatory). The energy distribution is going to be binned in 50 logarithmic intervals, from 0.001 GeV (the default minimum) up to 50 GeV. The angular distribution will be divided into 10 linear solid angle intervals from 0. to 2π (having chosen the one-way estimator). The results will be normalised dividing by the area of the boundary (separation surface between the two regions, in this case the transverse section of the target), and will provide a double-differential fluence or current averaged over that surface (in cm$^{-2}$ GeV$^{-1}$ sr$^{-1}$).

Other fluence scoring options, based respectively on a track-length and on a collision estimator, are **USRTRACK** (see p. 277) and **USRCOLL** (p. 271) which request the estimation of volume-averaged fluence (differential in energy) for any type of particle or family of particles in any selected region. The volume normalisation needed to obtain the fluence as track-length density or collision density is performed using a volume value input by the user: if none is given, the volume is assumed to be $= 1.0$ cm3 and the result will be respectively the total track-length in that region, or the total number of collisions (weighted with the mean free path at each collision point).

Note that if additional normalisation factors are desired (e.g., beam power), this can be achieved by giving in input the “volume” or “area” value multiplied or divided by those factors. Options **USRTRACK**, **USRCOLL** and **USRBDX** can also calculate energy fluence, if the “particle” type is set $= 208.0$ (energy, name **ENERGY**) or 211.0 (electron and photon energy, name **EM-ENRGY**).

In our example, we are requesting two track-length detectors, to get the average fluence in the upstream half and in the downstream half of the target, respectively.

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
  * Track-length fluence inside the target, Upstream part and Downstream part
    USRTRACK -1.0 209.0 -48.0 3.0 1000.0 20. piFluenU
    USRTRACK 50.0 0.001 k
    *
    USRTRACK -1.0 209.0 -49.0 4.0 1000.0 20. piFluenD
    USRTRACK 50.0 0.001 k
```

The volume input is $20 \times 20 \times 2.5 = 1000$ cm3. We are requesting an energy spectrum in 20 logarithmic intervals between 0.001 and 50 GeV. In this case, we ask that the corresponding output be printed, unformatted, on two different files.

In a name-based input, the above example could be:
Option USRBIN provides detailed space distributions of energy deposition, star density or integrated fluence (not energy fluence, unless by writing a special user routine). Using some suitable graphics package, USRBIN output (see p. 263) can be presented in the form of colour maps. Programs for this purpose are available in the $FLUPRO/flutil$ directory (Pawlevbin.f and various kumac files), and on the FLUKA website www.fluka.org.

USRBIN results are normalised to bin volumes calculated automatically by the program (except in the case of region binning and special 3-variable binning which are only seldom used).

The binning structure does not need to coincide with any geometry region. In our example we propose to ask for two Cartesian space distributions, one of charged pion fluence and one of total energy deposited. The first will extend over a volume larger than the target, because fluence can be calculated even in vacuum. Energy deposition, on the other hand, will be limited to the target volume.

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
* Cartesian binning of the pion fluence inside and around the target
USRBIN 10.0 209.0 -50.0 50.0 50.0 50. piFluBin
USRBIN -50.0 -50.0 -10.0 100.0 100.0 60. &

* Cartesian binning of the deposited energy inside the target
USRBIN 10.0 208.0 -51.0 10.0 10.0 5. Edeposit
USRBIN -10.0 -10.0 0.0 20.0 20.0 5.0 &

Also in this case, the request is for output on two separate files.

Or, using names:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

Angular yields around a fixed direction of particles exiting a given surface can be calculated using option USRYIELD (see p. 281). The results are double-differential distributions with respect to a pair of variables, one of which is generally energy-like (kinetic energy, momentum, etc.) and the other one angle-like (polar angle, rapidity, Feynman-x, etc.) Distributions in LET (Linear Energy Transfer) can also be requested by this option. An arbitrary normalisation factor can be input.

Another commonly used scoring option is RESNUCLEi (see p. 225), which calculates residual nuclei production in a given region. A normalisation factor (usually the region volume) can be input.

A detailed summary of the requested detectors is printed on standard output. The same information is printed in the same format in estimator ASCII output files, and is available in coded form in estimator unformatted output files.

2.3.11 Initialisation of the random number sequence

The random number sequence used in a run is initialised by default by the seeds contained in file random.dat provided with the code. To calculate the statistical error of the results, it is necessary to perform other independent runs (at least 4 or 5), each with a different independent initialisation, using the seeds written by the program at the end of each run. The rfluka script provided with the code on UNIX and LINUX platforms takes care of this task, provided the following card is issued in the input file:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
RANDOMIZE 1.0 0.0
The seeds of the random number generator are printed on a special file in hexadecimal form at the end of each group of histories (the size of a group depends on the number of histories requested in the START card).

Instead of getting the seeds from the last run, it is also possible to initialise directly another independent random number sequence by setting the second RANDOMIZE parameter equal to a different number, for instance:

\[
\text{RANDOMIZE} \quad 1.0 \quad 1198.
\]

2.3.12 Starting signal and number of requested histories

At the end of the input file, a START card (see p. 244) is mandatory in order to actually start the calculation. That card must indicate also the number of particle histories requested. The run, however, may be completed before all the histories have been handled in two cases: if a time limit has been met (on some systems) or if a “stop file” is created by the user (see instructions in Note 2 to option START).

The START card is optionally followed by a STOP card. For example, if the user wants to generate 100000 histories, the input file can be closed with the following two cards:

\[
\text{START} \quad 100000.0
\]

The sample input file

In summary, the input file for our basic example (example.inp) name-based and written in fixed format, could be the following:

\[
\text{TITLE} \quad \text{Charged pion fluence inside and around a proton-irradiated Be target}
\]

\[
\text{BEAM} \quad 50.0\times10.0 \quad \text{PROTON}
\]

\[
\text{BEAMPOS} \quad 0.0 \quad 0.0 \quad -50.0
\]

\[
\text{GEOBEGIN} \quad \text{A simple Be target inside vacuum}
\]

\[
\text{RPP} \quad \text{blakhole} \quad -5000000.0 \quad +5000000.0 \quad -5000000.0 \quad +5000000.0 \quad -5000000.0 \quad +5000000.0
\]

\[
\text{RPP} \quad \text{vacumbox} \quad -1000000.0 \quad +1000000.0 \quad -1000000.0 \quad +1000000.0 \quad -100.0 \quad +1000000.0
\]

\[
\text{RPP} \quad \text{betarget} \quad -10.0 \quad +10.0 \quad -10.0 \quad +10.0 \quad 0.0 \quad +5.0
\]

\[
\text{XYP} \quad \text{cutplane} \quad 2.5
\]

\[
\text{END}
\]

\[
\text{black hole}
\]

\[
\text{Blckhole} \quad 5 \quad +\text{blakhole} \quad -\text{vacumbox}
\]

\[
\text{vacum around}
\]

\[
\text{Vacarund} \quad 5 \quad +\text{vacumbox} \quad -\text{betarget}
\]

\[
\text{Be target 1st half}
\]

\[
\text{UpstrBe} \quad 5 \quad +\text{betarget} \quad +\text{cutplane}
\]

\[
\text{Be target 2nd half}
\]

\[
\text{DwnstrBe} \quad 5 \quad +\text{betarget} \quad -\text{cutplane}
\]

\[
\text{END}
\]

\[
\text{GEOEND}
\]

\[
\text{MATERIAL} \quad 4.0 \quad 0.0 \quad 1.848 \quad 5.0 \quad \text{BERYLLIU}
\]

\[
\text{ASSIGNMAT} \quad \text{BERYLLIU} \quad \text{UpstrBe} \quad \text{DwnstrBe}
\]

* External Black Hole
ASSIGNMAT BLCKHOLE Blckhole
 * Vacuum
ASSIGNMAT VACUUM Vacarund
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
 * e+e- and gamma production threshold set at 10 MeV
EMFCUT -0.010 0.010 1.0 BERYLLIU PROD-CUT
 * score in each region energy deposition and stars produced by primaries
SCORE ENERGY BEAMPART
 * Boundary crossing fluence in the middle of the target (log intervals, one-way)
USRBDX 99.0 PIONS+- -47.0 UpstrBe DwnstrBe 400. piFluenUD
USRBDX +50.0 +50.0 0.0 10.0 &
 * Boundary crossing current in the middle of the target (log intervals, one-way)
USRBDX -1.0 PIONS+- -47.0 UpstrBe DwnstrBe 400. piCurrUD
USRBDX +50.0 +50.0 0.0 10.0 &
 * Tracklength fluence inside the target, Upstream part and Downstream part
USRTRACK -1.0 PIONS+- -48.0 UpstrBe 1000.0 20. piFluenU
USRTRACK 50.0 0.001 &
USRTRACK -1.0 PIONS+- -49.0 DwnstrBe 1000.0 20. piFluenD
USRTRACK 50.0 0.001 &
 * Cartesian binning of the pion fluence inside and around the target
USRBIN 10.0 PIONS+- -50.0 50.0 50.0 50.0 50.0 piFluBin
USRBIN -50.0 -50.0 -10.0 10.0 10.0 10.0 60.0 &
 * Cartesian binning of the deposited energy inside the target
USRBIN 10.0 ENERGY -51.0 10.0 10.0 10.0 5.0 Edeposit
USRBIN -10.0 -10.0 0.0 20.0 20.0 5.0 &
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
RANDOMIZE 1.0
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
START 100000.0
STOP

The same input file, number-based and using the free format option for the FLUKA commands, but not for
the geometry, can instead be written as follows:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
TITLE
Charged pion fluence inside and around a proton-irradiated Be target
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
GLOBAL 2.0
BEAM 50.E+00 0. 0. 0. 0. PROTON
BEAMPOS 0.0 0.0 50.0 0.0 0. 0.
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
GEODBEGIN
 A simple Be target inside vacuum
 RPP 1-5000000.0+5000000.0-5000000.0+5000000.0-5000000.0+5000000.0
 RPP 2-1000000.0+1000000.0-1000000.0+1000000.0-100.0+1000000.0
 RPP 3 +10.0 +10.0 -10.0 +10.0 0.0 +5.0
 XYP 4 2.5
END
 * black hole
SH1 5 +1 -2
 * vacuum around
VA2 5 +2 -3
 * Be target 1st half
BE3 5 +3 +4
 * Be target 2nd half
BE4 5 +3 -4
END
GEODEND
MATERIAL 4.0 9.0122 1.848 5.0 0.0 BERYLLIU
 * Be target, 1st and 2nd half
ASSIGNMAT 5.0 3.0 4.0 0. 0. 0.
* External Black Hole
ASSIGNMAT 1.0 1.0 0. 0. 0. 0.
* Vacuum
ASSIGNMAT 2.0 2.0 0. 0. 0. 0.
* e+e- and gamma production threshold set at 10 MeV
EMFCUT -0.010 0.010 1.0 5.0, , , PROD-CUT
* score in each region energy deposition and stars produced by primaries
SCORE 208.0 210. 0. 0. 0. 0.
* Boundary crossing fluence in the middle of the target (log intervals, one-way)
USRBDX 99.0 +209.0 -47.0 3.0 4.0 +400.0 piFluenUD
USRBDX +50.00 0. +50.0 0. 0. 10.0 &
* Boundary crossing current in the middle of the target (log intervals, one-way)
USRBDX -1.0 +209.0 -47.0 3.0 4.0 +400.0 piCurrUD
USRBDX +50.00 0. +50.0 0. 0. 10.0 &
* Tracklength fluence inside the target, Upstream part and Downstream part
* Logarithmic energy intervals
USRTRACK -1.0 209.0 -48.0 3.0 1000.0 20. piFluenU
USRTRACK 50.0 0.001 0. 0. 0. 0. &
USRTRACK -1.0 209.0 -49.0 4.0 1000.0 20. piFluenD
USRTRACK 50.0 0.001 0. 0. 0. 0. &
* Cartesian binning of the pion fluence inside and around the target
USRBIN 10.0 209.0 -50.0 50.0 50. 50. piFluBin
USRBIN -50.0 -50.0 -10.0 100.0 100.0 60.0 &
* Cartesian binning of the deposited energy inside the target
USRBIN 10.0 208.0 -51.0 10.0 20.0 10.0 5. Edeposit
USRBIN -10.0 -10.0 0.0 20.0 20.0 20.0 5.0 &
RANDOMIZE 1.0 0. 0. 0. 0. 0.
START 100000.0 0. 0. 0. 0. 0.
STOP

Other possible combinations are name-based free format and number-based fixed format.

2.4 Running Fluka

It is advisable, but not mandatory, to keep separate the $FLUPRO directory from that or those where calculations are run and input files are kept. For instance, flukawork:

```bash
    cd /home/user/flukawork
```

As mentioned above, the rfluka script in $FLUPRO/flutil should be used to drive the FLUKA run. In the following it is supposed that the user is going to ask for five statistically independent runs, each one made of 100000 histories, of the proposed basic example. The command is:

```bash
    $FLUPRO/flutil/rfluka -N0 -M5 example &
```

(on LINUX/UNIX, the & character allows to run the program in the background without “freezing” the terminal window).

The script creates a temporary subdirectory called fluka_nnnn where nnnn is the number of the subprocess. For instance, when the first run (or “cycle”) starts, the user will see on the terminal lines similar to the following ones:

```bash
TARGET_MACHINE = Linux
$FLUPRO = /home/user/flupro
2789: old priority 0, new priority 10
Initial seed already existing
Running fluka in /home/user/flukawork/fluka_2789
```
At the end of each cycle the output files will be copied onto the running directory, the temporary directory will be erased and a new one will be created where the next run will take place. The names of the output files from each run are built by appending to the input file name the run number and an extension depending on their content: .out for the standard output, .err for the error file, .log for the log file and _fort.nn for the estimator files (with nn = absolute value of the selected output unit). The file containing the random number seeds will be called ran<input file name><run number>.

The error file may contain error messages related to the event generators (for instance when the program does not manage to conserve exactly energy or another quantity) or to the geometry tracking. Most of those are generally only warning messages which can be ignored unless there is a large number of them.

The log file generally contains messages related to fatal errors (input errors, overflow, etc.)

During a multiple run, lines like the following will appear on the user’s screen:

Removing links
Removing temporary files
Saving output and random number seed
Saving additional files generated
Moving fort.47 to /home/fasso/Fluka/test/example01_fort.47
Moving fort.48 to /home/fasso/Fluka/test/example01_fort.48
Moving fort.49 to /home/fasso/Fluka/test/example01_fort.49
Moving fort.50 to /home/fasso/Fluka/test/example01_fort.50
Moving fort.51 to /home/fasso/Fluka/test/example01_fort.51

Moving fort.47 to /home/fasso/Fluka/test/example002_fort.47
Moving fort.48 to /home/fasso/Fluka/test/example002_fort.48
Moving fort.49 to /home/fasso/Fluka/test/example002_fort.49
Moving fort.50 to /home/fasso/Fluka/test/example002_fort.50
Moving fort.51 to /home/fasso/Fluka/test/example002_fort.51

Removing links
Removing temporary files

Saving output and random number seed

Saving additional files generated

- Moving fort.47 to /home/fasso/Fluka/test/example005_fort.47
- Moving fort.48 to /home/fasso/Fluka/test/example005_fort.48
- Moving fort.49 to /home/fasso/Fluka/test/example005_fort.49
- Moving fort.50 to /home/fasso/Fluka/test/example005_fort.50
- Moving fort.51 to /home/fasso/Fluka/test/example005_fort.51

End of FLUKA run

At this time, in the working directory, the following new files exist:

- example001_fort.47 example002_fort.47 example005_fort.47
- example001_fort.48 example002_fort.48 example005_fort.48
- example001_fort.49 example002_fort.49 example005_fort.49
- example001_fort.50 example002_fort.50 example005_fort.50
- example001_fort.51 example002_fort.51 example005_fort.51
- example001.out example002.out example005.out
- example001.err example002.err example005.err

In Chapter 9 the user can find a comprehensive description of the content of the FLUKA standard output. For the purpose of this beginner’s guide, it can just be pointed out that, according to the content of the USRBIDX command, the files with extension fort.47 contain, in binary form, the boundary crossing estimator output for the required pion fluence and current detectors (for more details see 9.5.5). These files must be combined together to produce a table of values with their statistical errors which can be easily interfaced by the user to some analysis codes and/or graphic visualisation tools. Similarly, the files with extension fort.48 and fort.49 will contain the track-length estimator output, and those with extension fort.50 and fort.51 the output from USRBIN.

2.5 Accessing results

2.5.1 Boundary crossing estimator

Binary files from the USRBIDX estimator can be accessed by means of the Usxsuw.f readout code, which is located in the $FLUPRO/flutil directory.

That readout code can be easily compiled. For example, the same compiling and linking FLUKA tools can be used for this purpose:

```
cd $FLUPRO/flutil
./fluka usxsuw.f -o usxsuw
```

The simplest way, however, is to use the makefile which is available in the $FLUPRO/flutil directory. In that directory, just type:

```
make
```

and all the post-processing utilities will be compiled and linked.

In order to process the 5 output files produced by the proposed example, the following interactive procedure can be used:

```
cd /home/user/flukawork
$FLUPRO/flutil/usxsuw
```

The readout code will ask for the first FLUKA detector file name:

Type the input file:
For each detector file the program will show the content of the TITLE card of the FLUKA input file, the date and time of the FLUKA run and the number of histories for the given run.

The request will be iterated until a blank line is given. This will be interpreted as the end of the list of files, and then a name for the output file prefix will be requested. Let’s use, for example, the prefix `pionbdx`:

```
Type the input file: example001_fort.47
Charged pion fluence inside and around a proton-irradiated Be target
DATE: 7/15/5, TIME: 16:22:11
100000.
100000
Type the input file: example002_fort.47
Charged pion fluence inside and around a proton-irradiated Be target
DATE: 7/15/5, TIME: 16:23:3
100000.
100000
Type the input file: example003_fort.47
Charged pion fluence inside and around a proton-irradiated Be target
DATE: 7/15/5, TIME: 16:23:54
100000.
100000
Type the input file: example004_fort.47
Charged pion fluence inside and around a proton-irradiated Be target
DATE: 7/15/5, TIME: 16:24:51
100000.
100000
Type the input file: example005_fort.47
Charged pion fluence inside and around a proton-irradiated Be target
DATE: 7/15/5, TIME: 16:25:45
100000.
100000
Type the output file name: pionbdx
```

At this point the following 3 new files are produced:

```
pionbdx
piobdxn_sum.lis
pionbdx_tab.lis
```

The first one (`pionbdx`) is again a binary file that can be read out at any time by USXSUW. The content of this file is statistically equivalent to that of the sum of the files used to obtain it, and it can replace them to be combined with further output files if desired (the USXSUW program takes care of giving it the appropriate weight).

The other two files are ASCII text files.

Let us first examine `pionbdx_sum.lis`. This contains many comments which can help the user to understand the results. Since by means of the USRBDX command separate detectors for pion fluence and current have been requested, with their output on the same logical unit, there will be two different sections in the file, identified by the word “Detector”: Detector no. 1 is for fluence and Detector no. 2 is for current, because this is the order in which the USRBDX commands have been given.

Let us inspect the output from Detector no. 1:

```
Charged pion fluence inside and around a proton-irradiated Be target

Total primaries run: 500000
Total weight of the primaries run: 500000.
```
Results

Detector n: 1(1) piFluenUD
(Area: 400. cm², distr. scored: 209 , from reg. 3 to 4, one way scoring, fluence scoring)

Tot. resp. (Part/cm²/pr) 8.6904905E-04 +/- 0.6976866 %
(---> (Part/pr) 0.3476196 +/- 0.6976866 %)

The total (summed) number of primaries (histories) is reported at first, then the main features of USRBBDX request are summarised. The following numbers represent the energy and angle integrated fluence ("total response"). Here and later, the statistical error is always expressed in percentage.

After this heading, the differential fluence tabulation as a function of (pion) energy, and integrated over solid angle, is reported, starting with the boundaries of the energy bins. As a general convention, these values are given from the highest to the lowest value:

**** Different. Fluxes as a function of energy ****
**** (integrated over solid angle) ****

Energy boundaries (GeV):

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Flux (Part/cm²/pr):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000000E-03</td>
<td>Lower bound</td>
</tr>
<tr>
<td>49.99992</td>
<td>1.5418744E-09 +/- 99.00000 %</td>
</tr>
<tr>
<td>16.94620</td>
<td>4.051404 +/- 2.039807 %</td>
</tr>
<tr>
<td>5.743484</td>
<td>6.056497 +/- 3.466331 %</td>
</tr>
<tr>
<td>1.94608</td>
<td>2.3456116E-07 +/- 6.506497 %</td>
</tr>
<tr>
<td>0.659753</td>
<td>5.9040013E-07 +/- 3.466331 %</td>
</tr>
<tr>
<td>0.223606</td>
<td>1.2214471E-05 +/- 0.8310503 %</td>
</tr>
<tr>
<td>7.5785778E-02</td>
<td>1.128397 +/- 1.204921 %</td>
</tr>
<tr>
<td>2.5685664E-02</td>
<td>1.100655 +/- 0.7564522 %</td>
</tr>
<tr>
<td>8.7055033E-03</td>
<td>1.799108 +/- 1.256268 %</td>
</tr>
<tr>
<td>2.6636921E-05</td>
<td>0.8898824 +/- 1.332425 %</td>
</tr>
<tr>
<td>5.1703457E-05</td>
<td>1.521364 +/- 2.473622 %</td>
</tr>
<tr>
<td>9.0419722E-05</td>
<td>1.399170 +/- 0.9543594 %</td>
</tr>
<tr>
<td>1.5758992E-04</td>
<td>0.950000 +/- 7.69127 %</td>
</tr>
<tr>
<td>2.4165030E-04</td>
<td>4.051404 +/- 2.039807 %</td>
</tr>
<tr>
<td>6.900895E-04</td>
<td>2.3456116E-07 +/- 6.506497 %</td>
</tr>
<tr>
<td>5.2953843E-04</td>
<td>5.9040013E-07 +/- 3.466331 %</td>
</tr>
<tr>
<td>6.4003764E-04</td>
<td>1.2214471E-05 +/- 0.8310503 %</td>
</tr>
<tr>
<td>6.8151421E-04</td>
<td>1.128397 +/- 1.204921 %</td>
</tr>
<tr>
<td>7.4972271E-04</td>
<td>1.100655 +/- 0.7564522 %</td>
</tr>
<tr>
<td>6.8915845E-04</td>
<td>1.799108 +/- 1.256268 %</td>
</tr>
<tr>
<td>6.4636284E-04</td>
<td>0.8898824 +/- 1.332425 %</td>
</tr>
<tr>
<td>4.3721433E-04</td>
<td>1.521364 +/- 2.473622 %</td>
</tr>
<tr>
<td>4.2511927E-04</td>
<td>1.399170 +/- 0.9543594 %</td>
</tr>
<tr>
<td>2.0069227E-04</td>
<td>0.950000 +/- 7.69127 %</td>
</tr>
<tr>
<td>9.9383309E-05</td>
<td>4.051404 +/- 2.039807 %</td>
</tr>
</tbody>
</table>
Soon after, the cumulative fluence distribution as a function of energy is also given:

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Cumulative Flux (Part/cm²/pr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.99992</td>
<td>1.5001119E-08 +/- 99.00000 %</td>
</tr>
<tr>
<td>16.94620</td>
<td>1.875495E-06 +/- 5.464718</td>
</tr>
<tr>
<td>5.743484</td>
<td>6.7972585E-06 +/- 0.702929</td>
</tr>
<tr>
<td>1.946608</td>
<td>1.2326548E-04 +/- 0.538237</td>
</tr>
<tr>
<td>0.659753</td>
<td>1.9392946E-04 +/- 0.604372</td>
</tr>
<tr>
<td>0.2236056</td>
<td>4.1899894E-04 +/- 0.6799491</td>
</tr>
<tr>
<td>0.5785778E-02</td>
<td>5.589318E-04 +/- 0.682395</td>
</tr>
<tr>
<td>2.568564E-02</td>
<td>6.293457E-04 +/- 0.6859071</td>
</tr>
<tr>
<td>8.705533E-03</td>
<td>8.662402E-04 +/- 0.6864265</td>
</tr>
<tr>
<td>2.9505091E-03</td>
<td>8.675800E-04 +/- 0.6864119</td>
</tr>
<tr>
<td>Lowest bound</td>
<td>8.691762E-04 +/- 0.6981055</td>
</tr>
</tbody>
</table>

The numbers for the cumulative distribution have been obtained by multiplying each value of the differential distribution by the corresponding energy bin width (variable if the distribution is logarithmic as in our example). The integral fluence in any given energy interval can be obtained as the difference between the values of the cumulative distribution at the two bounds of that interval.

Since more than one angular interval was requested, at this point the angular distribution with respect to the normal at the boundary crossing point is reported, both in steradians and in degrees:
**** Double diff. Fluxes as a function of energy ****

Solid angle minimum value (sr): 0.000000
Solid angle upper boundaries (sr):
0.6283185 1.256637 1.884956 2.513274 3.141593
3.769911 4.398230 5.026548 5.654867 6.283185
Angular minimum value (deg.): 0.000000
Angular upper boundaries (deg.):
25.84193 36.86990 45.57299 53.13010 60.00000
66.42182 72.54239 78.46304 84.26083 90.00000

Let us take for instance the energy bin from 0.345 GeV to 0.278 GeV:

Energy interval (GeV): 0.3447016 0.2776284

Flux (Part/sr/GeV/cmq/pr):
2.2090337E-04 +/- 2.271138 % 1.6099877E-04 +/- 2.419357 %
1.2373505E-04 +/- 3.802638 % 9.4749055E-05 +/- 2.419357 %
7.0389280E-05 +/- 5.640523 % 6.8850291E-05 +/- 9.292711 %
6.042267E-05 +/- 5.421218 % 5.9915823E-05 +/- 11.91976 %
5.815710E-05 +/- 2.943847 % 4.8027632E-05 +/- 39.71496 %

Flux (Part/deg/GeV/cmq/pr):
5.3710260E-06 +/- 2.271138 % 9.1729089E-06 +/- 2.419357 %
8.9330297E-06 +/- 3.802638 % 7.8776966E-06 +/- 2.419357 %
6.4377805E-06 +/- 5.640523 % 6.5410413E-06 +/- 9.292711 %
6.9850003E-06 +/- 5.421218 % 7.2676362E-06 +/- 11.91976 %
6.3026077E-06 +/- 2.943847 % 5.2580162E-06 +/- 39.71496 %

The same structure is then replicated for Detector no. 2:

Detector n: 2(2) piCurrUD
(Area: 400. cmq,
 distr. scored: 209 ,
 from reg. 3 to 4,
 one way scoring,
 current scoring)

Tot. resp. (Part/cmq/pr) 7.1694393E-04 +/- 0.7243900 %
(--> (Part/pr) 0.2867776 +/- 0.7243900 %)

and so on.

Note that in this case the ratio between the calculated fluence (8.690E-04) and the corresponding current (7.169E-04) is about 1.2. The ratio between the numerical values of the two quantities would be 1 if the pions were all crossing the boundary at a right angle, 2 in the case of an isotropic distribution, and could even tend to infinity if the particle direction were mainly parallel to the boundary:

Fluence and current are very different quantities and should not be confused!

Note also that the above output reports also the current value not normalised per unit area. This is equivalent to a simple count of crossing particles, so we see that in our example about 0.287 charged pions per primary proton cross the middle plane of the target.
The previous file has a structure which is not easily interfaceable to other readout codes. This can be easily achieved by means of the other output file, `pionbdx.tab.lis`: there the user can find, for each Detector, a simple 4-column structure for the differential fluence integrated over solid angle. The table starts from the lowest energy, and the four columns represent respectively E_{min}, E_{max}, the differential fluence and the statistical error in percentage:

```
# Detector n: 1 piFluenUD (integrated over solid angle)
# N. of energy intervals 50
1.000E-03 1.242E-03 1.300E-04 5.216E+01
1.242E-03 1.542E-03 1.631E-04 8.206E+01
1.542E-03 1.914E-03 1.025E-04 9.900E+01
1.914E-03 2.376E-03 8.693E-05 6.203E+01
2.376E-03 2.951E-03 7.245E-05 3.355E+01
2.951E-03 3.663E-03 7.420E-05 3.668E+01
3.663E-03 4.548E-03 2.109E-04 3.472E+01
4.548E-03 5.647E-03 1.567E-04 4.401E+01
5.647E-03 7.012E-03 2.927E-04 3.929E+01
```

By convention, when in a given bin the statistics is not sufficient to calculate a standard deviation, the statistical error is printed as 99%. For a null fluence the statistical error is also null.

After this table, the double differential fluence is reported. First, one or more lines marked by a # sign in column 1 give, from minimum to maximum, the extremes of the solid angle intervals. Then, for each energy interval, the minimum and maximum of the interval followed by as many pairs of values as the number of angular bins: the first value is the calculated double-differential quantity (fluence or current) in cm$^{-2}$ sr$^{-1}$ and the second is the corresponding statistical error in percent.

For instance, for our example we obtain the following printout (for the sake of space only the first 3 bins in energy are shown):

```
# double differential distributions
# number of solid angle intervals 10
# 0.000E+00 6.283E-01 6.283E-01 1.257E+00 1.257E+00 1.885E+00 ...
#
#...
2.069E-02 2.569E-02 4.013E-05 2.472E+01 4.509E-05 2.068E+01 ...
2.569E-02 3.189E-02 5.408E-05 1.907E+01 4.657E-05 2.200E+01 ...
3.189E-02 3.960E-02 5.150E-05 7.137E+00 5.355E-05 1.587E+01 ...
```

2.5.2 Track length estimator

The program to analyse USRTRACK binary output is called `ustsuw.f` and can also be found in `$FLUPRO/flutil`. Its use is very similar to that of `usxsuw.f` described above. Applying it to the `example00*.fort.48` files (output of the first USRTRACK detector in our example), we obtain for the average fluence of charged pions in the upstream half of the beryllium target:

```
Tot. response (p/cmq/pr) 5.4765277E-04 +/- 0.6965669 %
```

and from the `example00*.fort.49` files (pion fluence in the downstream half):

```
Tot. response (p/cmq/pr) 1.3474772E-03 +/- 0.5352812 %
```

As it was to be expected, the average fluence obtained above by the boundary crossing estimator on the middle surface ($8.69E-04$ cm$^{-2}$) has a value which is intermediate between these two.

2.5.3 Binning estimator

To analyse the binary output from USRBIN, two programs are needed, both available in `$FLUPRO/flutil`. The first, `usbsuw.f`, performs a statistical analysis of the results and produces a new unformatted file, with
Biasing

a name chosen by the user. The second program, Usbrea.f, reads the latter file and writes on a formatted file two arrays, namely the content of each bin, averaged over the given number of runs, followed by the corresponding errors in percent. The second USRBIN detector defined in example.inp gives the following values of energy deposition (in GeV/cm³):

1 Cartesian binning n. 1 "Edeposit " , generalized particle n. 208
X coordinate: from -1.0000E+01 to 1.0000E+01 cm, 20 bins (1.0000E+00 cm wide)
Y coordinate: from -1.0000E+01 to 1.0000E+01 cm, 20 bins (1.0000E+00 cm wide)
Z coordinate: from 0.0000E+00 to 5.0000E+00 cm, 5 bins (1.0000E+00 cm wide)
Data follow in a matrix A(ix,iy,iz), format (1(5x,1p,10(1x,e11.4)))
accurate deposition along the tracks requested
5.6597E-07 7.5792E-07 3.6563E-07 2.7822E-07 2.6084E-07
2.6191E-07 1.6716E-07 3.8680E-07 2.4925E-07 4.2334E-07
..
and the following corresponding percentage errors:
Percentage errors follow in a matrix A(ix,iy,iz), format (1(5x,1p,10(1x,e11.4)))
1.3936E+01 4.3211E+01 3.0601E+01 2.2874E+01 1.7783E+01
1.6548E+01 1.2291E+01 1.4539E+01 2.4576E+01 2.7828E+01
2.2423E+01 1.7258E+01 3.7997E+01 2.6855E+01 2.9230E+01
..
2.5.4 Readout of other Fluka estimators
The $FLUPRO/flutil directory contains two other programs similar to usxsuw.f and ustsuw.f to average the outputs from other FLUKA estimators and binnings:

1. usrsuw.f: to read out the RESNUCLEi output (p. 225);
2. usysuw.f: to read out the USRYIELD output (p. 281);

2.6 Various settings

Accuracy and computer speed depend on several parameters that can be freely tuned by the user: but in general an increase of either one results in a decrease of the other. The proper balance must be based both on physical and on practical considerations. The present defaults have been designed to give satisfactory results in the most common cases: but other sets of defaults can be implemented using option DEFAULTS (to be placed at the beginning of the input file, just after the title).

Even when one set of defaults is enforced, the user can still override some of them by modifying single parameters. The most used ones concern energy cutoffs (option EMFCUT for electrons and photons, LOW–BIAS for low-energy neutrons, PART–THRes for all other particles, described respectively on page 116, 159 and 202), thresholds for delta-ray production (option DELTARAY, p. 101), particles to be ignored (option DISCARD, p. 107), switching on or off some physical effect (EMFCUT, IONFLUCT, MUPHOTON, PAIRBREM, PHOTONUC, PHYSICS, POLARIZAti: see respectively p. 116, 149, 184, 200, 204, 208, 218), and (more rarely) the size of the step for transporting charged particles (FLUKAFIX, MCSTHRESh, MULSOPT, STEPSIZE, see respectively p. 136, 176, 180, 245).

Energy cutoffs for each particle are listed in a table on standard output (Particle transport thresholds).

2.7 Biasing

Although FLUKA is able to perform fully analogue particle transport calculations (i.e., to reproduce faithfully actual particle histories), in many cases of very non-uniform radiation fields, such as those encountered in
shielding design, only a very small fraction of all the histories contributes to the desired response (dose, fluence) in the regions of interest, for instance behind thick shielding. In these cases, the user’s concern is not to simulate exactly what occurs in reality, but to estimate in the most efficient way the desired response. This can be obtained by replacing the actual physical problem with a mathematically equivalent one, i.e., having the same solution but faster statistical convergence.

A rigorous mathematical treatment of such variance-reduction techniques can be found in several textbooks (see for instance those of Lux and Koblinger [122] or Carter and Cashwell [48]). In the present practical introduction we will only issue a few important warnings:

- In the limit of the number of histories tending to infinity, the value of each calculated quantity tends exactly to the same average in the analogue and in the corresponding biased calculation. In other words, biasing is mathematically correct and implies no approximation. However, an acceleration of convergence in certain regions of phase space (space/energy/angle) will generally be paid for by a slower convergence in other regions. Because an actual calculation does not use an infinite number of particles, but is necessarily truncated after a finite number of histories, results must be considered with some judgment. For instance, if the number of histories is too small, it can happen that total energy is not conserved (check the energy budget summary at the very end of main output!)

- A bad choice of biasing parameters may have consequences opposite to what is desired, namely a slower convergence. A long experience, and often some preliminary trial-and-error investigation, are needed in order to fully master these techniques (but some biasing algorithms are “safer” than others).

- Because biasing implies replacing some distributions by others having the same expectation value but different variance (and different higher moments), biasing techniques in general do not conserve correlations and cannot describe correctly fluctuations.

The simplest (and safest) biasing option offered by FLUKA is importance biasing, which can be requested by option BIASING (p. 82). Each geometry region is assigned an “importance”, namely a number between 10^{-4} and 10^{4}, proportional to the contribution that particles in that region are expected to give to the desired result. The ratio of importances in any two adjacent regions is used to drive a classical biasing algorithm (“Splitting” and “Russian Roulette”). In a simple, monodimensional attenuation problem, the importance is often set equal to the inverse of the expected fluence attenuation factor for each region.

In electron accelerator shielding, two other biasing options are commonly employed: EMF–BIAS (p. 111) and LAM–BIAS (p. 155). The first one is used to request leading particle biasing, a technique which reduces considerably the computer time required to handle high-energy electromagnetic showers. With this option, CPU time becomes proportional to primary energy rather than increasing exponentially with it. Option LAM–BIAS is necessary in order to sample with acceptable statistics photonuclear reactions which have a much lower probability than competing electromagnetic photon reactions, but are often more important from the radiological point of view.

Other important options are those which set weight window biasing (WW–FACTOr (p. 286) WW–THRES (p. 291) and WW–PROFIle (p. 289), but their use requires more experience than assumed here for a beginner.

Particle importances, weight windows and low-energy neutron biasing parameters are reported for each region on standard output. On user’s request (expressed as SDUM = PRINT in a BIASING card), Russian Roulette and Splitting counters are printed for each region on standard output before the final summary. Such counters can be used for a better tuning of the biasing options.

2.8 Flair

Flair [92] is an advanced user interface for FLUKA to facilitate the editing of FLUKA input files, execution of the code and visualization of the output files. It is based entirely on python and Tkinter (http://wiki.python.org). Flair provides the following functionality:
1. front-end interface for an easy and almost error free editing as well as validation and error correction, of the input file during editing

2. interactive geometry editor, allowing to editing bodies and regions in a visual/graphical way with immediate debugging information

3. compiling, debugging, running and monitoring of the status during a run

4. back-end interface for post-processing of the output files and plot generation through an interface with gnuplot (http://www.gnuplot.info) or 3D photorealistic images

5. library of materials and geometrical objects, for easier editing, storing and sharing among other users and projects

6. python API for manipulating the input files, post processing of the results and interfacing to gnuplot

7. import/export to various formats (MCNP, povray, dxf, bitmap-images)

The philosophy of Flair is to work on an intermediate level of user interface. Not too high, that hides the inner functionality of FLUKA from the user, and not so low that the user is in constant need of the FLUKA manual to verify the options needed for each card. Flair works directly with the input file of FLUKA and is able to read/write all acceptable FLUKA input formats. Inside the Flair editor the user is working directly with the FLUKA cards having a small dialog for each card that displays the card information in an interpreted human readable way. The only exception is that the cards in Flair are called “extended cards” where each card is not composed only by 6 WHATs and 1 SDUM, but rather it contains all related information in one unit (comments preceding the card, continuation cards, titles, etc).

Flair includes its own manual.
Chapter 3

Installation

3.1 Requirements

FLUKA is available at the moment only for x86 and x86_64 Linux systems. The FLUKA package can be downloaded from the FLUKA website www.fluka.org. This version of the code should be run on the platforms for which it has been released, which are:

- FLUKA 32 bits, requires gcc/g77 (version \geq 3.4)
- FLUKA 64 bits, requires gcc/gfortran (version \geq 4.6)

The Linux x86 version must be compiled at 32 bits with g77 but can run on both 32 and 64 bit machines while the Linux x86_64 version must be compiled with gfortran and works only on 64 bit machine. The latter is still tentative, we cannot exclude some issues with that version. The code has been checked and validated for these platforms/compilers only for the time being.

The availability of the source code (available under the license reported at the beginning of this volume) shall not be exploited for tentative builds on other architectures or with different compilers/compiler options than the ones recommended by the development team. Our experience shows that for a code of the complexity of FLUKA the chances of hitting one or more compiler issues are very large. Therefore users shall not make use for every serious task, including whichever form of publication or presentation, of code versions built on platforms and/or with compiler options which have not been cleared as safe by the development team.

We distribute a package containing compiled libraries, user routines in source form, INCLUDE files, various unformatted and formatted data files and a number of scripts for compiling ($\$FLUPRO/\$lutil/fff$), linking ($\$FLUPRO/\$lutil/lfluka$) and running ($\$FLUPRO/\$lutil/rfluka$) the program on a given platform. A list of the contents is provided in a README file, and information on the current version, possibly overriding parts of the present manual, may be contained in a file RELEASE-NOTES. No external library routines are required. The timing and other necessary service routines are already included.

3.2 Installation instructions

Different packages can be downloaded from the FLUKA website www.fluka.org:

- 32 bits: requires gcc/g77 (version \geq 3.4)
 - Linux x86 (tar.gz package): fluka2011.2-linuxAA.tar.gz
 - Linux x86 (rpm installer): fluka2011.2-i686.rpm
- 64 bits: requires gcc/gfortran (version \geq 4.6)
 - Linux x86_64 (tar.gz package): fluka2011.2-linux-gfor64bitAA.tar.gz

3.2.1 Installation of the tar.gz packages

1. The user must define few environmental variables:

 - FLUPRO: pointing to the directory where the distribution tar file will be decompressed. If you work on bash do:
 > export FLUPRO=/path/to/fluka
 or if you work on csh or tcsh do:

35
> setenv FLUPRO /path/to/fluka

If the directory does not exist you should first create it by:
> mkdir /path/to/fluka

- FLUFOR (optional): containing the compiler type (gfortran or g77) which must be coherent with the architecture of the package you downloaded. If you work on bash do:
> export FLUFOR=g77 or > export FLUFOR=gfortran

or if you work on csh or tcsh do:
> setenv FLUFOR g77 or > setenv FLUFOR gfortran

In case FLUFOR is not set the script does an attempt of checking if the name of the $FLUPRO directory contains the gfor string. In this case gfortran is selected. If the FLUFOR variable is not set and the compiler platform name is not coded in the directory name g77 is selected.

- GFORFLU (optional): set to specify the specific version of gfortran to be used if more than one is available (i.e. if on your machine gfortran points to a version < 4.6, and gfortran46 points to version 4.6, you can set GFORFLU to gfortran46 and happily use the FLUKA gfortran 64 bits version).

Note: Such definition of the environment variables are lost when you log out. In order to make it permanently available you should add the export/setenv command to your shell configuration file:

- If you work on bash add them to your .bashrc file;
- If you work on csh (or tcsh add them to your .cshrc (or .tcshrc) file;

2. Go to the FLUPRO directory and move there the selected Fluka package

> cd $FLUPRO
> cp /path/fluka2011.2-linuxAA.tar.gz ./

or
> cp /path/fluka2011.2-linux-gfor64bitAA.tar.gz ./

3. Now you can uncompress the tar.gz the package

> tar -zxvf fluka2011.2-linuxAA.tar.gz

or
> tar -zxvf fluka2011.2-linux-gfor64bitAA.tar.gz

4. Compile the flutils, link and install FLUKA by typing:

> make

this creates the default executable flukahp and compiles auxiliary programs in the directory flutil.

3.2.2 Installation of the RPM package

We also distribute a RPM package which can be installed in principle on each x86 RPM-enable distribution (Fedora, Redhat, Ubuntu, SuSe ..etc). The package requires the compat-libf2c-34 and compat-gcc-34 packages.

- In order to install the RPM on the Fedora/Redhat just type (as root):

> rpm -ivh fluka2011.2-i686.rpm

- Other x86 RPM-enabled distributions might have different name for the compat-libf2c-34 and compat-gcc-34’ packages. In this case you might have to install them separately and then run (as root):

> rpm -ivh --nodeps fluka2011.2-i686.rpm
In you want instead to upgrade a previous installation run (as root):

```bash
> rpm -Fvh fluka2011.2-i686.rpm
```

3.3 Package content

If the source code is included in the distribution, it will be contained in `$FLUPRO` files with names of the form `...vax.for`.

The basic `Fluka` program on UNIX machines consists of 29 files:

- `bamjmvax.for`
- `blockmvax.for`
- `comlatmvax.for`
- `decaymvax.for`
- `dedxmvax.for`
- `dumvax.for`
- `elmavx.for`
- `emfmvax.for`
- `eventqmvax.for`
- `eventvmvax.for`
- `evffrmvax.for`
- `fluoxmvax.for`
- `geolatmvax.for`
- `kaskadmvax.for`
- `lowneumvax.for`
- `mainmvax.for`
- `mathmvax.for`
- `neutrimvax.for`
- `noptmvax.for`
- `opphmvax.for`
- `outputmvax.for`
- `pemfmvax.for`
- `pgmvax.for`
- `preclmvax.for`
- `preeqmvax.for`
- `pripromvax.for`
- `rndmvax.for`
- `usermvax.for`
- `XXXmvax.for (*)`

(*) `XXX` stands for `hp`, `ibm`, `linux`, `osf` etc. depending on the platform. Most UNIX Fortran compilers require that the extension `.for` be replaced by `.f` (but the makefile provided with `Fluka` takes care of this, see below).

See Chap. 4 for a short description of the content of these files.

If the source code is present, the `INCLUDE` files needed to compile the program may be grouped into three files `emfadd.add`, `flukaadd.add` and `lowneuald.add`.

A makefile and a number of auxiliary programs split these files into individual routines and `INCLUDE` files, which are placed in 29+1 separate directories and compiled. The object files are inserted in a `Fluka` library `libflukahp.a`. A shell script `lfluka` links all routines into an executable `flukahp` (the name is the same for all UNIX platforms, the "hp" being due to historical reasons).

The `Dpmjet` and `Rqmd` object files are collected in two separate libraries.

The `Fluka` distribution `tar` file normally does not contain an executable file. To create the default `Fluka` executable, type:

```bash
$FLUPRO/flutil/lfluka -m fluka
```

(the name of the resulting executable will be `flukahp`)

or, if heavy ion nuclear interactions are needed:

```bash
$FLUPRO/flutil/ldpmqmd
```

(the name of the resulting executable will be `flukadpm`)

User-written routines (in particular a `SOURCE` subroutine, see list of user interface routines in Chap. 13) can be compiled separately and linked overriding the default routines of the library. The `$FLUPRO/flutil/lfluka` script can take care of them in three different ways:

1. appending the Fortran files (`xxx.f`) as last arguments to the `lfluka` procedure (Linux only);

2. appending the object files (precompiled using the `$FLUPRO/flutil/fff` procedure supplied with the code) as last arguments to the `lfluka` procedure;

1The form `...vax.for` has historical reasons. Actually, as seen later, the files are automatically split by a `makefile` into single routines (with extension `.f`) before compilation.
3. inserting the object files into a library and giving the library name to the script with the -O or -l options.

An on-line help is available issuing `lfluka -h`.

The program needs several auxiliary data files, containing cross sections, nuclear and atomic data and so on. Nine of these files are unformatted and have an extension .bin (or .dat).

The auxiliary files are generally kept in the main Fluka directory and require no modification by the user.

Here is the list:

- `coff.bin` Coherent atomic form factors
- `fluodt.dat` Fluorescence emission data, needed for problems involving low-energy electron-photon transport
- `gxsect.bin` Photon cross sections
- `neuxsc-ind260.bin` Low-energy neutron cross sections: needed for all problems with neutron transport below 20 MeV.
- `nuclear.bin` Nuclide masses, abundances and other data: needed for all hadronic problems
- `elasct.bin` Elastic cross sections for hadronic problems
- `sigmapi.bin` Pion cross sections
- `brems_fin.bin` Bremsstrahlung cross sections
- `e6r1nds3.fyi, jef2.fyi, jendl3.fyi, xnloan.dat` Fission nuclide yields and neutron multiplicities
- `sidae.dat, sidan.dat, sidap.dat, sidapi.dat` Silicon damage weighting functions

3.4 Pre-connected I/O files

Fluka reads its main input from standard logical unit 5 and writes its main output to logical unit 11. Both are parameterised in the INCLUDE file IOUNIT as LUNIN and LUNOUT, and can therefore be redefined if necessary. Assignment of unit number 5 and log messages to the corresponding files is achieved (on Linux/UNIX) via the redirection symbols < and >. Other input and output files on UNIX can be assigned a I/O unit number by means of symbolic links (but the syntax for Fortran implicit connection is not standard and forms like `fort.xx` or `ftnxx` can both be found on different platforms). An alternative way is offered by the OPEN command of Fluka(p. 187), which allows to perform explicit connections.

The `$FLUPRO/rfluka` script supplied with the code contains all relevant I/O file definitions, and can be used to run the code interactively or through a batch queue. It allows to submit multiple runs with a single command. Both `rfluka` and `lfluka` (the script used for linking, see above) contain usage instructions.

The `rfluka` script creates a temporary directory where it copies the necessary files and deletes it after the results have been copied back to the parent directory, thus allowing to run more than one job at the same time in the same directory. Appropriate names for the output files are generated by `rfluka`, including a sequential number for each run.

If user routines are linked and a new executable is created, the name of the new executable can be input using the `-e` option. Some on-line help is available issuing `rfluka -h`.
Chapter 4

FLUKA modules (Fortran files)

Since several years, the FLUKA source code has been organised in “modules”. This word must not be intended to have the technical meaning which it has been assigned later in Fortran 90. A FLUKA module is simply a collection of routines covering the same physics field or belonging to the same class of functionality.

In the FLUKA2011 version, there are 35 modules:

- **BAMJM**: new hadronisation package (strongly improved version of the original Bamjet) [177]
- **BLOCKM**: BLOCK DATA routines
- **BMEM**: the Boltzmann Master Equation nucleus-nucleus interaction package for nucleus-nucleus interactions below 150 MeV/u
- **COMLATM**: all geometry routines specific for Combinatorial Geometry (CG) and repetition (lattice capability) in the geometry description
- **DECAYM**: all routines connected with particle decays during transport, including those managing polarisation or non phase-space-like decays for pions, kaons, muons and taus
- **DEDXM**: all routines connected with dE/dx and radiative losses of hadrons and muons, including delta-ray production and cross sections for muon photoneutrino interactions
- **DPMM**: interface routines for the Dpmjet generator
- **DUM**: dummy routines
- **ELSM**: all hadron and photon (photoneutrino) cross section routines
- **EMFM**: all routines dealing with electron, positron and photon transport and interactions (except for photon photoneutrino interactions, fluorescent X-ray and Auger production)
- **EVENTQM**: auxiliary routines for the high energy hadronic interaction generators
- **EVENTVM**: all routines (besides those in EVENTQM) connected with the high energy hadronic inelastic interaction package
- **EVFFRM**: separate module with all evaporation, fission and Fermi break-up routines
- **FLUOXM**: all routines dealing with fluorescence X-ray and Auger production
- **GCQM**: cosmic ray and solar flare simulation package
- **GEOLATM**: geometry navigation and debugging routines
- **KASKADM**: general event steering, most of the relevant transport routines for hadron and muon transport, including magnetic field tracking, most of material and region dependent initialisation and source routines
- **LOWNEUM**: all routines concerning the multigroup treatment of “low” energy (E < 20 MeV) neutrons
- **MAINM**: main, input parsing and auxiliary routines
- **MATHM**: mathematical auxiliary routines (interpolation, integration, etc.). Many of them adapted from SLATEC (http://www.netlib.org/slatec)
- **NEUTRIM**: nuclear interactions of neutrinos
- **NOPTM**: all routines connected with new scoring options implemented after FLUKA86, and blank COMMON setting for scoring options.
- **NUNDISM**: neutrino-nucleon deep inelastic scattering
- **NUNRESM**: neutrino-nucleon resonance production
- **OPPHM**: optical photon production and transport
- **OUTPUTM**: printing routines (apart from output of new options which is performed in NOPTM)
- **PENFM**: electromagnetic initialisation
- **PGM**: PLOTGEOM geometry drawing package
- **PRECLM**: full PEANUT second part
- **PREEQM**: full PEANUT first part
- **PRIPROM**: initialisation and drivers for PEANUT
- **RNDM**: random number generation, including gaussian-distributed random numbers
- **RQMDM**: interface routines for the RQMD generator
- **USERM**: user oriented routines (see list below)
- **IBMM/HPM/LINUXM/OSFM/VAXM**: timing and “environment” routines. These are machine specific.
User oriented routines (see description in Chap. 13):

The "FLUKA User Routines" mentioned at point 3) in the FLUKA User License are those (and only those) contained in the directory usermvax, both in the source and binary versions of the code.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSCFF</td>
<td>absorption coefficient (for optical photons)</td>
</tr>
<tr>
<td>COMSCW</td>
<td>response functions, user dependent selection for density-like quantities</td>
</tr>
<tr>
<td>DFFCFF</td>
<td>diffusion coefficient (for optical photons)</td>
</tr>
<tr>
<td>ENDSCE</td>
<td>energy density distributed — change of positions</td>
</tr>
<tr>
<td>FLUSC</td>
<td>fluence distributed — change of positions</td>
</tr>
<tr>
<td>FLUSCW</td>
<td>response functions, user dependent selection for flux-like quantities</td>
</tr>
<tr>
<td>FORMFU</td>
<td>nuclear charge form factors</td>
</tr>
<tr>
<td>FRGNS</td>
<td>material roughness (for optical photons)</td>
</tr>
<tr>
<td>FTELOS</td>
<td>called at the very end of a FLUKA run</td>
</tr>
<tr>
<td>FUSRBV</td>
<td>defines a continuous variable for 3-D binnings</td>
</tr>
<tr>
<td>LATTIC</td>
<td>symmetry transformation for lattice geometry</td>
</tr>
<tr>
<td>LUSRBL</td>
<td>defines a discrete variable for 3-D binnings</td>
</tr>
<tr>
<td>MAGFLD</td>
<td>to use a magnetic field map</td>
</tr>
<tr>
<td>MDSTCK</td>
<td>management of secondary stack</td>
</tr>
<tr>
<td>MGDRAW</td>
<td>to dump the whole history of particle showering, trajectories, interactions, etc.</td>
</tr>
<tr>
<td>MUSRBR</td>
<td>defines a discrete variable for 3-D binnings</td>
</tr>
<tr>
<td>OPHBDX</td>
<td>boundary crossing properties (for optical photons)</td>
</tr>
<tr>
<td>PSHCKP</td>
<td>call user when pushing Cherenkov photons to the stack</td>
</tr>
<tr>
<td>QUEFFC</td>
<td>quantum efficiency (for optical photons)</td>
</tr>
<tr>
<td>RFLCTV</td>
<td>reflectivity (for optical photons)</td>
</tr>
<tr>
<td>RFRNDX</td>
<td>refraction index (for optical photons)</td>
</tr>
<tr>
<td>SOEVS</td>
<td>saving source events</td>
</tr>
<tr>
<td>SOURCE</td>
<td>to generate any distribution for source particles</td>
</tr>
<tr>
<td>STUPRE</td>
<td>set user variables (electrons and photons)</td>
</tr>
<tr>
<td>STUPRF</td>
<td>set user variables (hadrons, muons and neutrinos)</td>
</tr>
<tr>
<td>UBSSET</td>
<td>to override input biasing parameters</td>
</tr>
<tr>
<td>UCDRL</td>
<td>decay direction biasing</td>
</tr>
<tr>
<td>USIMBS</td>
<td>user-defined importance biasing</td>
</tr>
<tr>
<td>USREIN</td>
<td>event initialisation</td>
</tr>
<tr>
<td>USREOU</td>
<td>post-event output</td>
</tr>
<tr>
<td>USRCLO</td>
<td>user global settings</td>
</tr>
<tr>
<td>USRHSC</td>
<td>user provided density scaling factors</td>
</tr>
<tr>
<td>USRINI</td>
<td>user initialisation</td>
</tr>
<tr>
<td>USRMED</td>
<td>to perform user driven biasing and/or particle selections on a material basis</td>
</tr>
<tr>
<td>USROUT</td>
<td>user output</td>
</tr>
<tr>
<td>USRRNC</td>
<td>user customisation of residual nuclei scoring</td>
</tr>
<tr>
<td>USTCKV</td>
<td>user customisation of Cherenkov photon production</td>
</tr>
<tr>
<td>WVLNSH</td>
<td>wave-length shifting of optical photons</td>
</tr>
</tbody>
</table>
Part II

User Guide
Chapter 5

Particle and material codes

5.1 Particles transported by Fluka

Each particle which can be transported by FLUKA is identified by an alphanumeric name and by an integer number. Negative values of such numerical identifiers are reserved to light and heavy ions, and to optical photons. The value 0 indicates a pseudo-particle RAY, which can be used to scan the geometry. Numbers > 200 designate “families” of particles, grouped according to some common characteristics (all hadrons, or all charged particles, etc.). In FLUKA, they are called Generalised Particles and can be used only for scoring. Various forms of scored energy, transferred momentum, induced activity etc. are also treated as Generalised Particles.

The identifier values are reported in Table 5.1 together with the corresponding particle numbering scheme of the Particle Data Group [142].

<table>
<thead>
<tr>
<th>FLUKA name</th>
<th>FLUKA number</th>
<th>Symbol</th>
<th>Common name</th>
<th>Standard PDG number (Particle Data Group) [142]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-HELIUM</td>
<td>-6</td>
<td>α</td>
<td>Alpha</td>
<td>—</td>
</tr>
<tr>
<td>3-HELIUM</td>
<td>-5</td>
<td>3He</td>
<td>Helium 3</td>
<td>—</td>
</tr>
<tr>
<td>TRITON</td>
<td>-4</td>
<td>3H</td>
<td>Triton</td>
<td>—</td>
</tr>
<tr>
<td>DEUTERON</td>
<td>-3</td>
<td>2H</td>
<td>Deuteron</td>
<td>—</td>
</tr>
<tr>
<td>HEAVYION</td>
<td>-2</td>
<td>—</td>
<td>Generic Heavy Ion with Z > 2 (see command HI–PROPE)</td>
<td>—</td>
</tr>
<tr>
<td>OPTIPHOT</td>
<td>-1</td>
<td>—</td>
<td>Optical Photon</td>
<td>—</td>
</tr>
<tr>
<td>RAY</td>
<td>0</td>
<td>—</td>
<td>Pseudoparticle</td>
<td>—</td>
</tr>
<tr>
<td>PROTON</td>
<td>1</td>
<td>p</td>
<td>Proton</td>
<td>2212</td>
</tr>
<tr>
<td>APROTON</td>
<td>2</td>
<td>̅p</td>
<td>Antiproton</td>
<td>-2212</td>
</tr>
<tr>
<td>ELECTRON</td>
<td>3</td>
<td>e⁻</td>
<td>Electron</td>
<td>11</td>
</tr>
<tr>
<td>POSITRON</td>
<td>4</td>
<td>e⁺</td>
<td>Positron</td>
<td>-11</td>
</tr>
<tr>
<td>NEUTRIE</td>
<td>5</td>
<td>νe</td>
<td>Electron Neutrino</td>
<td>12</td>
</tr>
<tr>
<td>ANEUTRIE</td>
<td>6</td>
<td>̅νe</td>
<td>Electron Antineutrino</td>
<td>-12</td>
</tr>
<tr>
<td>PHOTON</td>
<td>7</td>
<td>γ</td>
<td>Photon</td>
<td>22</td>
</tr>
<tr>
<td>NEUTRON</td>
<td>8</td>
<td>n</td>
<td>Neutron</td>
<td>2112</td>
</tr>
<tr>
<td>ANEUTRON</td>
<td>9</td>
<td>̅n</td>
<td>Antineutron</td>
<td>-2112</td>
</tr>
<tr>
<td>MUON+</td>
<td>10</td>
<td>μ⁺</td>
<td>Positive Muon</td>
<td>-13</td>
</tr>
<tr>
<td>MUON−</td>
<td>11</td>
<td>μ⁻</td>
<td>Negative Muon</td>
<td>13</td>
</tr>
<tr>
<td>KAONLONG</td>
<td>12</td>
<td>K₀^±</td>
<td>Kaon-zero long</td>
<td>130</td>
</tr>
<tr>
<td>PION+</td>
<td>13</td>
<td>π⁺</td>
<td>Positive Pion</td>
<td>211</td>
</tr>
<tr>
<td>PION−</td>
<td>14</td>
<td>π⁻</td>
<td>Negative Pion</td>
<td>-211</td>
</tr>
<tr>
<td>KAON+</td>
<td>15</td>
<td>K⁺</td>
<td>Positive Kaon</td>
<td>321</td>
</tr>
<tr>
<td>KAON−</td>
<td>16</td>
<td>K⁻</td>
<td>Negative Kaon</td>
<td>-321</td>
</tr>
<tr>
<td>LAMBDA</td>
<td>17</td>
<td>Λ</td>
<td>Lambda</td>
<td>3122</td>
</tr>
<tr>
<td>ALAMBDA</td>
<td>18</td>
<td>̅Λ</td>
<td>Antilambda</td>
<td>-3122</td>
</tr>
<tr>
<td>KAONSHRT</td>
<td>19</td>
<td>K₀^0</td>
<td>Kaon-zero short</td>
<td>310</td>
</tr>
<tr>
<td>SIGMA−</td>
<td>20</td>
<td>Σ⁻</td>
<td>Negative Sigma</td>
<td>3112</td>
</tr>
<tr>
<td>SIGMA+</td>
<td>21</td>
<td>Σ⁺</td>
<td>Positive Sigma</td>
<td>3222</td>
</tr>
<tr>
<td>SIGMAZER</td>
<td>22</td>
<td>Σ₀</td>
<td>Sigma-zero</td>
<td>3212</td>
</tr>
<tr>
<td>PIZERO</td>
<td>23</td>
<td>π₀</td>
<td>Pion-zero</td>
<td>111</td>
</tr>
<tr>
<td>KAONZERO</td>
<td>24</td>
<td>K₀</td>
<td>Kaon-zero</td>
<td>311</td>
</tr>
<tr>
<td>AKAONZER</td>
<td>25</td>
<td>̅K₀</td>
<td>Antikaon-zero</td>
<td>-311</td>
</tr>
<tr>
<td>Reserved</td>
<td>26</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NEUTRIM</td>
<td>27</td>
<td>νμ</td>
<td>Muon Neutrino</td>
<td>14</td>
</tr>
<tr>
<td>ANEUTRIM</td>
<td>28</td>
<td>̅νμ</td>
<td>Muon Antineutrino</td>
<td>-14</td>
</tr>
</tbody>
</table>

Blank 29 — — —

Table continues
<table>
<thead>
<tr>
<th>FLUKA name</th>
<th>FLUKA number</th>
<th>Symbol</th>
<th>Common name</th>
<th>Standard PDG number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ASIGMA−</td>
<td>31</td>
<td>Σ^-</td>
<td>Antisigma-minus</td>
<td>−3222</td>
</tr>
<tr>
<td>ASIGMAZE</td>
<td>32</td>
<td>Σ^0</td>
<td>Antisigma-zero</td>
<td>−3212</td>
</tr>
<tr>
<td>ASIGMA+</td>
<td>33</td>
<td>Σ^+</td>
<td>Antisigma-plus</td>
<td>−3112</td>
</tr>
<tr>
<td>XSIGZERO</td>
<td>34</td>
<td>Ξ^0</td>
<td>Xi-zero</td>
<td>3322</td>
</tr>
<tr>
<td>AXSIGZERO</td>
<td>35</td>
<td>Ξ^0</td>
<td>Antixi-zero</td>
<td>−3222</td>
</tr>
<tr>
<td>XSI−</td>
<td>36</td>
<td>Ξ^-</td>
<td>Negative Xi</td>
<td>3312</td>
</tr>
<tr>
<td>AXSI+</td>
<td>37</td>
<td>Ξ^+</td>
<td>Positive Xi</td>
<td>−3312</td>
</tr>
<tr>
<td>OMEGA−</td>
<td>38</td>
<td>Ω^-</td>
<td>Omega-minus</td>
<td>3334</td>
</tr>
<tr>
<td>AOMEGA+</td>
<td>39</td>
<td>Ω^+</td>
<td>Antomega</td>
<td>−3334</td>
</tr>
<tr>
<td>Reserved</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TAU+</td>
<td>41</td>
<td>τ^+</td>
<td>Positive Tau</td>
<td>−15</td>
</tr>
<tr>
<td>TAU−</td>
<td>42</td>
<td>τ^-</td>
<td>Negative Tau</td>
<td>15</td>
</tr>
<tr>
<td>NEUTRIT</td>
<td>43</td>
<td>ν_τ</td>
<td>Tau Neutrino</td>
<td>16</td>
</tr>
<tr>
<td>ANEUTRIT</td>
<td>44</td>
<td>$\bar{\nu}_\tau$</td>
<td>Tau Antineutrino</td>
<td>−16</td>
</tr>
<tr>
<td>D+</td>
<td>45</td>
<td>D^+</td>
<td>D-plus</td>
<td>411</td>
</tr>
<tr>
<td>D−</td>
<td>46</td>
<td>D^-</td>
<td>D-minus</td>
<td>−411</td>
</tr>
<tr>
<td>D0</td>
<td>47</td>
<td>D^0</td>
<td>D-zero</td>
<td>421</td>
</tr>
<tr>
<td>D0BAR</td>
<td>48</td>
<td>\bar{D}^0</td>
<td>AntiD-zero</td>
<td>−421</td>
</tr>
<tr>
<td>DS+</td>
<td>49</td>
<td>D_s^+</td>
<td>D_s-plus</td>
<td>431</td>
</tr>
<tr>
<td>DS−</td>
<td>50</td>
<td>D_s^-</td>
<td>D_s-minus</td>
<td>−431</td>
</tr>
<tr>
<td>LAMBDAc+</td>
<td>51</td>
<td>Λ_c^+</td>
<td>Lambda, plus</td>
<td>4122</td>
</tr>
<tr>
<td>XSIC+</td>
<td>52</td>
<td>Ξ_c^+</td>
<td>Xi, plus</td>
<td>4232</td>
</tr>
<tr>
<td>XSICO</td>
<td>53</td>
<td>Ξ_c^0</td>
<td>Xi, zero</td>
<td>4132</td>
</tr>
<tr>
<td>XSIPC+</td>
<td>54</td>
<td>$\Xi_c^{'+}$</td>
<td>Xi', plus</td>
<td>4322</td>
</tr>
<tr>
<td>XSIPCO</td>
<td>55</td>
<td>$\Xi_c'^0$</td>
<td>Xi', zero</td>
<td>4312</td>
</tr>
<tr>
<td>OMEGACO</td>
<td>56</td>
<td>Ω_c^0</td>
<td>Omega, zero</td>
<td>4332</td>
</tr>
<tr>
<td>ALAMBDC−</td>
<td>57</td>
<td>Λ_c^-</td>
<td>Antilambda, minus</td>
<td>−4122</td>
</tr>
<tr>
<td>AXSIC−</td>
<td>58</td>
<td>Ξ_c^-</td>
<td>AntiXi, minus</td>
<td>−4232</td>
</tr>
<tr>
<td>AXSICO</td>
<td>59</td>
<td>Ξ_c^0</td>
<td>AntiXi, zero</td>
<td>−4132</td>
</tr>
<tr>
<td>AXSIPC−</td>
<td>60</td>
<td>$\Xi_c^{'-}$</td>
<td>AntiXi', minus</td>
<td>−4322</td>
</tr>
<tr>
<td>AXSIPCO</td>
<td>61</td>
<td>$\Xi_c'^0$</td>
<td>AntiXi', zero</td>
<td>−4312</td>
</tr>
<tr>
<td>AOMEGACO</td>
<td>62</td>
<td>$\Omega_c'^0$</td>
<td>AntiOmega, zero</td>
<td>−4332</td>
</tr>
<tr>
<td>Reserved</td>
<td>63</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Reserved</td>
<td>64</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(1) Heavy fragments produced in evaporation are loaded in a special stack (COMMON FHEAVY, contained in the INCLUDE file with the same name).

The internal code for heavy evaporation fragments is the following: $3 = \text{deuteron}$, $4 = ^3\text{H}$, $5 = ^3\text{He}$, $6 = ^4\text{He}$, 7-$12 = \text{fission fragments}$. Transport capabilities (dE/dx, with account of effective charge and effective charge straggling, multiple Coulomb scattering, no interaction yet) are now available for d, t, ^3He and ^4He. Heavier ions can be transported on demand (see option IONTRANS, p. 152), with or without nuclear interactions. Fission fragments and fragments from Fermi break-up, when produced, are also put in COMMON FHEAVY with id’s ranging from 7 to 12 (usually 7 and 8 for two fragments).

(2) A RAY is not a real particle, but a straight line trajectory through the Fluka geometry. When a primary particle, defined by options BEAM and BEAMPOS (p. 73 and 78), or by a SOURCE subroutine (p. 380), is found to be a RAY, the program tracks through the geometry in the given direction calculating a number of quantities (distance traversed in each material, number of radiation lengths, number of interaction lengths etc.). See Chap. 14 for instructions about its use.
Table 5.2: FLUKA generalised particles (to be used only for scoring)

<table>
<thead>
<tr>
<th>FLUKA name</th>
<th>FLUKA number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL-PART</td>
<td>201</td>
<td>All transportable particles</td>
</tr>
<tr>
<td>ALL-CHAR</td>
<td>202</td>
<td>All charged particles</td>
</tr>
<tr>
<td>ALL-NEUT</td>
<td>203</td>
<td>All neutral particles</td>
</tr>
<tr>
<td>ALL-NEG</td>
<td>204</td>
<td>All negative particles</td>
</tr>
<tr>
<td>ALL-POS</td>
<td>205</td>
<td>All positive particles</td>
</tr>
<tr>
<td>NUCLEONS</td>
<td>206</td>
<td>Protons and neutrons</td>
</tr>
<tr>
<td>NUC&PI++</td>
<td>207</td>
<td>Protons, neutrons and charged pions</td>
</tr>
<tr>
<td>ENERGY</td>
<td>208</td>
<td>For dose scoring: Deposited energy</td>
</tr>
<tr>
<td>PIONS++</td>
<td>209</td>
<td>Charged pions</td>
</tr>
<tr>
<td>BEAMPART</td>
<td>210</td>
<td>Primary (source or beam) particles</td>
</tr>
<tr>
<td>EM-ENERGY</td>
<td>211</td>
<td>Electromagnetic energy (of electrons, positrons or photons)</td>
</tr>
<tr>
<td>MUONS</td>
<td>212</td>
<td>Muons</td>
</tr>
<tr>
<td>E+&E-</td>
<td>213</td>
<td>Electrons and positrons</td>
</tr>
<tr>
<td>AP&AN</td>
<td>214</td>
<td>Antiprotons and antineutrons</td>
</tr>
<tr>
<td>KONS</td>
<td>215</td>
<td>All kaons</td>
</tr>
<tr>
<td>STRANGE</td>
<td>216</td>
<td>All kaons and all hyperons and anti-hyperons (i.e., all strange particles)</td>
</tr>
<tr>
<td>KONS+-</td>
<td>217</td>
<td>Charged kaons</td>
</tr>
<tr>
<td>HAD-CHAR</td>
<td>218</td>
<td>Charged hadrons</td>
</tr>
<tr>
<td>FISSIONS</td>
<td>219</td>
<td>Fissions</td>
</tr>
<tr>
<td>HE-FISS</td>
<td>220</td>
<td>High energy fissions</td>
</tr>
<tr>
<td>LE-FISS</td>
<td>221</td>
<td>Low energy fissions</td>
</tr>
<tr>
<td>NEU-BALA</td>
<td>222</td>
<td>Neutron balance (algebraic sum of outgoing neutrons minus incoming neutrons for all interactions)</td>
</tr>
<tr>
<td>HAD-NEUT</td>
<td>223</td>
<td>Neutral hadrons</td>
</tr>
<tr>
<td>KONS0</td>
<td>224</td>
<td>Neutral kaons</td>
</tr>
<tr>
<td>C-MESONS</td>
<td>225</td>
<td>Charmed mesons</td>
</tr>
<tr>
<td>C-(A)BAR</td>
<td>226</td>
<td>Charmed (anti)baryons</td>
</tr>
<tr>
<td>CHARMED</td>
<td>227</td>
<td>Charmed hadrons</td>
</tr>
<tr>
<td>DOSE</td>
<td>228</td>
<td>Dose (energy deposited per unit mass, GeV/g)</td>
</tr>
<tr>
<td>UNB-ENER</td>
<td>229</td>
<td>Unbiased deposited energy (GeV)</td>
</tr>
<tr>
<td>UNB-EMEN</td>
<td>230</td>
<td>Unbiased electromagnetic energy (of electrons, positrons or photons) (GeV)</td>
</tr>
<tr>
<td>X-MOMENT</td>
<td>231</td>
<td>X component of momentum transfer (GeV/c)</td>
</tr>
<tr>
<td>Y-MOMENT</td>
<td>232</td>
<td>Y component of momentum transfer (GeV/c)</td>
</tr>
<tr>
<td>Z-MOMENT</td>
<td>233</td>
<td>Z component of momentum transfer (GeV/c)</td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>234</td>
<td>Activity per unit volume (Bq/cm^2)</td>
</tr>
<tr>
<td>ACTOMASS</td>
<td>235</td>
<td>Activity per unit mass (Bq/g)</td>
</tr>
<tr>
<td>SI1MEVNE</td>
<td>236</td>
<td>Silicon 1 MeV-neutron equivalent fluence (cm^-2)</td>
</tr>
<tr>
<td>HADGT2OM</td>
<td>237</td>
<td>Fluence of hadrons with energy > 20 MeV (cm^-2). Unstable hadrons (but neutrons) of lower energies are also counted</td>
</tr>
<tr>
<td>NIEL-DEP</td>
<td>238</td>
<td>Non Ionising Energy Loss deposition (GeV)</td>
</tr>
<tr>
<td>DPA-SCD</td>
<td>239</td>
<td>Displacements per atoms</td>
</tr>
<tr>
<td>DOSE-EQ</td>
<td>240</td>
<td>Dose Equivalent (pSv)</td>
</tr>
<tr>
<td>DOSE-EM</td>
<td>241</td>
<td>Dose Electromagnetic only (GeV/g)</td>
</tr>
<tr>
<td>NET-CHRG</td>
<td>242</td>
<td>Net charge (in units of elementary electron charge)</td>
</tr>
<tr>
<td>DOSEQLET</td>
<td>243</td>
<td>Dose equivalent with Q(LET) relation (GeV/g)</td>
</tr>
<tr>
<td>RES-NIEL</td>
<td>244</td>
<td>Restricted above damage threshold NIEL deposition (GeV)</td>
</tr>
<tr>
<td>HEHAD-EQ</td>
<td>249</td>
<td>High energy hadron equivalent fluence (cm^-2)</td>
</tr>
<tr>
<td>THNEU-EQ</td>
<td>250</td>
<td>Thermal neutron equivalent fluence (cm^-2)</td>
</tr>
</tbody>
</table>

(3) “Unbiased energy” means that the energy deposited (or the energy fluence) is scored with weight 1, independent of the actual weight of the particle. Of course, the result will have no physical meaning, but in some circumstances it will provide useful information about the run itself (for instance in order to optimise biasing).

(4) “Activity per unit volume” and “Activity per unit mass” are meaningful only when used within a 2D or 3D USRBIN estimator associated (by means of the DCYSCORE option) with a decay time defined with the DCYTIMES option. The resulting output units are Bq/cm^3 and Bq/g respectively, unless a binning by region or a special binning is requested, in which case the output is Bq or Bq cm^3/g.

(5) “Restricted above damage threshold NIEL deposition” means that the NIEL effect is considered only for neutrons with an energy lower than a predefined threshold. This option is useful to account only for neutrons that are able to cause damage.

(6) “Dose Equivalent (pSv)” means that the dose equivalent is calculated using a linear-quadratic model with a specific Q(LET) value, which is commonly used to account for the increased damage of high LET particles.

(7) “Dose equivalent with Q(LET) relation” means that the dose equivalent is calculated using a specific Q(LET) value, which is commonly used to account for the increased damage of high LET particles.

(8) “Thermal neutron equivalent fluence” means that the fluence of thermal neutrons is calculated, which is useful for assessing the contribution of thermal neutrons to the total fluence.

(9) “Unbiased deposited energy” means that the energy deposited (or the energy fluence) is scored with weight 1, independent of the actual weight of the particle. Of course, the result will have no physical meaning, but in some circumstances it will provide useful information about the run itself (for instance in order to optimise biasing).
“Non Ionising Energy Loss deposition” describes the energy loss due to atomic displacement (recoil nucleus) as a particle traverses a material. The “Restricted NIEL deposition” gives the same energy loss but restricted to recoils having an energy above the damage threshold defined for each material with the use of MAT–PROP with SDUM ≡ DPA–ENER.

“Dose equivalent” is computed using various sets of conversion coefficients (see AUXSCORE for details) converting particle fluences into Ambient Dose equivalent or Effective Dose. Dose Equivalent of particles for which conversion coefficients are not available, typically heavy ions, can be calculated by scoring generalised particle DOSEQLET.

“Dose equivalent” is computed using the $Q(LET)$ relation as defined in ICRP60, where LET is LET_{∞} in water.

”High energy hadron equivalent fluence” is proportional to the number of Single Event Upsets (SEU’s) due to hadrons with energy > 20 MeV. Unstable hadrons (but neutrons) of lower energies are also counted. Neutrons of lower energies are weighted according to the ratio of their SEU cross section to the one of > 20 MeV hadrons (substantially reflecting the (n,α) cross section behaviour in different microchip materials)

”Thermal neutron equivalent fluence” is proportional to the number of SEU’s due to thermal neutrons. Neutrons of higher energies are weighted according to the ratio of their capture cross section to the one of thermal neutrons (following the $1/v$ law) [182,183].

5.2 Pre-defined materials

Materials can be easily defined by option MATERIAL (p. 169), by assigning a density, a name, a code number (compulsory only if the input has been defined as purely numeric), and, in the case of single elements, an atomic number and an atomic weight. For compounds, the MATERIAL option card must be accompanied by a COMPOUND definition (p. 86) referred to the same material name. If low-energy neutrons ($E < 20$ MeV) need to be transported, the chosen name of a single element material must coincide with that of one for which cross sections are available (see Table 10.3).

However, for user’s convenience, 25 common single-element materials are already pre-defined (see Table 5.3): they are assigned a default density, name and code number even if no MATERIAL definition has been given. The user can override any of these if desired (but cannot change the code number), and can add more material definitions by means of one or more MATERIAL cards. The only constraints are:

1. the number sequence of the defined materials must be unbroken, i.e., there may not be any gap in the numbering sequence from 25 onwards. If the input is name-based, omitting the material number is the easiest way to ensure this, since the code will assign a correct number automatically.

2. if one of the pre-defined materials is re-defined using the same name, its code number (if expressed explicitly) must be equal to that of the pre-defined material.

Note that the above constraints can be ignored if the input is name-based and the material number in the MATERIAL option is left blank. In that case, the material name must be used in all relevant command (e.g. ASSIGNMAt, COMPOUND).

In addition to the 25 pre-defined single-element materials, some pre-defined compounds are available. For them, the stopping power of charged particles is not calculated directly from the component elements by the Bragg formula, but the Sternheimer parameters and the ionisation potential recommended by ICRU [109] are applied. Composition is also that recommended by ICRU. Reference to these pre-defined compounds is normally by name and no MATERIAL and COMPOUND cards are needed: if the input is explicitly number-based only (via command GLOBAL), a number needs to be assigned to them using a MATERIAL card, of course leaving no gaps in the numbering sequence.

If a user defines a compound with the same name and similar composition, the code automatically “matches” its stopping power parameters to those of the pre-defined one. It is also possible to modify the Sternheimer parameters with command STERNHEIme and the ionisation potential with MAT–PROP.
Table 5.3: List of pre-defined single-element FLUKA materials

<table>
<thead>
<tr>
<th>FLUKA name</th>
<th>FLUKA number</th>
<th>Common name</th>
<th>A</th>
<th>Z</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLCKHOLE</td>
<td>1</td>
<td>Blackhole or External Vacuum</td>
<td>0.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VACUUM</td>
<td>2</td>
<td>Vacuum or Internal Vacuum</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HYDROGEN</td>
<td>3</td>
<td>Hydrogen</td>
<td>1.00794</td>
<td>1.</td>
<td>0.0000837</td>
</tr>
<tr>
<td>HELIUM</td>
<td>4</td>
<td>Helium</td>
<td>4.002602</td>
<td>2.</td>
<td>0.0001666</td>
</tr>
<tr>
<td>BERYLLIUM</td>
<td>5</td>
<td>Beryllium</td>
<td>9.012182</td>
<td>4.</td>
<td>1.848</td>
</tr>
<tr>
<td>CARBON</td>
<td>6</td>
<td>Carbon</td>
<td>12.0107</td>
<td>6</td>
<td>2.000</td>
</tr>
<tr>
<td>NITROGEN</td>
<td>7</td>
<td>Nitrogen</td>
<td>14.0067</td>
<td>7</td>
<td>0.00117</td>
</tr>
<tr>
<td>OXYGEN</td>
<td>8</td>
<td>Oxygen</td>
<td>15.9994</td>
<td>8</td>
<td>0.00133</td>
</tr>
<tr>
<td>MAGNESIU</td>
<td>9</td>
<td>Magnesium</td>
<td>24.3050</td>
<td>12</td>
<td>1.740</td>
</tr>
<tr>
<td>ALUMINUM</td>
<td>10</td>
<td>Aluminium</td>
<td>26.981538</td>
<td>13</td>
<td>2.699</td>
</tr>
<tr>
<td>IRON</td>
<td>11</td>
<td>Iron</td>
<td>55.845</td>
<td>26</td>
<td>7.874</td>
</tr>
<tr>
<td>COPPER</td>
<td>12</td>
<td>Copper</td>
<td>63.546</td>
<td>29</td>
<td>8.960</td>
</tr>
<tr>
<td>SILVER</td>
<td>13</td>
<td>Silver</td>
<td>107.8652</td>
<td>47</td>
<td>10.500</td>
</tr>
<tr>
<td>SILICON</td>
<td>14</td>
<td>Silicon</td>
<td>28.0855</td>
<td>14</td>
<td>2.329</td>
</tr>
<tr>
<td>GOLD</td>
<td>15</td>
<td>Gold</td>
<td>196.96655</td>
<td>79</td>
<td>19.320</td>
</tr>
<tr>
<td>MERCURY</td>
<td>16</td>
<td>Mercury</td>
<td>200.59</td>
<td>80</td>
<td>13.546</td>
</tr>
<tr>
<td>LEAD</td>
<td>17</td>
<td>Lead</td>
<td>207.2</td>
<td>82</td>
<td>11.350</td>
</tr>
<tr>
<td>TANTALUM</td>
<td>18</td>
<td>Tantalum</td>
<td>180.9479</td>
<td>73</td>
<td>16.654</td>
</tr>
<tr>
<td>SODIUM</td>
<td>19</td>
<td>Sodium</td>
<td>22.989770</td>
<td>11</td>
<td>0.971</td>
</tr>
<tr>
<td>ARGON</td>
<td>20</td>
<td>Argon</td>
<td>39.948</td>
<td>18</td>
<td>0.001666</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>21</td>
<td>Calcium</td>
<td>40.078</td>
<td>20</td>
<td>1.550</td>
</tr>
<tr>
<td>TIN</td>
<td>22</td>
<td>Tin</td>
<td>118.710</td>
<td>50</td>
<td>7.310</td>
</tr>
<tr>
<td>TUNGSTEN</td>
<td>23</td>
<td>Tungsten</td>
<td>183.84</td>
<td>74</td>
<td>19.300</td>
</tr>
<tr>
<td>TITANIUM</td>
<td>24</td>
<td>Titanium</td>
<td>47.867</td>
<td>22</td>
<td>4.540</td>
</tr>
<tr>
<td>NICKEL</td>
<td>25</td>
<td>Nickel</td>
<td>58.6934</td>
<td>28</td>
<td>8.902</td>
</tr>
</tbody>
</table>

Table 5.4: List of pre-defined ICRU compounds

<table>
<thead>
<tr>
<th>FLUKA name</th>
<th>Common name</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td>Water</td>
<td>1.0</td>
</tr>
<tr>
<td>POLYSTYR</td>
<td>Polystyrene</td>
<td>1.06</td>
</tr>
<tr>
<td>PLASCINT</td>
<td>Plastic scintillator</td>
<td>1.032</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethyl methacrylate, Plexiglas, Lucite, Perspex</td>
<td>1.19</td>
</tr>
<tr>
<td>BONECOMP</td>
<td>Compact bone</td>
<td>1.85</td>
</tr>
<tr>
<td>BONECORT</td>
<td>Cortical bone</td>
<td>1.85</td>
</tr>
<tr>
<td>MUSCLESK</td>
<td>Skeletal muscle</td>
<td>1.04</td>
</tr>
<tr>
<td>MUSCLEST</td>
<td>Striated muscle</td>
<td>1.04</td>
</tr>
<tr>
<td>ADTISSUE</td>
<td>Adipose tissue</td>
<td>0.92</td>
</tr>
<tr>
<td>KAPTON</td>
<td>Kapton polyimide film</td>
<td>1.42</td>
</tr>
<tr>
<td>POLYETHY</td>
<td>Polyethylene</td>
<td>0.94</td>
</tr>
<tr>
<td>AIR</td>
<td>Dry air at NTP conditions</td>
<td>0.00120479</td>
</tr>
</tbody>
</table>
5.3 Physical units

Physical units consistently used in FLUKA input and output are:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>cm (and derived units cm², cm³ for areas and volumes)</td>
</tr>
<tr>
<td>energy</td>
<td>GeV</td>
</tr>
<tr>
<td>Exceptions:</td>
<td></td>
</tr>
<tr>
<td>eV</td>
<td>is used for average ionisation potential and for damage energy threshold input by option MAT–PROP</td>
</tr>
<tr>
<td>g MeV⁻¹ cm⁻²</td>
<td>is used for the first Birks coefficient input by option TCQUENCH, and</td>
</tr>
<tr>
<td>g²MeV⁻² cm⁻⁴</td>
<td>for the second coefficient.</td>
</tr>
<tr>
<td>momentum</td>
<td>GeV/c</td>
</tr>
<tr>
<td>temperature</td>
<td>degree Kelvin</td>
</tr>
<tr>
<td>solid angle</td>
<td>sr (exception: degrees may be used, on user’s request, with option USRYIELD)</td>
</tr>
<tr>
<td>magnetic field</td>
<td>T</td>
</tr>
<tr>
<td>electric field</td>
<td>kV/cm</td>
</tr>
<tr>
<td>time</td>
<td>s (option TCQUENCH) or ns (option TIME–CUT)</td>
</tr>
<tr>
<td>activity</td>
<td>Bq</td>
</tr>
<tr>
<td>LET</td>
<td>keV/(µm g/cm³)</td>
</tr>
<tr>
<td>dose equivalent</td>
<td>pSv</td>
</tr>
</tbody>
</table>
Chapter 6

General features of FLUKA input

The input of FLUKA consists of a text file containing a sequence of option lines (often called “cards”) which are followed sometimes by data cards specific of the option (or command) requested. Option cards have all the same structure, and can be read in fixed format or in free format. A description of free format is given in Chap. 7, options GLOBAL (p. 145). and FREE (p. 137).

\[
\text{CODEWD}, (\text{WHAT}(I), I = 1, 6), \text{SDUM}
\]

(the fixed format is \text{A8, 2X, 6E10.0, A8})

where:

- CODEWD is the option keyword
- The WHAT-parameters are numerical data (or logical data in numerical form)
- SDUM, if present, contains character data (only in two exceptional cases, the \text{STERNHEime} and \text{WW–FACTOr} options, SDUM contains numerical information)

Since 2006, a very practical and appealing feature has been introduced: \textbf{input by names}. This means that the numeric WHAT fields can be filled with pre-defined or user-defined names, such as:

- material names
- particle or generalised particle names
- region names, if the geometry too is written in \textit{name} format (see p. 140)
- estimator names
- detector/binning names

Names must be at most 8 character long with the exception of detector names (estimator options \text{USRBDX}, \text{USRTRACK}, \text{USRCOLL}, \text{USRBIN}, \text{USRYIELD}, \text{RESNUCLEi}) which can be 10 character long. Leading and trailing blanks are automatically stripped, and the input parser is case sensitive.

A special name (\text{@LASTMAT}, \text{@LASTPAR}, \text{@LASTREG}) can be used corresponding to the largest material number, particle id, and region number respectively.

Name values and numeric values can both be used in the same input file, since the program is able to distinguish a numeric field from a character field. For this reason, \textit{names that can be interpreted as numbers must be avoided}. This means that old numeric inputs need no modification. Fully-numeric interpretation, however, can be forced by means of the GLOBAL card (p. 145).

Due to the introduction of input by names, input data cards are no longer interpreted in the same order as in the input file, therefore the echo on standard output will look different from the original input.

When using numeric fields, note that even if the values to be assigned to WHAT-parameters were logically integers, because of the format used they must be given with a decimal point.

The order of the input cards is almost free, with the following exceptions:

- GLOBAL declarations, if present, must precede any executable option.
- Option DEFAULTS must be issued at the very beginning of input. It can be preceded only by a GLOBAL card and by command TITLE.
- The **START** command initiates execution. While old versions of Fluka were allowing multiple restarts, only the first **START** command is executed now. Thus any input given after **START** is ignored, with the exception of **USROCALL** and **STOP**.

- The **STOP** command stops the execution of the program. Thus any input present after **STOP** is ignored.

- Some option cards must or can be immediately followed by a variable amount of information, not always in the standard format indicated above. These are:

 OPEN is generally followed by the name of the file to be opened (scratch files are an exception). See p. 187.

 DETECT, **USR**BIN, **USR**BDX, **USR**COLL, **USR**TRACK, **USR**YIELD, **EVENT**BIN, **EVENT**DAT:
 data concerning user-defined detectors and binnings extend in general over two cards. The second card ("continuation card") must come after the first, but doesn’t need to follow it immediately. A continuation card may be needed also for option **GEOEND**, when used to invoke the geometry debugger.

 Input included between **GEOBEGIN** and **GEOEND**:
 geometry data must be given in a well-defined order and in a special format between a **GEOBEGIN** and a **GEOEND** definition (but the **LATTICE** and **VOXELS** geometry option, and the **GEOBEGIN** and **GEOEND** cards themselves follow the normal Fluka format convention).

 PLOTGEOM:
 Unless a different logical input unit is specified, the call to the **PLOTGEOM** program must be followed immediately by the **PLOTGEOM** input, in special format (see p. 215).

 TITLE:
 the card following the **TITLE** command is considered as the title of the run and is reproduced in the output (see p. 253).

 - for old, fully numeric input format only:
 - In some cases, the **MAT–PROP** option must be requested after the corresponding **MATERIAL** card.
 - The **PLOTGEOM** command must be issued after the geometry input, and, in case the user chooses to plot only boundaries between different materials, it must come also after all the **ASSIGNMAt** cards.
 It is also recommended that **PLOTGEOM** be issued before any biasing and any other option which makes use of permanent and/or temporary storage.

Most definitions have some default values. If these are acceptable, it is not compulsory that the corresponding option card appear explicitly in the input sequence. Furthermore for most **WHAT** and/or **SDUM** parameters a default value (that may be different from the default value when the definition has not been input) is applied if the corresponding field is left blank (or set = 0.0) in the input card.

Several option cards may appear more than once in the input sequence. In most cases, each of such additional cards obviously adds more definitions to those already given, provided they are different and not contradictory. In case of conflict, the last given generally overrides the previous one(s). This feature may be successfully exploited in the numerous cases where whole arrays are assigned according to the scheme

"From ... to ... in step of ..." (corresponding to a Fortran **DO**-loop)

making the input more compact. An example can be found in the description of option **ASSIGNMAt** (p. 68, Note 2), which is used to set a one-to-many correspondence between material numbers and region numbers.

In most cases of such "**DO**-loop" assignments, especially when the same option card can be used to assign a value to more than one quantity, a blank or zero field does not assign the default value but leaves the previously given value unchanged. To remove any possible ambiguity, resetting the default value needs then to be done explicitly (generally -1. has to be input in such cases).

"**DO**-loop" assignments can be used also when the input is name-based, since the program replaces each name by the corresponding numerical index. The correspondence can be found by examining the output
from a short test run: however, it must be remembered that adding a new material, or a new region, will change the numerical sequence unless the new item is issued as the last of material or region definitions. In this case, if the “DO-loop” indicates all materials, or all regions, using the generic names @LASTMAT and @LASTREG makes a modification of the assignment definition unnecessary.

All defaults and exceptions are listed under the description of each FLUKA input option. Different defaults, tuned to the type of application of interest, can be specified using the option DEFAULTS (p. 95).

6.1 The input preprocessor

FLUKA, since version 2005, comes bundled with an internal preprocessor, a simplified version of a C-like preprocessor. The preprocessor can modify the input file before it is executed with the use of conditions and can allow for parametric expressions to be used in the input cards. Presently the functionality is limited to 3 types of directives, definition, conditional and include. The preprocessor is a particularly useful way to include or remove blocks of input cards, allowing a more flexible and easy organisation of an input file, and to parameterize input parameters allowing for an easy an safe way of varying them just modifying a #define statement. One can write the input file around a few directives to allow easier debugging, changing thresholds, biasing and scoring cards for the final production.

6.1.1 Syntax

All preprocessor directives are single lines starting with the # character in the first column and can appear anywhere in the input file, either between normal input cards or inside the geometry definition (inline or externally defined). Each identifier can be up to 40 characters in length.

6.1.2 Definition of Constants

With the definition directives one can define identifiers to be used later for inclusion or removal parts of the input file, or for defining a numeric or character value to be used later in one or more of the input cards:

```
#define [identifier_name] [value]
```

defines [identifier_name] giving it a value [value]. [value] can be a numeric or character value and its definition can be up to 40 characters in length. This can be used in conjunction with another set of directives that allow conditional execution, or to assign the value [value] anywhere in the input cards, geometry included, by referencing to it as $[identifier_name].

Examples:

```
#define Ekbeam 100.0
#define Beampart PROTON
...
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
BEAM -$Ekbeam $Beampart
...
#define Zbeam -100.0
...
BEAMPOS 0.0 0.0 $Zbeam
...
#define Xbox +10.0
#define Ybox +20.0
#define Zbox +50.0
...
RPP TargBox -$Xbox $Xbox -$Ybox $Ybox -$Zbox $Zbox
...
#define Targmat IRON
...
ASSIGNMAt $Targmat 1.0 @LASTREG
...

The following names [identifier_name] are predefined (be careful they are case sensitive):

- Pipipi: \( \pi \) (3.1415...)
- Minute: minute (60 s)
- Hour: hour (3600 s)
- Day: day (86400 s)
- Week: week (604800 s)
- Month: month, 1/12 of a mean tropical year \((365.242374/12 \times \text{Day s})\)
- Year: mean tropical year \((365.242374 \times \text{Day s})\)

#undef [identifier_name]
deletes any previously defined [identifier_name].

6.1.3 Conditional directives

With the conditional directives one can include or remove parts of the input file before execution. The #if, #elif, #else blocks must be terminated with a closing #endif. There is a maximum of 10 nesting levels that can be used.

#if [identifier_name]
...
#elif [identifier_name]
...
#else
...
#endif

The #if and #elif (else-if) directive is followed by an identifier. If the identifier is defined then the statement evaluates to true, otherwise to false.

Example:

#define DEBUG
#define PLOT1
...
#if DEBUG
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
GEOEND 100.0 100.0 100.0 -100.0 -100.0 -100.0 DEBUG
GEOEND 50.0 50.0 50.0 &
#else
GEOEND
#endif

#if PLOT1
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
PLOTGEOM 1.0 -2000.0
MBWDL1
-100.0 0.0 -21620.0 100.0 0.0 -21250.0
1.0 0.0 0.0 0.0 0.0 1.0
-100.0 0.0 -21200.0 100.0 0.0 -20800.0
STOP
#endif
6.1.4 Include directive

The include directive switches the input stream from the original input file to a different file, and back to the original file after an end-of-file is met. It can be applied also to geometry input. Include directives can be nested at multiple levels.

```
#include [path/filename]
```

where “path” can be an absolute path, or a relative path (relative to the “launching” directory).

Example:
```
#include /home/geometries/target2.geom
#include frontplanes.geom
```

6.1.5 Parametric expressions

The parametric expressions allow to use symbolic algebra in the definition of input parameters. They are an extension of the definition directives 6.1.2 where instead of defining a numeric or character value, the user can define a complex arithmetical expression which can make use of various mathematical operators and functions and/or of previously defined values.

```
#define [identifier_name] [expression]
```

defines [identifier_name] giving it the value corresponding to the evaluation of the mathematical expression [expression]. The definition of [expression] can be up to 60 characters in length and cannot contain any blank character. [expression] can make use of previously defined [identifier_name]s, of the mathematical operators “+”, “-”, “*”, “/” and “^” (power), and of the following standard (fortran) mathematical functions (please note that they are case sensitive):

- Sin([argument])
- Cos([argument])
- Tan([argument])
- Exp([argument])
- Log([argument])
- Abs([argument])
- Sind([argument])
- Cosd([argument])
- Tand([argument])
- Asin([argument])
- Acos([argument])
- Atan([argument])
- Sqrt([argument])
- Sinh([argument])
- Cosh([argument])
- Asind([argument])
- Acosd([argument])
- Atand([argument])
- Asinh([argument])
- Acosh([argument])

The function argument [argument] must be enclosed in parentheses as shown above, and can be a simple numerical factor, or an [identifier_name], or another mathematical expression. The expression
[expression] can contain several levels of nested parentheses, and it is evaluated according to the rules of symbolic algebra.

The value eventually assigned to an [identifier_name] defined by means of an expression [expression] is echoed on the output file, and on a special copy of the input file ([input name]-echo.inp) which is automatically generated in the directory from where FLUKA has been launched and which contains only the active parts of the input.

Examples:

```plaintext
#define Pbeam 7000.0
#define Zbeam 1.0
...
*...+..1...+..2...+..3...+..4...+..5...+..6...+..7...+..8
BEAM $Pbeam PROTON
...
#define Km 100000.0
#define RadCurv 27.0*Km/2.0/Pipipi
...
#define RadInner RadCurv-100.0
#define RadOuter RadCurv+100.0
...
ZCC LHCinner 0.0 0.0 $RadInner
ZCC LHCouter 0.0 0.0 $RadOuter
...
#define MagnNumb 1000.0
#define MagChord 2.0*RadCurv*Sind(360.0/MagnNumb/2.0)
...
RCC Magnet 0.0 0.0 0.0 $MagChord 0.0 0.0 50.0
...
#define AvBField Pbeam/RadCurv/Zbeam/2.99792458E-03
...
*...+..1...+..2...+..3...+..4...+..5...+..6...+..7...+..8
MGNFIELD 30.0 0.1 0.75 0.0 0.0 $AvBField
...
```
Chapter 7

Description of FLUKA input options

There are more than 80 option keywords available for input in FLUKA. A summary is given in Section 7.1, where the commands will be shortly introduced and grouped by type of functionality. Some of the commands, which can provide several different services, will be mentioned in the context of more than one group.

A complete description of each command will follow in Sections 7.2 to 7.92, in alphabetical order.

7.1 Introduction to the Fluka input options

7.1.1 Summary of the available options

Here is a list of the options (commands) that are at the disposal of the FLUKA user to prepare an input file. In the rest of this section, the same commands will be presented by grouping them according to the different services they can provide.

- **ASSIGNMAt** defines the correspondence between region and material indices and defines regions where a magnetic field exists
- **AUXSCORE** allows to filter scoring detectors of given estimator type with auxiliary (generalized) particle distributions and dose equivalent conversion factors, and with isotope ranges
- **BEAM** defines most of the beam characteristics (energy, profile, divergence, particle type)
- **BEAMAXES** defines the axes used for a beam reference frame different from the geometry frame
- **BEAMPOS** defines the starting point of beam particles and the beam direction
- **BIASING** sets importance sampling (Russian Roulette/splitting) at boundary crossings and at high-energy hadronic collisions on a region by region basis
- **COMPOUND** defines a compound or a mixture or a mixture of isotopes
- **CORRFACT** allows to alter material density for dE/dx and nuclear processes on a region-by-region basis
- **DCYSCORE** associates selected scoring detectors of given estimator type with user-defined decay times
- **DCYTIMES** defines decay times for radioactive product scoring
- **DEFAULTS** sets FLUKA defaults for specified kinds of problems
- **DELTARAY** activates delta-ray production by heavy charged particles and controls energy loss and deposition
- **DETECT** scores energy deposition in coincidence or anti-coincidence with a trigger, on an event by event basis
- **DISCARD** defines the particles which must not be transported
- **ELCFIELD** sets the tracking conditions for transport in electric fields and possibly defines an homogeneous electric field *(not yet implemented)*
- **EMF** requests detailed transport of electrons, positrons and photons
- **EMF–BIAS** defines electron/photon leading particle biasing or biases electron/photon interaction length
- **EMFCUT** sets energy cutoffs for electrons, positrons and photons, for transport and production, or for switching off some physical interactions
- **EMFFIX** sets the size of electron steps corresponding to a fixed fraction loss of the total energy
- **EMFFLUO** activates production of fluorescence X rays in selected materials
- **EMFRAY** activates Rayleigh (coherent) scattering in selected regions
EVENTBIN scores energy or star densities in a binning structure independent from the geometry, and prints the binning output after each “event” (primary history)

EVENTDAT prints event by event the scored star production and/or energy deposition in each region, and the total energy balance

EXPTRANS requests exponential transformation (“path stretching”) \(\text{(not yet implemented)}\)

FLUKAFIX sets the size of the step of muons and charged hadrons to a fixed fraction loss of the kinetic energy

FREE switches to free-format input (geometry excluded)

GCR–SPE initialises Galactic Cosmic Ray calculations

GEOBEGIN starts the geometry description

GEOEND ends the geometry description; can also be used to activate the geometry debugger

GLOBAL issues global declarations about the class of the problem (analogue or weighted) and about the complexity of the geometry. It also allows to use free format input (geometry included)

HI–PROPE defines the properties of a heavy ion primary

IONFLUCT calculates ionisation energy losses with fluctuations

IRRPROFI defines an irradiation profile for radioactive decay calculations

LAM–BIAS biases decay length and interaction length

LOW–BIAS requests non-analogue absorption and defines the energy cutoff for low-energy neutron transport on a region by region basis

LOW–DOWN biases the downscattering probability in low-energy neutron transport on a region by region basis

LOW–MAT sets the correspondence between FLUKA materials and low energy neutron cross section data

LOW–NEUT requests low-energy neutron transport

MATERIAL defines a material and its properties

MAT–PROP supplies extra information about gaseous materials and materials with fictitious or inhomogeneous density and defines other material properties

MCSTHRES defines energy thresholds for applying the multiple Coulomb scattering algorithm to the transport of muons and charged hadrons

MGNFIELD sets the tracking conditions for transport in magnetic fields and possibly defines a homogeneous magnetic field

MULSOPT controls optimisation of multiple Coulomb scattering treatment. It can also request transport with single scattering

MUPHOTON controls photomuclear interactions of high-energy heavy charged particles (mediated by virtual photons)

OPEN defines input/output files without pre-connecting

OPT–PROP defines optical properties of materials

OPT–PROD controls Cherenkov and Transition Radiation photon production

PAIRBREM controls simulation of pair production and bremsstrahlung by high-energy heavy charged particles

PART–THR sets different energy cutoffs for selected particles

PHOTONUC activates photon and electron interactions with nuclei, and photomuon production

PHYSICS controls some physical processes for selected particles

PLOTGEOM calls the PLOTGEOM package to draw a slice of the geometry

POLARIZA defines polarised beams (only for photons at present)

RADDECAY requests simulation of radioactive decays and sets the corresponding biasing and transport conditions

RANDOMIZE sets the seeds and selects a sequence for the random number generator

RESNUCLEi scores residual nuclei after inelastic hadronic interactions

ROT–DEFIni defines rotations/translations to be applied to user-defined binnings
ROTPRBN sets the storage precision (single or double) and assigns possible rotations/translations for a given user-defined binning (USRBIN or EVENTBIN)

SCORE defines the energy deposited or the stars to be scored by region

SOURCE tells FLUKA to call a user-written source routine

SPECSCOUR calls special pre-defined source routines (synchrotron radiation photons, particles created by colliding beams or by cosmic ray sources, USRBin as source, multiple beam spots)

SPOTBEAM defines multiple beam spots in the corresponding special source case

SPOTDIR defines multiple beam spots in the corresponding special source case

SPOTPOS defines multiple beam spots in the corresponding special source case

START defines the number of primary particles to follow, gets a primary particle from a beam or from a source, starts the transport and repeats until the predetermined number of primaries is reached

STEPSIZE sets the maximum step size in cm (by region) for transport of charged particles

STERNHEIme allows users to input their own values of the density effect parameters

STOP stops input reading

TCQUENCH sets scoring time cutoffs and/or Birks quenching parameters

THRESHOLd defines the energy threshold for star density scoring, and sets thresholds for elastic and inelastic hadron reactions

TIME–CUT sets transport time cutoffs

TITLE gives the title of the run

USERDUMP requests a collision file and defines the events to be written

USERWEIGht defines extra weighting to be applied to scored yields, fluences, doses, residual nuclei or star densities (at scoring time)

USRBDX defines a detector for a boundary crossing fluence or current estimator

USRBIN scores energy, star density or particle fluence in a binning structure independent from the geometry

USRCall defines a detector for a collision fluence estimator

USRGCall calls user-dependent global initialisation

USRICall calls user-dependent initialisation

USROCall calls user-dependent output

USRTrack defines a detector for a track-length fluence estimator

USRyeld defines a detector for scoring particle yield around a given direction

WW–FACTOr defines weight windows in selected regions

WW–PROFIle defines energy group-dependent extra factors ("profiles") to modify the basic setting of the low-energy neutron weight windows in selected sets of regions, or the low-energy neutron importances in each region

WW–THRESh defines the energy limits for a RR/splitting weight window

### 7.1.2 Basic commands

Most FLUKA commands are optional, and if anyone of them is not used an appropriate set of defaults is provided. A few commands, however, are nearly always needed in order to provide a meaningful definition of the problem to be studied.

In general, for a problem to be fully determined, the following elements need to be defined:

1. the radiation source
2. the geometrical layout
3. the materials
4. the requested results
5. setting of parameters, accuracy, conditions, and in general technical directives to the program on how the calculation shall be performed
Defaults are provided in Fluka for all the above features, but those for items 1, 2 and 3 are unlikely to be useful: therefore the few commands used to define source, geometry and materials are practically always present in the input file.

For what concerns item 4, the user has a choice of several options to request the estimation of various radiometric quantities. Of course, there is no much point in running the program without requesting any result, but in a phase of input preparation it is quite common to have a few runs without any scoring commands. A typical minimum input containing only specifications for the above items 1, 2 and 3 will still produce some useful information. Looking at the standard Fluka output, the user can do several consistency checks, and can get some better insight into the problem from the final statistics and energy balance (see 9.1).

The last part of problem definition, element 5 (setting) is important but is supported by very robust defaults. In many cases, the only user concern should consist in choosing the right set of defaults. However, there are some applications which require explicit setting commands, for instance to request photonuclear reactions for electron accelerator shielding.

7.1.2.1 Definition of the radiation source

The simplest particle source is pointlike, monoenergetic and monodirectional, that is, a “particle beam”. Option BEAM, fully described on p. 73, is used to define the particle type and momentum (or energy). If desired, this option can also define an energy spread, a beam profile shape and an angular divergence. However, the two latter distributions are restricted to a beam directed in the positive z direction: to describe divergence and beam profile for an arbitrary beam direction it is necessary to define a beam reference frame by means of option BEAMAXES (p. 76).

The energy declared with BEAM is used by the program to initialise cross section tables and other energy-dependent arrays: therefore that command must always be present, even when a more complex source is described by means of a user routine.

The particle starting point and direction are declared by means of option BEAMPOS (see p. 78). If BEAMPOS is not present, the beam particles are assumed to start from the origin of the coordinates 0., 0., 0. and to be directed along the z axis. It is important that the starting point be not on a boundary and not inside a blackhole region. In many cases, starting in vacuum upstream of the actual target can be convenient.

BEAMPOS can be used also to define sources extended in space (spherical, cylindrical, etc.) Both BEAM and BEAMPOS commands can be placed anywhere in the input file, before the START command.

Some special particle sources can be defined with command SPECSOUR: synchrotron radiation photons, cosmic rays, particles produced by colliding beams.

Particle sources with more complicated features (with arbitrary distribution in energy, space, angle, time, and even with more than one type of particle) can be described by a user-written subroutine SOURCE (see 13.2.19). To call it, a command SOURCE (see p. 236) must be present in input.

7.1.2.2 Description of the geometry

The Combinatorial Geometry used by Fluka is based on two important concepts: bodies and regions. The first ones are closed solid bodies (spheres, parallelepipeds, etc.) or semi-infinite portions of space (half-spaces, infinite cylinders) delimited by surfaces of first or second degree. The user must combine bodies by boolean operations (addition, intersection and subtraction) to perform a complete partition of the space of interest into regions, namely cells of uniform material composition. One important rule to remember is that inside the space of interest, defined by means of an external closed body, every point must belong to one and only one region.

Input for the geometry description, which has its own format and rules, explained in Chap. 8, must
be contained between a \texttt{GEOBEGIN} and a \texttt{GEOEND} card. These two cards follow the normal \textsc{Fluka} input syntax. An option offered by the \texttt{GEOBEGIN} command (p. 140) is to read the geometry input from a separate file. Command \texttt{GEOEND} (p. 143) can be used also to invoke the geometry debugger, a check which is always strongly recommended.

Geometry input, sandwiched between a \texttt{GEOBEGIN} and a \texttt{GEOEND} card, can be placed anywhere in the input file (before the \texttt{START} command). It is mandatory in all cases.

An optional command related to geometry is \texttt{PLOTGEOM}. It is used to display sections of the geometry and needs to read its own input, as explained at p. 215.

### 7.1.2.3 The \textsc{Fluka} reference frame

The \textsc{Fluka} geometry, described in Chap. 8, and all particle space coordinates (position x, y, z, and corresponding direction cosines) are based on a right-handed Cartesian reference frame. The origin of the frame \((0, 0, 0)\) and the direction of the three perpendicular axes can be chosen arbitrarily by the user, but by default a particle beam and its space characteristics (angular divergence, transversal profile, polarisation) are referred to a beam direction coincident with the z-axis of the geometry frame of reference. A different beam direction can be specified by means of command \texttt{BEAMAXES}; see a description of the command (p. 76) and especially the corresponding Notes.

Also some scoring structures (binnings, see command \texttt{USRBIN}) are defined as meshes parallel to the reference axes, and in the case of cylindrical binnings the basic axis is again the z-axis. In a similar way, some geometrical bodies (planes, parallelepipeds, infinite cylinders) are described by their orientation with respect to the axes. But rototranslation transformations, defined by commands \texttt{ROT-DEFIni} (p. 228) and \texttt{ROTPRBIN} (p. 231), allow the user to input binnings and geometrical bodies with arbitrary orientation with respect to axes.

### 7.1.2.4 Materials

Materials in \textsc{Fluka} are identified by a name (an 8-character string) and by a number, or material index. Both are used to create correspondences, for instance between region number and material number, or between material name and neutron cross section name.

Some materials are already pre-defined. Table 5.3 on p. 47 lists the 25 available pre-defined materials with their default name, index number, density and atomic number and weight. The user can either refer to any one of them as it is, or override it with a new number, name and other properties, or define a new material. In the latter two cases, the new material definition is done by option \texttt{MATERIAL} (p. 169). If the material is not a single element or isotope, but a compound, mixture or alloy, a command \texttt{COMPOUND} (p. 86), extended on as many cards as necessary, is needed to specify its atomic composition. The correspondence between the material and the composition is set using the same name in the \texttt{MATERIAL} and in the \texttt{COMPOUND} cards. Note that material names, if low-energy neutron transport is desired, cannot be assigned arbitrarily but must match one of the names available in the \textsc{Fluka} cross section library (see Table 10.3 on p. 342).

Once all the materials to be assigned to the various geometry regions have been defined (either explicitly with \texttt{MATERIAL} or implicitly in the pre-defined list), it is necessary to specify of which material each region is made, by setting a correspondence \textit{material index \rightarrow region number}. This is done by command \texttt{ASSIGNMAt} (p. 68).

Command \texttt{ASSIGNMAt} is used also to indicate that a magnetic field exists inside one or more given regions: in this case a command \texttt{MGNFIELD} (p. 178) is needed to specify intensity and direction of a constant magnetic field, or a complex one defined by a user routine as explained below in 7.1.7. Note that in practice at least one \texttt{ASSIGNMAt} command must always be present.

A less common kind of correspondence is set by option \texttt{LOW–MAT} (p. 163). By default, the correspondence between a material and a low-energy neutron cross section set is established by name, but in some circumstances this cannot be done, for instance when two different materials share the same cross section set, or when two cross section sets have the same name. Option \texttt{LOW–MAT} can be used to set a different
correspondence.

Another FLUKA option concerning the definition of materials is MAT–PROP (p. 171). It is used for a variety of purposes: to describe porous, inhomogeneous or gas materials, to override the default average ionisation potential, to set a threshold energy for DPA calculations and to request a call to a special user routine when particles are transported in a given material.

7.1.3 Setting options

Many FLUKA input options are not used to describe the radiation transport problem but to issue directives to the program about how to do the calculations. Other options are used just to select a preferred input format. We refer to these options as “setting options”.

Thanks to a complete and well-tuned set of defaults, setting options are not always necessary, especially for a beginner or in a preliminary phase of input preparation. However, an experienced user can often improve considerably the code performance by a judicious selection of parameters.

7.1.3.1 Format setting

The default, fixed input format can be replaced by a free format using option FREE (p. 137) or better GLOBAL (p. 145). The latter allows to choose free format for both the normal input and the geometry input separately, and serves also a few other purposes: it can be used to increase the maximum allowed number of geometry regions, and to force a calculation to be fully analogue (i.e., simulating physical reality as directly as possible, without any biasing to accelerate statistical convergence). A more esoteric capability of GLOBAL, used mainly for debugging, is to ensure that the random number sequence be exactly reproduced even in cases where the geometry tracking algorithm has the possibility to follow different logical paths to achieve the same result.

7.1.3.2 General setting options

The difficult task of choosing the best settings for a calculation problem is made much easier by the existence of several “pre-packaged” sets of defaults, each of which is optimised for a particular type of application. Each set is chosen by option DEFAULTS, which has to be placed at the beginning of the input file, possibly preceded only by TITLE or GLOBAL. Several possibilities include hadrotherapy, calorimetry, pure electromagnetic runs without photonuclear reactions, low-energy neutron runs without gamma production, and others (see p. 95). One set of defaults is tuned for maximum precision (but not necessarily great time efficiency). Reasonable defaults, acceptable for most generic routine calculations, are provided in case DEFAULTS is missing. In most cases, the user has the possibility to use some of the other setting options described below, to override one or more of the defaults provided by the chosen set.

In any case, it is important to check the list of defaults to make sure that nothing important is missing or has been overlooked. For instance, photonuclear reactions, which are critical for electron accelerator shielding, are not provided by any of the available default sets and must be added by the user by means of the PHOTONUC command.

Another setting option, DISCARD, is used to indicate particles which shall not be transported. The energy of those particles is not deposited anywhere but is added up in an accumulator which is printed at the end of the FLUKA standard output. Of course it is the user’s responsibility to see that the discarded particles and their progeny would not give a significant contribution to the requested results.

7.1.3.3 Multiple Coulomb scattering

The concept of multiple scattering is an approximation to physical reality (condensed history approximation [26]), where charged particles undergo a very large number of single collisions with the atomic electrons, too many to be simulated in detail except in very special cases. All the theoretical treatments which have been developed are valid only within certain limits, and none of them gives rules on how to handle material boundaries and magnetic fields. FLUKA uses an original approach [81], based on Molière’s theory [30, 136–138], which gives very good results for all charged particles in all circumstances (even in backscattering problems [75]), preserving various angular and space correlations and freeing the user from the need to control
Although the default treatment is always more than satisfactory, the user has the possibility to request various kinds of optimisation, for both electrons/positrons and heavy charged particles. This can be done by means of option MULSOPT (p. 180), which offers also the possibility to switch off completely multiple scattering in selected materials. The latter is a technique used when simulating particle interactions in gases of very low density such as are contained in accelerator vacuum chambers (gas bremsstrahlung): the simulation is done for a gas of much larger density and the results are scaled to the actual low density: but scaling is meaningful only if no scattering takes place.

Another very important feature of option MULSOPT is single scattering, which can be requested in various degrees at boundary crossing, when the limits of Molière’s theory are not satisfied, and even all the time (but the latter possibility is to be used only for problems of very low energy, because it is very demanding in CPU time).

There is also another option connected with multiple scattering, which however concerns only heavy charged particles such as hadrons and muons: MCSTHRESh (p. 176) allows to set a threshold below which multiple Coulomb scattering is not performed. However, the CPU time saved is minimal and the option is not frequently used.

7.1.3.4 Step length

Another aspect of the condensed history approximation is that charged particle transport is performed in steps. The finite fraction of the particle energy which is lost and deposited in matter in each step is an approximation for the sum of innumerable tiny amounts of energy lost by the particle in elastic and inelastic collisions.

In early Monte Carlo programs results could depend critically on the size of the step, mainly due to the inaccurate determination of the path length correction (ratio between the length of the actual wiggling path of the particle and that of the straight step connecting the two endpoints). For a more complete discussion, see [6,75]. The multiple scattering algorithm used by FLUKA [81] provides a robust independence of the results from the step size, but for problems where a special accuracy is requested, or when magnetic fields are present, it is possible for the user to override the default step length. Two options control the maximum fractional energy loss per step: EMFFIX for electrons and positrons (p. 121), and FLUKAFIX for muons and charged hadrons (p. 136). The second one is seldom used, however, except in problems of very large dimensions typical of cosmic ray research. Option STEPSIZE (p. 245) is used instead to limit the absolute length of the step, independent of the energy lost. Contrary to EMFFIX and FLUKAFIX, it works also in vacuum. While its use is highly recommended in problems with magnetic fields, to ensure that steps be smaller than the dimensions of the current region and of those that border it, when no magnetic fields are present this option should better be avoided, as it would imply no obvious advantage and could even downgrade performance.

7.1.3.5 Energy cutoffs

Setting energy cutoffs, for both transport and production, is an important responsibility of the user, who is interested in choosing the best compromise between accuracy and time efficiency. Each of the parameter sets available via option DEFAULTS, including the basic defaults set which exists when that option has not been explicitly requested, offers a well-optimised choice for the corresponding class of applications, with only one exception. But even so, it is often convenient to override some of the default cutoffs in order to improve performance. The exception concerns the default particle production cutoffs for electrons, positrons and photons, which are dependent on other settings (see EMFCUT below).

Transport cutoffs, or thresholds, are set with command PART–THRes (p. 202) for hadrons and muons, with EMFCUT (p. 116) for electrons, positrons and photons, and with LOW–BIAS (p. 159) for low-energy neutrons. Despite the similar functionality of the three commands, there are important differences in their syntax and in the way the threshold is implemented for the three families of particles. PART–THRes can assign different transport thresholds to different particles, but the thresholds are the same in all materials and regions. When the hadron or muon energy becomes lower than the relevant threshold, the particle is not
stopped but ranged out in a simplified way. Because the electron and photon cutoffs are more critical with respect to calculation accuracy, EMFCUT can assign transport thresholds on a region basis: on the other hand no ranging out is performed, due to the difficulty to clearly define electron ranges. For low-energy neutrons, the transport threshold is set by LOW–BIAS also on a region basis, but as a group number rather than an energy.

Two input commands can set particle production cutoffs, respectively for heavy particles and for electrons, positrons and photons. Thresholds for delta-ray production by charged hadrons and muons are assigned, on a material basis, by means of option DELTARAY (p. 101). Energy transfers to electrons lower than the threshold are handled in the continuous slowing down approximation. Production of bremsstrahlung by electrons and of Möller/Bhabha secondary electrons is simulated explicitly above thresholds set on a material basis with option EMFCUT (p. 116). Defaults for electron and photon production cutoffs are dependent on other settings in a complex way. Therefore it is recommended to check the values printed on standard output, or to set EMFCUT production cutoffs explicitly for each material. Note also that the same EMFCUT command is used to set both transport and production cutoffs: but the setting is done by region in the first case and by material in the second.

To complete the list of commands used for cutoff setting, we will mention THRESHOLd (p. 251), which is used to set an energy threshold for star scoring. In principle, a “star” is any high energy inelastic hadron interaction (spallation) and star density has always been one the quantities which can be scored by FLUKA. Since a popular technique to estimate induced radioactivity was based originally on the density of stars produced by hadrons with energies higher than 50 MeV, the possibility to set a scoring energy limit is provided.

7.1.3.6 Time cutoffs

For time-dependent calculations, two time cutoff options are available: one for particle transport, TIME–CUT, and one for scoring, TCQUENCH. While option TIME–CUT (p. 252) sets a particle-dependent time limit after which the corresponding particle history is terminated, the limits set by TCQUENCH (p. 249) are assigned to selected binnings. Scoring contributions to a binning by particles having exceeded the corresponding time limit are ignored, but particle transport continues, possibly contributing to other detector scores.

7.1.3.7 Ionisation energy loss

Transport of charged particles can be done in many ways: without delta ray production and ionisation fluctuations (continuous slowing down approximation), with ionisation fluctuations and no delta rays, with delta ray production above a chosen energy threshold and no ionisation fluctuations below the threshold, and with both: delta rays above the threshold and ionisation fluctuations below it. Depending on the application type chosen with option DEFAULTS, different defaults and thresholds apply, which can be modified by the user by means of options IONFLUCT, DELTARAY and EMFCUT. Option IONFLUCT (p. 149) is used to request (restricted) ionisation fluctuations on a material basis. In FLUKA, these fluctuations are not simulated according to Landau or Vavilov theory but according to an original statistical approach [73]. They can be requested separately for electrons and positrons and for muons and charged hadrons. Delta ray production thresholds are instead set for the two particle families by two separate options, which have already been mentioned above in the context of production cutoffs (7.1.3.5): EMFCUT (p. 116) and DELTARAY (p. 101). DELTARAY can be used also to define (and print) the mesh width of the stopping power tabulations used by the program.

The user has also the possibility to change the default parameters used in the calculation of stopping power. Command STERNHEIme (7.73) allows to change the density effect parameters, and MAT–PROP (p. 171) can set, in addition to several other material properties, a user-defined average ionisation potential.

7.1.4 Special radiation components and effects

In FLUKA, an effort has been made to implement a full cross-talk between different radiation components (hadronic, muonic, electromagnetic, low-energy neutrons, heavy ions, optical photons). However, some components are not activated by default, and others are only activated in some of the available default
settings. Input options are provided to switch them on and off.

In a similar way, some physical effects may need to be activated, overriding the chosen defaults. On the other hand, in some cases it can be of interest (but possibly dangerous!) to ignore some effects. A number of commands are available for these purposes.

### 7.1.4.1 Radiation components

High-energy hadrons and muons are always generated and transported, except with defaults settings EM–CASC (p. 96) and NEUTRONS (p. 97) (however, they cannot be requested overriding these two defaults). To suppress them, one can use command DISCARD (p. 107).

Option EMF (ElectroMagnetic Fluka (p. 110) can be used to request electron, positron and photon transport, and also to ask for its suppression (the latter could be obtained also by discarding electrons, positrons and photons by means of DISCARD).

Low-energy neutron transport (if not already on by default) can be activated with option LOW–NEUT. Explicit suppression is not possible: but the same effect can be obtained using option LOW–BIAS to set a cutoff at energy group 1.

Heavy ion transport (only ionisation energy loss, without nuclear interactions) is implicit with some default settings, while with others it is not available. Details can be found in the description of command IONTRANS (p. 152). The same command can be used also to request heavy ion interactions using different event generators: in this case the corresponding libraries must be linked.

A special option, HI–PROPErt (p. 148), is necessary to define the properties of a heavy ion primary, since the particle type input via the BEAM command can only be a generic heavy ion.

Generation and transport of optical photons is available only on explicit user request. Activation (and deactivation) are requested via OPT–PROD (for Cherenkov, transition radiation or scintillation photon production) and OPT–PROP (transport). See respectively p. 189 and p. 193.

### 7.1.4.2 Physics effects

Some physical effects are automatically activated, but only when certain default sets are in force (see option DEFAULTS on p. 95 and Table 7.1 on p. 100), and can be switched on or off with appropriate commands. The command to simulate fluorescence is EMFFLUO (p. 123), that for Rayleigh scattering and Compton binding corrections and Doppler broadening is EMFRAY (p. 125), while for multiple scattering there are MULSOPT and MCSTHRESh which we have already introduced in 7.1.3.3. High-energy effects such as production of bremsstrahlung and electron pairs by heavy charged particles (in particular muons) are regulated by option PAIRBREM (p. 200).

A few physical effects need to be requested explicitly, whatever the defaults. These are photon polarisation (command POLARIZAti, p. 218), polarisation of pion, kaon and muon decays (command PHYSICS, p. 208), photomuclear reactions (PHOTONUC, p. 204) and muon hadronic interactions via virtual photons (MUPHOTON, p. 184).

In some cases, it is also possible to switch off some important effects to study the relative importance of different processes. Command THRESHOLd allows to set a lower energy limit for hadron elastic scattering and inelastic reactions, and EMFCUT does the same with various kinds of electron and photon interactions. The user must bear in mind, however, that results obtained suppressing effects which are critical for the development of the electromagnetic or hadronic cascade are unlikely to be physically correct.

### 7.1.5 Scoring options

Any result in a Monte Carlo calculation is obtained by adding up the contributions to the “score”, or “tally” of a detector defined by the user. A detector is the Monte Carlo equivalent of a measurement instrument. Each “estimator” (detector type) is designed to estimate one or more radiometric quantities, and the final score is a statistical estimation of the average value of the corresponding population. As in experimental
measurements, it is possible to calculate a standard deviation by running several independent calculations.

No default detector is available: each scoring option must be explicitly requested. There are different input options corresponding to different types of detector. The simplest is SCORE which provides energy deposition (proportional to dose) or star density in every region of the geometry. “Stars” is an old name for inelastic hadron reactions which derives from early experiments with nuclear emulsions.

The same quantities can be scored in a uniform spatial mesh independent of geometry, called a “binning”, by means of option USRBIN (p. 263). There are several types of binnings: Cartesian, 2D-cylindrical, 3D-cylindrical and even more complex phase space structures. In addition to dose and star density, it is possible to use USRBIN to score particle fluence distributions in space. USRBIN results are often displayed as colour plots where each colour corresponds to a pre-defined range of values. A post-processing program for this purposes (PAWLEVIN) is available in the directory $FLUPRO/flutil, and a GUI interface can be downloaded from the FLUKA website www.fluka.org.

Fluence, averaged over the volume of a given geometry region, can be calculated with options USRTRACK (p. 277) and — less often — USRCOLL (p. 271). The first is a “track-length estimator” (it estimates fluence as volume density of particle trajectory lengths), and the second is a “collision estimator” (fluence is estimated as volume density of collisions weighted with the particle mean free path). Of course, USRCOLL can be used only in a region of matter, while USRTRACK works also in vacuum. Both options provide fluence differential energy spectra.

Another common scoring option is USRBDX (p. 260), which also calculates fluence, but averaged over the boundary between two geometry regions. It is a “boundary crossing estimator”, which estimates fluence as the surface density of crossing particles weighted with the secant of the angle between trajectory and normal to the boundary at the crossing point. Option USRBDX can also calculate current, i.e., a simple counter of crossings, not weighted by inverse cosine: but despite a widespread credence, current is only seldom a quantity worth calculating. The results of USRBDX can account on request for particles crossing the boundary from either side or from one side only, and are in the form of double-differential energy and angular spectra. The angle considered is again that with the normal to the boundary at the crossing point.

USRYIELD is a multi-purpose estimator option, which can estimate several different double-differential quantities. The main one is an energy-angle double-differential yield of particles escaping from a target, the angle in this case being with respect to a fixed direction. Energy and angle can be replaced by many other variables which are mostly of the same kind, such as momentum and rapidity. But it is possible also to score yields as a function of charge and LET (Linear Energy Transfer).

Production of residual nuclei can be obtained with command RESNUCLEi. The results, which are closely related to induced activity and dose rate from activated components, may include nuclei produced in low-energy neutron interactions, provided the corresponding information is available in the neutron cross section library for the materials of interest (see Table 10.3 in Section 10.4).

### 7.1.5.1 Event by event scoring options

Typical particle physics applications, in particular calorimetry, require separate scoring event by event (that is, results are printed after each primary particle history). Two commands, EVENTBIN (p. 127) and EVENTDAT (p. 129), are respectively the event-equivalent of USRBIN and SCORE which have been introduced before. A third command, DETECT (p. 104), allows to score event by event energy deposition simulating a detector trigger, defining coincidences and anti-coincidences. All these options are incompatible with any biasing. It is suggested to use command GLOBAL (p. 145) to make sure that the run will be completely analogue.

### 7.1.5.2 Scoring modifying options

There are a few commands which are used to modify some of the scoring options already described. TCQUENCH (p. 249), which has already been shown to define a time cutoff, can be used also to apply a quenching factor (Birks factor) to energy deposition scored with USRBIN or EVENTBIN. ROT–DEFI (p. 228) and ROTPRBIN (p. 231) allow to define roto-translation transformations for binnings not aligned with the
coordinate axes. ROTPRBIN can be used also to set the binning storage precision: a space saving feature, which is useful mainly when scoring event by event with EVENTBIN.

### 7.1.5.3 Options to handle radioactive decay

It is possible to transport and score in the same run also the beta and gamma radiation emitted in the decay of radioactive nuclei produced in the hadronic or electromagnetic cascade. Several options are available for this purpose: RADDECAY (p. 221) is used to request the simulation of radioactive decays, IRRPROFILE (p. 153) defines a time profile for the intensity of the primary particles, DCYTIMES (p. 93) requests one or more decay times at which the desired scoring shall occur, and DCYSOURCE (p. 91) associates selected scoring detectors to the decay times so requested.

### 7.1.6 Biasing options

When run in fully analogue mode, Fluka allows the user to study fluctuations and correlations, and to set up a direct simulation of physical reality where all moments of phase space distributions are faithfully reproduced. On the other hand, in the many applications where only quantities averaged over many events are of interest, it is convenient to use calculation techniques converging to the correct expectation values but reducing the variance (or the CPU time, or both) by sampling from biased distributions. This is especially useful in deep penetration calculations, or when the results of interest are driven by rare physical interactions or cover a small domain of phase space.

Fluka makes available several biasing options. Some are easy to use, but others require experience and judgment, and often a few preliminary preparation runs are needed to optimise the biasing parameters.

#### 7.1.6.1 Simple biasing options

The easiest biasing command is fittingly called BIASING (p. 82). It provides two different kinds of variance reduction: Multiplicity Reduction and Importance Biasing, which is based on the two complementary techniques Geometry Splitting and Russian Roulette (RR).

Splitting and Russian Roulette are two classical variance reduction techniques, which are described in most textbooks on Monte Carlo [48,122]. A detailed description of how they are implemented in Fluka is available on p. 83. Importance biasing consists in assigning an importance value to each geometry region. The number of particles moving from a region to another will increase (by splitting) or decrease (via RR) according to the ratio of importances, and the particle statistical weight will be modified inversely so that the total weight will remain unchanged. In this way, the user can strive to keep the particle population constant, making up for attenuation, or to make it decrease in regions far from the detectors where there is a lower probability to contribute to the score. In Fluka, importance biasing can be done separately for hadrons/muons, electrons/positrons/photons and low-energy neutrons.

Multiplicity Reduction is a simple technique which was introduced for the first time in Fluka (now it has been adopted also by other programs), in order to decrease the computer time needed to simulate a very high energy hadron cascade. At energies of several hundred GeV and more, the number of secondaries produced in a hadron-nucleus interaction is very large and the total number can increase geometrically in the following interactions, requiring an unacceptably long computer time. Since many secondaries are particles of the same kind and with a similar angular and energy distribution, the user can decide to follow only a region-dependent fraction of them.

A biasing option performing a similar multiplicity reduction on electromagnetic showers is EMF–BIAS (7.18). In this case the technique is known as Leading Particle Biasing and consists in sampling only one of the two secondary particles which are present in the final state of most electromagnetic interactions. The secondary of higher energy is sampled with higher probability. The EMF–BIAS option can be tuned per region below user-defined energy thresholds and is used very often in shielding calculations for high-energy electron accelerators. The same command can be used also to bias the electron and photon mean free path for various types of interaction, e.g., to enhance the probability of interaction in a thin or low-density target.

In a similar way, option LAM–BIAS can be used to increase the probability of hadronic interactions,
and in particular photoproduction reactions. These are the dominant reactions for high-energy electron accelerator induced activity and shielding design, but because their cross section is small compared to that of electromagnetic effects, analogue sampling would be very inefficient. The same command can help to get a higher probability of hadron interaction in a thin target. It can also be used to bias a particle decay length (for instance, to enhance muon or neutrino production) and the emission angle of the decay secondaries in a direction indicated by the user.

### 7.1.6.2 Weight window options

The weight window is a very powerful biasing technique, not based on relative importances, but on the absolute value of particle weight. The user sets an upper and a lower limit for the particle weight in each geometry region, possibly tuned per type of particle and energy. Splitting and RR will be applied so that the weight of all relevant particles will have a value between the two limits. In addition to controlling the particle population, this technique helps also to “damp” excessive weight fluctuations due to other biasing options.

Its use is not as easy as that of importance biasing, because it is necessary to have at least a rough idea of what are the average weights in different regions. Special splitting and RR counters can be printed on request to help setting the window parameters, setting $\text{SDUM} = \text{PRINT}$ in command BIASING (p. 82). An explanation about the meaning of the counters can be found on p. 326. Weight window setting is done in FLUKA by three input commands: WW–FACTOr (p. 286), WW–THRESSh (p. 291) and WW–PROFIle (p. 289). The first two commands must be used together: WW–FACTOr sets the upper and lower weight limits per region, while WW–THRESSh defines energy limits within which the weight window must be applied, and the particles to which it is to be applied. The third option is reserved to low-energy neutrons, whose transport characteristics often require a more detailed biasing pattern: WW–PROFIle allows indeed to tune the weight window by neutron energy group.

### 7.1.6.3 Biasing options for low-energy neutrons

The special multigroup transport structure used by FLUKA for low-energy neutrons calls for some biasing options specific to these particles. We have just introduced the weight window command WW–PROFIle. Two more options are LOW–BIAS (p. 159), which has already been mentioned before in the context of energy cutoffs, but which is used also to set a user-defined non-analogue absorption probability, and LOW–DOWN (p. 161), by which it is possible to bias neutron thermalisation (downscattering). The latter, however, is an option recommended only to users with a good knowledge and experience of neutronics.

### 7.1.7 Calls to user routines

The purpose of several FLUKA input options is to trigger calls to user routines (user routines are described in Chap. 13). One of the most important ones is SOURCE (p. 236), which makes FLUKA get the characteristics of its primary particles from subroutine SOURCE instead of from options BEAM and BEAMPOS. This option allows to pass to the subroutine several parameters, thus allowing to drive it from input without the need to re-compile it. Note that even when using a user-written source, it is still necessary to have in input a BEAM card indicating the maximum expected energy of a primary particle, so that the program can prepare appropriate cross section tables. If command SOURCE is present, but no SOURCE routine has been linked, the default one in the FLUKA library will be called, which leaves unchanged the particle type, energy, position etc. as defined by BEAM and BEAMPOS.

Command USERWEIGht (p. 258) can call 5 different user routines used to modify a scored quantity (at the time of scoring). The routines are:

- **FLUSCW** is a function returning a multiplication factor for fluences (13.2.6). A typical application is to convert a fluence to dose equivalent.
- **COMSCW** is a function returning a multiplication factor for star densities and doses (13.2.2). Common application: converting energy deposition to dose.
- **USRRNC** is a subroutine providing a hook for user controlled scoring of residual nuclei (13.2.30).
- **ENDSCP** is a subroutine performing a displacement of the energy deposited in a particle step, for instance
to account for an instrument drift (13.2.4).

- FLDSCP is a subroutine performing a displacement (drift) of the track corresponding to a particle step (13.2.5).

Complex magnetic fields can be defined or read from a map by a user routine MAGFLD (13.2.11. Calls to the routine are activated by command MGNFIELD (p. 178).

A collision file (also called a collision tape, or a phase space file) is a file on which FLUKA writes on request details of user-selected events: particle trajectories, energy deposition events, source particles, boundary crossings, physical interactions, etc. This task is performed by subroutine MGDRAW (13.2.13, which is called if option USERDUMP is requested in input (p. 255). The default routine present in the FLUKA library can be driven as it is, without re-compilation, by setting some of the USERDUMP parameters, but can also be modified and re-compiled to adjust to specific needs of the user. A typical simple task is to draw particles trajectories. Another frequent application of USERDUMP is to perform a calculation in two steps, where the second step uses the collision file as a source. In principle it is also possible to use subroutine MGDRAW for scoring, for instance by interfacing it to some histogramming package, as it is customary in some other Monte Carlo programs. However, in general this is discouraged in FLUKA, unless the desired quantity cannot be scored via the standard FLUKA input commands, which is very rare. The FLUKA scoring options are indeed highly optimised and well checked against possible errors and artefacts. It is very unlikely that a user might be able to achieve in a short time the same level of reliability. In any case, user-written scoring via MGDRAW must be avoided in all runs where biasing is present, because to handle correctly the particle weights requires other FLUKA tools which are not available to the normal user.

Three more input options activating calls to user routines are USRICAL (p. 275), USROCALL (p. 276) and USRGCALL (p. 274). The first two allow the user to issue a call respectively to an initialisation routine USRINI (13.2.27) and to an output routine USROUT (13.2.29). The third one activates a call to routine USRGLO (13.2.26), which performs a global initialisation before any other made by FLUKA.

### 7.1.8 Miscellaneous

Command RANDOMIZE starts a new independent random number sequence. It can be omitted only in a first run, but it is compulsory if a sequence of independent runs is desired in order to calculate statistical errors. This command can also be used to start different, independent random number sequences, allowing to run several identical jobs in parallel.

Command STOP, inserted at any point in the input file, interrupts the reading. Any further input card is ignored. It may be made to follow a PLOTGEOM command and the corresponding input, so that the PLOTGEOM program is executed, but no FLUKA simulation is started.

Finally, command START is always needed to give the program the signal to begin the calculation. The command includes the number of primary histories to be simulated. A STOP command may follow, but it is not necessary since it is assumed to be present by default.
7.2 ASSIGNMAAt

Defines the correspondence between region indices (or names) and material indices (or names). It defines also regions with magnetic and/or electric field. There is the possibility of selectively changing region material to vacuum/blackhole (and/or switching on/off possible fields) when transporting radioactive decay products. Radioactive decay products originating from regions switched to vacuum/blackhole are ignored. This is helpful for situations where the emissions of an activated object in a complex environment have to be evaluated standalone.

See also MATERIAL, MGNFIELD

WHAT(1) = material index, or material name
\leq 0.0: \text{ resets the default}
Default = 1.0 (blackhole)

WHAT(2) = lower bound (or name corresponding to it) of the region indices with material index equal or name corresponding to WHAT(1)
(“From region WHAT(2) . . .”)
Default = 2.0

WHAT(3) = upper bound (or name corresponding to it) of the region indices with material index equal or name corresponding to WHAT(1)
(“. . . to region WHAT(3) . . .”)
Default = WHAT(2)

WHAT(4) = step length in assigning indices
(“. . . in steps of WHAT(4)”)
Default = 1.0

WHAT(5) = 1.0: a magnetic field is present (no electric field) in the region(s) defined by WHAT(2), (3), and (4), for both prompt and radioactive decay products
= 2.0: an electric field is present (no magnetic field) in the region(s) defined by WHAT(2), (3), and (4), for both prompt and radioactive decay products
= 3.0: both an electric field and a magnetic field are present in the region(s) defined by WHAT(2), (3), and (4), for both prompt and radioactive decay products
= 4.0: a magnetic field is present (no electric field) in the region(s) defined by WHAT(2), (3), and (4), for prompt products only
= 5.0: an electric field is present (no magnetic field) in the region(s) defined by WHAT(2), (3), and (4), for prompt products only
= 6.0: both an electric field and a magnetic field are present in the region(s) defined by WHAT(2), (3), and (4), for prompt products only
= 7.0: a magnetic field is present (no electric field) in the region(s) defined by WHAT(2), (3), and (4), for radioactive decay products only
= 8.0: an electric field is present (no magnetic field) in the region(s) defined by WHAT(2), (3), and (4), for radioactive decay products only
= 9.0: both an electric field and a magnetic field are present in the region(s) defined by WHAT(2), (3), and (4), for radioactive decay products only
= 0.0: ignored
< 0.0: resets the default (no field) in the region(s) defined by WHAT(2), (3), and (4)
Default = 0.0 (ignored)

WHAT(6) = material index, or material name, for a possible alternate material for radioactive decay product transport. Only vacuum and blackhole (external vacuum) are allowed. (See Note 5 below).
Input Commands

Default = 0.0 : same material as for prompt products (see WHAT(1))

SDUM: not used

Default : (option ASSIGNMA not requested): not allowed! Each region must be explicitly assigned a material, or vacuum or blackhole (see Note 3).
   No magnetic and no electric field is the default for all regions.

Notes

1. Several ASSIGNMA definitions are generally necessary to assign a material to all regions. Standard material names and their numbers are listed in Table 5.3 (p. 47. They may be redefined and others may be added (see Note 5 to command MATERIAL, p. 169).

2. Overlapping region indices can be given in several ASSIGNMA definitions, each definition overriding the earlier ones. This makes the assigning of materials very convenient (see Example below).
   The same can be done even if region names are used instead of indices: the region numbers correspond to the order in which they appear in the geometry input. Anyway, the name-index correspondence can be found on standard output after a short test run.

3. Option ASSIGNMA must always be present. If a region has not been assigned a material, the program stops at initialisation time. Notice that this was different in previous versions of FLUKA, where blackhole was assigned by default.

4. Magnetic field tracking is performed only in regions defined as magnetic field regions by WHAT(5) = 1.0, 3.0, 4.0, 6.0, 7.0, 9.0. It is strongly recommended to define as such only regions where a magnetic field actually exists, due to the less efficient and less accurate tracking algorithm used in magnetic fields. To define a region as one with magnetic field and to return systematically B = 0.0 in that region via the user subroutine MAGFLD (p. 373) must be absolutely avoided (see MGNFIELD, p. 178).

5. There is the possibility of selectively changing regions to vacuum/blackhole (and/or switching on/off possible fields) when transporting radioactive decay products. Radioactive decay products originating from regions switched to vacuum/blackhole are ignored. This is helpful for situations where the emissions of an activated object in a complex environment have to be evaluated standalone.

Example (for an input number-based):

*...*1...*2...*3...*4...*5...*6...*7...*
MATERIAL 13.0 0.0 2.7 10.0 0.0 0.0 ALUMINUM
ASSIGNMA 10.0 1.0 15.0 0.0 1.0 0.0
ASSIGNMA 2.0 5.0 17.0 6.0 -1.0 0.0
ASSIGNMA 2.0 16.0 18.0 2.0 0.0 0.0
*   The above definitions mean that all regions from 1 to 15 are
*   aluminium with a magnetic field, except regions 5 and 11 which are
*   vacuum without any magnetic field. Regions 16, 17 and 18 are also
*   vacuum without field.
*   Note that in the above example material 10 has been defined
*   overriding the pre-defined FLUKA aluminium material, but keeping
*   the same material number.

The corresponding name-based input cards could be (using arbitrary names):

ASSIGNMA ALUMINUM FirstReg Reg15 0.0 1.0 0.0
ASSIGNMA VACUUM FifthReg Reg17 6.0 -1.0 0.0
ASSIGNMA VACUUM Reg16 Reg18 2.0 0.0 0.0
7.3 AUXSCORE

allows to associate scoring detectors of given estimator types with dose equivalent conversion factors and to filter scoring estimators according to auxiliary (generalised) particle distributions or ion isotopic ranges.

See also EVENTBIN, USRBDX, USRBIN, USRTRACK, USRCOLL, USRYIELD

WHAT(1) = binning / estimator type to associate the card with
   = 1.0: USRBDX
   = 2.0: USRBIN, EVENTBIN (only for binning of quantities scored along a step, see Note 6)
   = 3.0: USRTRACK
   = 4.0: USRCOLL
   = 5.0: USRYIELD
   Default = 2.0: USRBIN, EVENTBIN

WHAT(2) = particle (or particle family) to be considered as a filter for the associated scoring card
   >-100: particle or particle family code
   ≤-100: Isotope coding (to filter ions). To select atomic number $Z$, mass number $A$ and isomeric state $M$:
   $\text{WHAT}(2) = -(Z \times 100 + A \times 100000 + M \times 100000000)$.
   $Z = 0$ means all atomic numbers for the given $A$
   $A = 0$ includes all mass numbers for a given $Z$
   $M = 0$ includes all ground and isomeric states.
   To select only the ground state set $M = 9$
   Default = 201.0 ALL--PART (all particles)

WHAT(3) : not used

WHAT(4) = lower bound index (or corresponding name) of the indices of the detectors in which the associated scoring is activated (See Note 1)
   ("From detector WHAT(3)...")
   Default = 1.0

WHAT(5) = upper bound index (or corresponding name) of the indices of the detectors in which the associated scoring is activated (See Note 1)
   ("...to detector WHAT(4)...")
   Default = WHAT(4)

WHAT(6) = step length in assigning indices
   ("...in steps of WHAT(4)")
   Default = 1.0

SDUM = For dose equivalent (DOSE-EQ) scoring, the user can provide the energy dependent coefficients for the conversion of fluence to effective dose and ambient dose equivalent for neutrons, protons, charged pions, muons, photons and electrons [143], [181]
The following dose conversion coefficients sets are available:

1. Effective dose sets from ICRP74 and Pelliccioni data [143] calculated with ICRP radiation weighting factors \( W_r \)
   
   (a) EAP74 : Anterior-Posterior irradiation
   (b) ERT74 : Rotational irradiation geometry
   (c) EWT74 : WORST possible geometry for the irradiation

2. Effective dose sets from ICRP74 and Pelliccioni data calculated with the Pelliccioni radiation weighting factors \( W_r \)
   
   (a) EAPMP : Anterior-Posterior irradiation
   (b) ERTMP : Rotational irradiation geometry
   (c) EWTMP : WORST possible geometry for the irradiation

3. Ambient dose equivalent from ICRP74 and Pelliccioni data
   
   (a) AMB74

4. Ambient dose equivalent with old "GRS"-conversion factors
   
   (a) AMBGS

Default = AMB74

**Notes**

1. USRBIN/EVENTBIN detectors are counted together, and so are USRTRACK and USRCOLL.

2. Conversion coefficients for Effective Dose "WORST" irradiation geometry are obtained choosing at each energy the largest value of the coefficients for the other geometries.

3. For photons and electrons, only the sets EAP74, ERT74, EWT74 and AMB74 are implemented. If sets from the second group (EAPMP, ERTMP, EWTMP) are requested, the respective set from the first group will be used instead. For set AMBGS, zero values are returned.

4. Dose conversion coefficients exist only for some particle types: hadrons, muons, photons, electrons/positrons. For all other particle types, zero factor will be returned. This is particularly important for heavy ions where zero factor will be scored (see Note 5).

5. For particles such as heavy ions, for which fluence conversion factors are not available, it is possible to score with USRBIN the generalised particle DOSEQLET, i.e., dose equivalent as defined by ICRU: \( H = D \times Q(L) \), where \( L \) is the unrestricted Linear Energy Transfer in water.

6. A USRBIN/EVENTBIN detector can be associated to AUXSCORE only if the binned quantity is scored along a step \((10.0 \leq \text{WHAT}(1) \leq 18.0)\). In particular, AUXSCORE cannot be used to filter activity or specific activity.

**Examples:**

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
USRBIN 10.0 208.0 -50.0 10.0 10.0 10.00Ene.p
USRBIN -10.0 -10.0 -10.0 100.0 100.0 100.0k
AUXSCORE 2.0 1.0 1.0
```

* The above AUXSCORE card will filter the energy scoring of the
* USRBIN card to only the energy that is deposited by protons
USRBIN  10.0  ENERGY  -50.0  10.0  10.0  10.0
USRBIN  -10.0  -10.0  -10.0  100.0  100.0  100.0

AUXSCORE  USRBIN  MUONS  Ene.pi
* Similar to the previous example but in a name based input

USRBIN  10.0  DOSE-EQ  -50.0  10.0  10.0  10.0
USRBIN  -10.0  -10.0  -10.0  100.0  100.0  100.0

AUXSCORE  USRBIN  DoseEq  AMB74
* Score ambient dose equivalent in a Cartesian mesh from all particles

USRYIELD  124.0  HEAVYION  -87.  TARGS3  INAIR  1.0  Fe56
USRYIELD  180.0  0.0  18.  10.0  0.0  3.0

AUXSCORE  5.0  -5602600.  Fe56  Fe56
* Score yield of 56 Fe ions
7.4 BEAM

Defines several beam characteristics: type of particle, energy, divergence and profile

See also BEAMAXES, BEAMPOSIT, SOURCE, SPECSOUR

WHAT(1) $> 0.0$: average beam momentum in GeV/c
$< 0.0$: average beam kinetic energy in GeV
If the particle indicated by SDUM is HEAVYION, the kinetic energy or momentum must be expressed \textbf{per nuclear mass unit.}
This value is available in \texttt{COMMON BEAMCM} as variable \texttt{PBEAM}. It can be used or modified in subroutine \texttt{SOURCE} (p. 380) if command \texttt{SOURCE} (p. 236) is present in input.
\textbf{Default} $= 200.0$ GeV/c (momentum)

WHAT(2) $> 0.0$: beam momentum spread in GeV/c. The momentum distribution is assumed to be rectangular
$< 0.0$: $|\text{WHAT}(2)|$ is the full width at half maximum (FWHM) of a Gaussian momentum distribution ($\text{FWHM} = 2.355 \sigma$).
This value is available in \texttt{COMMON BEAMCM} as variable \texttt{DPBEAM}. It can be used or modified in subroutine \texttt{SOURCE} (p. 380) if command \texttt{SOURCE} (p. 236) is present in input. However, in that case the momentum/energy sampling must be programmed by the user.
\textbf{Default} $= 0.0$

WHAT(3) specifies the beam divergence (in mrad):
$> 0.0$: \text{WHAT}(3) is the width of a rectangular angular distribution for a beam directed along the positive z-axis (unless a different direction is specified by command \texttt{BEAMAXES}; see Note 4).
$> 2000\pi \text{ mrad (i.e., } 2\pi \text{ rad): an isotropic distribution is assumed (see Note 7).}$
$< 0.0$: $|\text{WHAT}(3)|$ is the FWHM of a Gaussian angular distribution for a beam directed along the positive z-axis (unless a different direction is specified by command \texttt{BEAMAXES}; see Note 4)
This value is available in \texttt{COMMON BEAMCM} as variable \texttt{DIVBM} (units [rad]). It can be used or modified in subroutine \texttt{SOURCE} (p. 380) if command \texttt{SOURCE} (p. 236) is present in input. However, in that case the divergence sampling must be programmed by the user.
\textbf{Default} $= 0.0$

WHAT(4) $\geq 0.0$: If \text{WHAT}(6) $> 0.0$, beam width in x-direction in cm for a beam directed along the positive z-axis (unless a different direction is specified by command \texttt{BEAMAXES}; see Note 4). The beam profile is assumed to be rectangular.
If \text{WHAT}(6) $< 0.0$, \text{WHAT}(4) is the maximum radius of an annular beam spot
$< 0.0$: $|\text{WHAT}(4)|$ is the FWHM of a Gaussian profile in x-direction (whatever the value of \text{WHAT}(6)) for a beam directed along the positive z-axis (unless a different direction is specified by command \texttt{BEAMAXES}; see Note 4)
This value is available in \texttt{COMMON BEAMCM} as variable \texttt{XSPOT}. It can be used or modified in subroutine \texttt{SOURCE} (p. 380) if command \texttt{SOURCE} (p. 236) is present in input. However, in that case the x-profile sampling must be programmed by the user.
\textbf{Default} $= 0.0$

WHAT(5) $\geq 0.0$: if \text{WHAT}(6) $> 0.0$, beam width in y-direction in cm for a beam directed along the positive z-axis (unless a different direction is specified by command \texttt{BEAMAXES}; see Note 4). The beam profile is assumed to be rectangular.
If \( \text{WHAT}(6) < 0.0 \), \( \text{WHAT}(5) \) is the minimum radius of an annular beam spot

\[ < 0.0: \quad \text{WHAT}(5) \mid \text{is the FWHM of a Gaussian profile in y-direction (whatever the value of WHAT(6)) for a beam directed along the positive z-axis (unless a different direction is specified by command } \text{BEAMAXES}; \text{ see Note 4)} \]

This value is available in \text{COMMON BEAMCM} as variable \text{YSPO}. It can be used or modified in subroutine \text{SOURCE} (p. 380) if command \text{SOURCE} (p. 236) is present in input. However, in that case the y-profile sampling must be programmed by the user.

Default \( = \text{WHAT}(4) \)

\( \text{WHAT}(6) < 0.0: \quad \text{WHAT}(4) \text{ and WHAT}(5), \text{if positive, are interpreted as the maximum and minimum radii of an annular beam spot. If negative, they are interpreted as FWHMs of Gaussian profiles as explained above, independent of the value of WHAT(6)} \)

\[ \geq 0.0: \quad \text{ignored} \]

Default \( = 0.0 \)

\text{SDUM} \text{ = beam particle name. Particle names and numerical codes are listed in the table of FLUKA particle types (see Table 5.1 on p. 43).}

This value can be overridden in user routine \text{SOURCE} (p. 380) (if command \text{SOURCE} (p. 236) is present in input) by assigning a value to variable \text{IJBEAM} equal to the numerical code of the beam particle.

For heavy ions, use the name \text{HEAVYION} and specify further the ion properties by means of option \text{HI–PROP} (p. 148). In this case \text{WHAT}(1) will mean the energy (or momentum) per nuclear mass unit, and not the total energy or momentum.

The light nuclei \( ^4\text{He}, ^3\text{He}, \text{triton and deuteron} \) are defined with their own names (\text{4–HELIUM}, \text{3–HELIUM, TRITON and DEUTERON}) and \text{WHAT}(1) will be the total kinetic energy or momentum.

For radioactive isotopes, use the name \text{ISOTOPE} and specify further the isotope properties by means of option \text{HI–PROP} (p. 148). In this case \text{WHAT}(1) and \text{WHAT}(2) are meaningless. See Note 8 for instructions on how to run cases where the source is a radioactive isotope.

Neutrino and antineutrino interactions are activated by \text{SDUM} \( = \text{(A)NEUTRINO}. \text{Neutrino interactions are forced to occur at the point (or area) defined in the BEAMPOSit card.} \]

[\text{Not yet implemented: For optical photons, use the name OPTIPHOT and specify further the transport properties by material by means of option OPT–PROP (p. 193).}]

Default \( = \text{PROTON} \)

Default (command \text{BEAM} not requested): not allowed! The \text{WHAT}(1) value of the \text{BEAM} command is imperatively required, in order to set up the maximum energy of cross-section tabulations.

Notes

1. Simple cases of sources uniformly distributed in a volume can be treated as \text{SDUM} options of command \text{BEAMPOSit} (p. 78). Other cases of distributed, non monoenergetic or other more complex sources should be treated by means of a user-written subroutine \text{SOURCE} (p. 380) as explained in the description of the \text{SOURCE} option (p. 236), or, in some special cases, by means of a pre-defined source invoked by command \text{SPECSOUR} (see p. 238, 398, 395, 407). In particular, the \text{BEAM} definition cannot handle beams of elliptical cross section and rectangular profile. However, even when using a \text{SOURCE} subroutine, the momentum or kinetic energy defined by \text{WHAT}(1) of \text{BEAM} is meaningful, since it is taken as maximum energy for several cross section tabulations and scoring facilities.

Advice: when a user-written \text{SOURCE} is used, set \text{WHAT}(1) in \text{BEAM} equal to the maximum expected momentum (or energy) of any particle to be transported.
2. A two-dimensional distribution, Gaussian with equal variances in x and y, results in a radial Gaussian distribution with variance \( \sigma_r = \sigma_x = \sigma_y \). The distribution has a form:

\[
P(r) = \frac{1}{2\pi\sigma_x\sigma_y} e^{-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)} = \frac{1}{2\pi\sigma_r^2} e^{-\frac{1}{2}\left(\frac{r}{\sigma_r}\right)^2}
\]

3. All FLUKA results are normalised per unit incident particle weight. All particles defined by the BEAM command have by default a weight = 1. A distribution of initial weights may be needed, however, when sampling from a non-monoenergetic spectrum: in this case, a SOURCE subroutine must be written (see Sec. 13.2.19).

4. All options governed by WHAT(3)–WHAT(5) are meaningful only if the beam direction is along the positive z-axis, unless a command BEAMAXES is issued to establish a beam reference frame different from the geometry frame (see p. 76). If the beam is not in the positive z direction and no BEAMAXES command has been given, WHAT(3)–WHAT(5) must be set = 0.0 (unpredictable effects would arise otherwise).

5. The beam momentum value as defined with the BEAM card is available to user routines as a variable PBEAM and so is the beam particle type IJBEAM. These variables, as well as those defining other beam properties, are in COMMON BEAMCM which can be accessed with the INCLUDE file (BEAMCM).

6. It is possible to track pseudo-particles by setting SDUM = RAY. See Chap. 14 for details.

7. When an isotropic source is defined (by setting WHAT(3) > 2000\(\pi\)), any cosines defined by option BEAMPOS become meaningless, although their values are still reported on standard output.

8. When the radiation source is a radioactive isotope, requested by SDUM = ISOTOPE and defined by command HI–PROPErt, special rules must be observed. Note that if a stable isotope is input, nothing will occur, and no particle will be transported. On the other hand, if the isotope is radioactive, it will be necessary to request decay in semi-analogue mode (command RADDECAY with WHAT(1) > 1). If RADDECAY is not requested, nothing will occur, and no particle will be transported. Commands IRRPROFI and DCYTIMES are not allowed: decay secondaries are sampled over the whole decay time from zero to infinity, and all scoring will refer to the time integral of isotope activity (dose, fluence, current, yield or residual nuclei per decay, not the corresponding rates at particular decay times as it happens in the "activation study" mode). Important: to score any quantity, command DCYSCORE must be issued with WHAT(1) = –1, and must be applying to all relevant estimators and detectors. Without DCYSCORE, no scoring will occur. For time-dependent calculations (see TCQUENCH, TIME-CUT) it is to be noted that transport of isotope decay secondaries starts with an age equal to the time of decay.

Examples:

* The following BEAM card refers to a 100 keV pencil-like electron beam:

```
BEAM -1.E-4 0.0 0.0 0.0 0.0 1.0 ELECTRON
```

* The next option card describes a parallel proton beam with a momentum of 10.0 +/- 0.2 GeV/c, with a Gaussian profile in the x-direction and in the y-direction described by standard deviations sigma_x = 1. cm (FWHM = 2.36 cm) and sigma_y = 0.5 cm (FWHM = 1.18 cm).

```
BEAM 10.0 0.0 0.0 -2.36 -1.18 1.0 PROTON
```

* The next example concerns a negative muon beam of 2 GeV kinetic energy, with a divergence of 3 mrad.

```
BEAM -2.0 0.0 3.0 0.0 0.0 1.0 MUON-
```

* The next BEAM card describes a 137-Cs isotropic source

```
BEAM -661.7E-6 0.0 1.04 0.0 0.0 1.0 PHOTON
```

* The last example illustrates how to define a hollow 14 MeV neutron beam, with an inner radius of 7 mm and an outer radius of 1.2 cm.

```
BEAM -14.E-3 0.0 0.0 1.2 0.7 -1.0 NEUTRON
```
7.5 **BEAMAXES**

Defines the axes used for a beam reference frame different from the geometry frame

See also BEAM, BEAMPOSit, POLARIZAti, SOURCE, SPECSOUR

**WHAT(1)** = cosine of the angle between the x-axis of the beam reference frame and the x-axis of the geometry frame

Default : no default

**WHAT(2)** = cosine of the angle between the x-axis of the beam reference frame and the y-axis of the geometry frame

Default : no default

**WHAT(3)** = cosine of the angle between the x-axis of the beam reference frame and the z-axis of the geometry frame

Default : no default

**WHAT(4)** = cosine of the angle between the z-axis of the beam reference frame and the x-axis of the geometry frame

Default : no default

**WHAT(5)** = cosine of the angle between the z-axis of the beam reference frame and the y-axis of the geometry frame

Default : no default

**WHAT(6)** = cosine of the angle between the z-axis of the beam reference frame and the z-axis of the geometry frame

Default : no default

**SDUM** : not used

Default (option BEAMAXES not requested): the beam frame coincides with the geometry frame

**Notes**

1. Option BEAM (p. 73) describes a simple pencil beam, or also a beam simply distributed in space (angular divergence and transversal profile), provided the beam axis coincides with the z-axis of the input geometry. Also a possible beam polarisation described by option POLARIZAti (p. 218) refers to a beam with its axis coinciding with the geometry z-axis. The purpose of option BEAMAXES is to allow the user to define direction, angular divergence, transversal profile and polarisation for a beam of arbitrary orientation, as defined by options BEAMPOSit and BEAMAXES together. For this purpose, the user can define direction, divergence, profile and polarisation in a beam reference frame. Option BEAMAXES establishes the correspondence between beam and geometry reference frame.

2. The origin of the beam reference frame coincides always with that of the geometry frame.

3. The user needs to input only the direction cosines of the x- and of the z-axis of the beam frame. The direction of the y-axis is determined by the program as the vector product \( \vec{z} \times \vec{x} \).

4. If the x- and z-axes defined with BEAMAXES are not exactly perpendicular (in double precision!) the program forces perpendicularity by adjusting the cosines of the x-axis.
5. The direction cosines of the x- and z-axes do not need to be exactly normalised to 1. The code takes care of properly normalising all cosines.

Example:
* The next option cards describe a 10 GeV proton beam with a divergence of
  * 50 mrad and a gaussian profile in the "beam x"-direction and in the
  * "beam y"-direction described by standard deviations sigma_x = 1. cm
  * (FWHM = 2.36 cm) and sigma_y = 0.5 cm (FWHM = 1.18 cm). The beam starts
  * from point (0,0,0) and is directed along the "beam y" axis. The "beam x"
  * and "geometry x" axis coincides, while the "beam z" axis is at 45 degrees
  * with both the "geometry y" and "geometry z" axes. The resulting beam
  * direction in the geometry frame is at 45 degrees with respect to the
  * "geometry y" axis and at -45 degrees with respect to the "geometry z"
  * one. The "beam x" axis has cosines 1,0,0 and the "beam z" axis has
  * cosines 0, cos(pi/4), cos(pi/4)

```
BEAM -10.0 0.0 50.0 -2.36 -1.18 1.0 PROTON
BEAMPOS 0.0 0.0 0.0 0.0 1.0 0.0
BEAMAXES 1.0 0.0 0.0 0.0 0.7071068 0.7071068
```
7.6 BEAMPOSit

Defines the coordinates of the centre of the beam spot (i.e., the point from which transport starts) and the beam direction. Also allows to define some spatially extended sources.

See also BEAM, BEAMAXES, SOURCE, SPECSOUR

For SDUM = blank or NEGATIVE:

WHAT(1) = x-coordinate of the spot centre. This value is available in COMMON BEAMCM as variable XBEAM. It can be used or modified in subroutine SOURCE (p. 380) if command SOURCE (p. 236) is present in input.
Default = 0.0

WHAT(2) = y-coordinate of the spot centre. This value is available in COMMON BEAMCM as variable YBEAM. It can be used or modified in subroutine SOURCE (p. 380) if command SOURCE (p. 236) is present in input.
Default = 0.0

WHAT(3) = z-coordinate of the spot centre. This value is available in COMMON BEAMCM as variable ZBEAM. It can be used or modified in subroutine SOURCE (p. 380) if command SOURCE (p. 236) is present in input.
Default = 0.0

WHAT(4) = direction cosine of the beam with respect to the x-axis of the beam reference frame (namely the geometry reference frame unless defined differently with BEAMAXES). This value is available in COMMON BEAMCM as variable UBEAM. It can be used or modified in subroutine SOURCE (p. 380) if command SOURCE (p. 236) is present in input.
Default = 0.0

WHAT(5) = direction cosine of the beam with respect to the y-axis of the beam reference frame (namely the geometry reference frame unless defined differently with BEAMAXES). This value is available in COMMON BEAMCM as variable VBEAM. It can be used or modified in subroutine SOURCE (p. 380) if command SOURCE (p. 236) is present in input.
Default = 0.0

WHAT(6) : not used

SDUM = NEGATIVE means that the direction cosine with respect to z-axis is negative. The value of the direction cosine with respect to the z-axis can be overridden in user routine SOURCE by assigning a value to variable WBEAM in COMMON BEAMCM (make sure that the three cosines are properly normalised so that the sum of their squares is 1.0 in double precision!)
Default : beam directed in the positive z-direction

For SDUM = SPHE-VOL:

The command defines a spatially extended source shaped as a spherical shell. The centre x,y,z of the outer and of the inner sphere, as well as the particle direction, must be defined by another BEAMPOSit command. The particle angular distribution, or lack of it, is defined by the BEAM card.

WHAT(1) ≥ 0.0: radius in cm of the inner sphere defining the shell
Input Commands

< 0.0: resets to default
Default : 0.0

WHAT(2) > 0.0: radius in cm of the outer sphere defining the shell
   = 0.0: ignored
   < 0.0: resets to default
Default : 1.0

WHAT(3) – WHAT(6): not used

For SDUM = CYLI-VOL:

The command defines a spatially extended source shaped as a cylindrical shell with the height of the outer and of the inner cylinder parallel to the z axis of the beam reference frame (namely the geometry reference frame unless defined differently with BEAMAXES). The outer and the inner cylinder are centred at a x,y,z point defined by another BEAMPOSit command, which also sets the particle direction by means of a SDUM blank or = NEGATIVE. The particle angular distribution, or lack of it, is defined by the BEAM card.

WHAT(1) ≥ 0.0: radius in cm of the inner cylinder defining the shell
   < 0.0: resets to default
Default : 0.0

WHAT(2) > 0.0: radius in cm of the outer cylinder defining the shell
   = 0.0: ignored
   < 0.0: resets to default
Default : 1.0

WHAT(3) ≥ 0.0: height in cm of the inner cylinder defining the shell
   < 0.0: resets to default
Default : 0.0

WHAT(4) > 0.0: height in cm of the outer cylinder defining the shell
   = 0.0: ignored
   < 0.0: resets to default
Default : 1.0

WHAT(5), WHAT(6): not used

For SDUM = CART-VOL:

The command defines a spatially extended source shaped as a Cartesian shell with the edges parallel to the axes of the reference frame (namely the geometry reference frame unless defined differently with BEAMAXES). The outer and the inner parallelepiped are centred at a x,y,z point defined by another BEAMPOSit command, which also sets the particle direction by means of a SDUM blank or = NEGATIVE. The particle angular distribution, or lack of it, is defined by the BEAM card.

WHAT(1) ≥ 0.0: length in cm of the x side of the inner parallelepiped defining the shell
   < 0.0: resets to default
Default : 0.0
WHAT(2) > 0.0: length in cm of the x side of the outer parallelepiped defining the shell
= 0.0: ignored
< 0.0: resets to default
Default : 1.0

WHAT(3) ≥ 0.0: length in cm of the y side of the inner parallelepiped defining the shell
< 0.0: resets to default
Default : 0.0

WHAT(4) > 0.0: length in cm of the y side of the outer parallelepiped defining the shell
= 0.0: ignored
< 0.0: resets to default
Default : 1.0

WHAT(5) ≥ 0.0: length in cm of the z side of the inner parallelepiped defining the shell
< 0.0: resets to default
Default : 0.0

WHAT(6) > 0.0: length in cm of the z side of the outer parallelepiped defining the shell
= 0.0: ignored
< 0.0: resets to default
Default : 1.0

[For SDUM = FLOOD:] 

The command defines a source distribution on a spherical surface, centred at the x,y,z point defined by another BEAMPOSit command with SDUM blank or = NEGATIVE, such as to produce a uniform and isotropic fluence within the sphere. The value of the produced fluence will be \(1/(\pi R^2)\) cm\(^{-2}\).

WHAT(1) > 0.0: radius \(R\) of the sphere in cm
= 0.0: ignored
< 0.0: resets to default
Default : \(1/\sqrt{\pi}\) (i.e., fluence = 1 cm\(^{-2}\))

WHAT(2) – WHAT(6): not used

Default (option BEAMPOSit not requested): beam starting at point 0.0, 0.0, 0.0 in the z-direction

Notes

1. To take full advantage of some tracking optimisation features, it is often a good idea to create a buffer vacuum region containing the whole geometry, which must itself be contained within the external (mandatory) black hole region. It is then suggested that the beam impact point be chosen in vacuum, slightly upstream of the actual one on a material boundary. As a general rule, anyway, it is recommended to never select the starting point exactly on a boundary.

2. The beam spot coordinates and the beam director cosines as defined with the BEAMPOSit card are available to user routines with names XBEAM, YBEAM, ZBEAM and UBEAM, VBEAM, WBEAM respectively. These variables, as well as those defining other beam properties, are in COMMON BEAMCM which can be accessed with the INCLUDE file (BEAMCM).
3. Beam divergence and transversal profile defined by option BEAM (p. 73), as well as polarisation defined by option POLARIZAti (p. 218), are meaningful only if the beam direction is along the positive z-axis, unless a command BEAMAXES is issued to establish a beam reference frame different from the geometry frame (see p. 76).

4. When an isotropic source is defined (by setting command BEAM with WHAT(3) > 2000\pi in option BEAM), any cosines defined by option BEAMPOSi become meaningless, although their values are still reported on standard output.

Examples:

* A beam parallel to the x-axis starting at a point of coordinates -0.1, 5.0, 5.0:

```
BEAMPOS -0.1 5.0 5.0 1.0 0.0 0.0
```

* A beam perpendicular to the x-axis, with director cosines 0, 1/sqrt(2), -1/sqrt(2) with respect to x, y and z, starting at point 0.0, 0.0, 0.0:

```
BEAMPOS 0.0 0.0 0.0 0.0 0.7071068 0.0 NEGATIVE
```
7.7 BIASING

Biases the multiplicity of secondaries (only for hadron, heavy ion or muon/photon nuclear interactions) on a region by region basis. Sets importance sampling (Russian Roulette/splitting) at boundary crossing by region and by particle.

See also EMF–BIAS, LOW–BIAS, LAM–BIAS, WW–FACTOr, WW–PROFIle, WW–THRESH

The meaning of WHAT(1)...WHAT(6) and SDUM is different depending on the sign of WHAT(1):

If \( \text{WHAT}(1) \geq 0.0 \):

WHAT(1) specifies the particles to be biased:

\[
\begin{align*}
&= 0.0: \text{ all particles} \\
&= 1.0: \text{ hadrons, heavy ions and muons} \\
&= 2.0: \text{ electrons, positrons and photons} \\
&= 3.0: \text{ low-energy neutrons}
\end{align*}
\]

WHAT(2) = RR (or splitting) factor by which the average number of secondaries produced in a collision should be reduced (or increased). Meaningful only for hadron, heavy ion, or muon/photon nuclear interactions.

This value can be overridden in the user routine USBSSET (p. 387) by assigning a value to variable \text{RRHADR}.

Default = 1.0

WHAT(3) = region importance (allowed values range from 0.0001 to 100000.0)

This value can be overridden in the user routine USBSSET by assigning a value to one or more of the variables \text{IMPHAD}, \text{IMLOW} and \text{IMPEMF} (depending on the value of \text{WHAT}(1)).

If SDUM = USER, setting \text{WHAT}(3) = 1. for a region will suppress all calls to routine USIMBS during tracking inside that region.

Default = 1.0

WHAT(4) = lower bound (or corresponding name) of the region indices with importance equal to \text{WHAT}(3) and/or with multiplicity biasing factor equal to \text{WHAT}(2)

("From region \text{WHAT}(4)...")

Default = 2.0

WHAT(5) = upper bound (or corresponding name) of the region indices with importance equal to \text{WHAT}(3) and/or with multiplicity biasing factor equal to \text{WHAT}(2)

("...to region \text{WHAT}(5)...")

Default = \text{WHAT}(4)

WHAT(6) = step length in assigning indices

("...in steps of \text{WHAT}(6)"")

Default = 1.0

SDUM = PRINT: importance biasing counters are printed (useful to tune importances and weight windows)

= NOPRINT: counters are not printed (cancels any previous PRINT request)

= USER: importance biasing according to the user defined routine USIMBS (p. 388)

= NOUSER: resets to default (cancels any previous USER request)

= RRPRONLY: multiplicity biasing for primary particles only

blank: ignored

Default = NOPRINT, NOUSER, multiplicity biasing for all generations (if requested)
If WHAT(1) < 0.0:

WHAT(1) : flag indicating that all region importances shall be modified by a particle-dependent factor, based on a modifying parameter as explained in the Note 3 below

WHAT(2) ≥ 0.0: modifying parameter M (see Note 3). See also WARNING below.
< 0.0: M is reset to the default value 1.0 (i.e., no modification)

WHAT(3) = lower bound (or corresponding name) of the particle numbers to which the indicated modifying parameter applies
(“From particle WHAT(3) . . . ”)
Default = 1.0

WHAT(4) = upper bound (or corresponding name) of the particle numbers to which the indicated modifying parameter applies
( “. . . to particle WHAT(4) . . . ”)
Default = WHAT(3) if WHAT(3) > 0.0, all particles otherwise

WHAT(5) = step length in assigning particle numbers
(“. . . in steps of WHAT(5)”)
Default = 1.0

WHAT(6) : not used

SDUM = PRIMARY: importance biasing is applied also to primary particles (cancels any previous NOPRIMARY request)
= NOPRIMARY: importance biasing is applied only to secondaries
Default = PRIMARY

WARNING

Even if a BIASING card is issued only to set PRIMARY/NOPRIMARY, remember that a value of 0.0 is meaningful for WHAT(2). Leaving blank WHAT(2) to WHAT(5) has the effect of turning off all importance biasing for all particles!

Default : (option BIASING not given): no multiplicity or RR/splitting biasing

Notes

1. WHAT(2), with WHAT(1) ≥ 0.0, governs the application of Russian Roulette (or splitting) at hadronic collisions, in order to achieve a reduction (resp. an increase) of the multiplicity of secondaries.

   The same secondary is loaded onto the particle stack for further transport 0, 1 or any number of times depending on a random choice, such that on average the requested multiplicity reduction (or increase) is achieved. The weight of the stacked particles is automatically adjusted in order to account for the bias thus introduced.

   If Russian Roulette has been requested, the reduction will not affect the leading particle, which will always be retained, with unmodified weight. Also, no RR is performed when the number of secondaries is less than 3. On the contrary, there are no such limitations for splitting (multiplicity increase).

   There is some analogy with leading particle biasing as performed for electrons and photons with option EMF–BIAS, and for hadrons in codes like CASIM [203].

2. WHAT(3), with WHAT(1) ≥ 0.0, governs RR/splitting at boundary crossing. The number of particles of the selected type crossing a given boundary is reduced/increased on average by a factor equal to the ratio of the importances on either side of the boundary. What is relevant are the relative importances of adjacent
regions, not their absolute values. As a guideline, in shielding and, in general, strong attenuation problems, the importance of a region should be about inversely proportional to the corresponding attenuation factor (absorption plus distance attenuation). This would exactly compensate the dilution of particle density leading to a particle population approximately uniform in space. In some cases, however, when the user is interested in improving statistics only in a limited portion of space, a uniform population density is not desirable, but it is convenient to set importances so as to increase particle densities in a particular direction.

3. Different importances can be given to the same region for different particles, using the particle-dependent modifying factor $M$ which can be defined setting WHAT(1) $< 0.0$.

The modifying parameter $M$ (WHAT(2), with WHAT(1) $> 0.0$) works as follows:

At a boundary crossing, let us call $I_1$ the importance of the upstream region, and $I_2$ that of the downstream region.

- If $I_2 < I_1$, Russian Roulette will be played.
  Without any modifying factor, the chance of particle survival is $I_2/I_1$.
  For $0.0 \leq M \leq 1.0$, the survival chance is modified to:
  $1.0 - M \times (1.0 - I_2/I_1)$

  It can be seen that a value $M = 0.0$ resets the chance of survival to $1.0$, namely inhibits Russian Roulette biasing.
  A value $M = 1.0$ leaves the survival chance unmodified, while any value between $0.0$ and $1.0$ increases the probability of survival with respect to the basic setting.
  For $M \geq 1.0$, the survival chance is modified to:
  $I_2/(M \times I_1)$

  So, a value larger than $1.0$ decreases the probability of survival with respect to the basic setting.

- If $I_2 > I_1$, there will be splitting.
  Without any modifying factor, the number of particles is increased on average by a factor $I_2/I_1$.
  With the modifying factor, the number of particles is increased instead by:
  $1.0 + M \times (I_2/I_1 - 1.0)$

  It can be seen that a value $M = 0.0$ resets the splitting factor to $1.0$, namely inhibits splitting.
  A value $M = 1.0$ leaves the number of particles unmodified; a value between $0.0$ and $1.0$ decreases the amount of splitting with respect to the basic setting; a value $> 1.0$ increases the amount of splitting.

**Hint:** One of the most common uses of the modifying factor is to play Russian Roulette/splitting only for some selected particles: one does that by inhibiting biasing for all other particles, i.e., setting $= 0.0$ the modifying factor $M$ (WHAT(2), with WHAT(1) $< 0.0$).

4. In the most general case, increasing a region’s importance leads to an increased particle “traffic” through that region and consequently to a better scoring statistics in regions “beyond”. However, it should be avoided to have relatively large importances in scoring regions compared with those in adjacent ones to avoid correlated tallies. If that happens, the scoring statistics might look only apparently good. It must be avoided also to have too different importances in adjacent zones: the best biasing has to be done gently, without forcing and in a way as continuous as possible.

5. All these biasing techniques are intended to improve statistics in some parts of phase space at the expenses of the other parts. Biased runs in particular can neither accelerate convergence nor reproduce natural fluctuations and correlations. **Do not bias unless you know what you are doing!**

6. **Advice:** When choosing the multiplicity reduction option of BIASING, or any other biasing option which can introduce weight fluctuations in a given region, it is suggested to set also a weight window (cards WW–FACTOr, p. 286 and WW–THRESh, p. 291) in order to avoid too large fluctuations in weight. The window must be consistent with the other weight-modifying options, i.e. it must be approximately centred on the average value of the weight expected in the region in question. If necessary, set SDUM = PRINT to get such information.

In case no window has been set, the code still keeps weights under control (but only those of low-energy neutrons) by imposing a maximum deviation from a central value. This reference level is usually equal to the inverse of the neutron importance in the region in question. However, since for technical reasons in FLUKA allowed importance values range only from $0.0001$ to $100000.0$, the user can multiply all the importances by a factor, only for the purpose of calculating the reference weight level, by means of option WW–PROF ile (p. 289).

If the only biasing is via region importances set by WHAT(3), only limited fluctuations arise (all particles of a given kind have about the same weight in the same region), and no window is needed.

7. Importance biasing cannot be made by user routine USIMBS and by setting region importances at the same time.
Example, for a number-based input:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
BIASING 2.0 0.0 10.0 7.0 11.0 2.0
BIASING 2.0 0.0 15.0 8.0 9.0 0.0
BIASING -1.0 0.0 3.0 4.0 0.0 0.0
BIASING 1.0 0.7 0.4 3.0 8.0 0.0 PRINT
```
* In this example, the first two BIASING cards set an importance = 10
* for electrons, positrons and photons in regions 7, 9 and 11; and
* an importance = 15 in regions 8 and 9 for the same particles.
* However, the following card requires a modifying factor = 0.0
* (no splitting or Russian Roulette) for electrons and positrons.
* The net result is that biasing at boundary crossing with the above
* region importances is played only for photons.
* The fourth card sets a reduction factor = 0.7 for the multiplicity
* of hadronic events in regions 3, 4, 5, 6, 7 and 8; the importance
* of these same regions is set = 0.4; and it is required that biasing
* counters be printed.

The following is the same example, in a name-based input:

```
BIASING 2.0 0.0 10.0 Seventh Eleventh 2.0
BIASING 2.0 0.0 15.0 Eighth Ninth 0.0
BIASING -1.0 0.0 ELECTRON POSITRON 0.0 0.0
BIASING 1.0 0.7 0.4 Third Eighth 0.0 PRINT
```
7.8 COMPOUND

Defines a compound, alloy or mixture, made of several materials, or even a mixture of different isotopes

See also ASSIGNMAT, CORRFAC, LOW–MAT, MATERIAL, MAT–PROP

\[
\begin{align*}
\text{WHAT}(1) & = \text{atom relative content of first material in the compound} \\
\text{WHAT}(2) & = \text{index (or name) of first material} \\
\text{WHAT}(3) & = \text{atom relative content of second material in the compound} \\
\text{WHAT}(4) & = \text{index (or name) of second material} \\
\text{WHAT}(5) & = \text{atom relative content of third material in the compound} \\
\text{WHAT}(6) & = \text{index (or name) of third material} \\
\end{align*}
\]

No default

In a similar way, \text{WHAT}(3) and \text{WHAT}(4) refer to the second material in the compound, \text{WHAT}(5) and \text{WHAT}(6) to the third one.

\text{SDUM} : \text{name of the compound}

\text{Default} (option COMPOUND not requested): no compound is defined

For more than three materials in the same compound, add as many COMPOUND cards with the same SDUM name as needed (but the maximum number of components per compound is 80, and the maximum total number of components is 2400).

Notes

1. Option COMPOUND must always be used in conjunction with a MATERIAL card having the same SDUM name (see MATERIAL, p. 169). MATERIAL cards used for this purpose provide the density of the compound, its material number and name (\text{WHAT}(1) and \text{WHAT}(2) of the MATERIAL option, namely atomic and mass number, are ignored).

2. The order of MATERIAL and COMPOUND cards is irrelevant.

3. The atom (or molecule) content, mass fraction or volume fraction need only to be given on a relative basis (normalisation is done automatically by the program).

4. Partial pressures of an (ideal) gas are equivalent to molecule fractions and also to volume fractions.

5. If a compound is defined by volume fractions of the components (either elements or compounds themselves — see Note 8 for recursive definitions), FLUKA internally calculates the atomic densities of each component using the densities indicated in the respective MATERIAL cards: in this case, therefore, (and only in this case) it is important that these correspond to the actual densities.

6. Isotopic compositions other than natural can be defined by the COMPOUND option too.
7. When using the LOW–NEUT option (p. 165) (explicitly or by default set by the DEFAULTS option (p. 95)), a special data set containing low-energy neutron cross sections for each material used must be available. The data sets are combined in a single file, delivered with the FLUKA program (logical input unit LUNXSC = 9). Each low-energy neutron data set is identified either by name (if equal to a FLUKA name and unique or first with that name), or/and by one or more identifiers given with a card LOW–MAT (p. 163) when necessary to remove ambiguity.

In the case of a composite material defined by a COMPOUND option, two possibilities are allowed (see LOW–MAT):

(a) to associate the FLUKA material with a pre-mixed neutron data set. In this case interactions take place with individual nuclei at high energy, while average cross sections are used for low-energy neutrons. Note that no pre-mixed neutron data set is yet available (at the moment the standard sets contain pure elements or isotopes only).

(b) to associate the FLUKA material with several elemental neutron data sets (one per component element).

In this case both high-energy and low-energy neutron interactions take place with individual nuclei. This is the only possibility at present but it may change in the future.

8. Recursion is allowed, i.e., the components of a composite material can be composite materials. The depth of recursion is only limited by the size of the internal arrays (in case of overflow a message is issued and the job is terminated). Different levels of recursion can use different units in the definition of the component fractions (atoms, mass or volume fractions). Note, however, that if a compound is put together from different composite molecules, the atomic and molecular fractions have to be given without normalisation (use the chemical formulae directly).

What follows is an example (for a number-based input) of a simple compound BOOZE containing 50% in weight of water and 50% of ethanol.

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
MATERIAL 1.0 0.0 .0000899 3.0 0.0 0.0 HYDROGEN
MATERIAL 6.0 0.0 2.0 4.0 0.0 0.0 CARBON
MATERIAL 8.0 0.0 0.00143 5.0 0.0 0.0 OXYGEN
MATERIAL 0.0 0.0 1.0 20.0 0.0 0.0 WATER
MATERIAL 0.0 0.0 0.7907 7.0 0.0 0.0 ETHANOL
MATERIAL 0.0 0.0 0.9155 8.0 0.0 0.0 BOOZE
COMPOUND 2.0 HYDROGEN 1.0 OXYGEN 0.0 0.0 WATER
COMPOUND 2.0 CARBON 6.0 HYDROGEN 1.0 OXYGEN ETHANOL
COMPOUND -50.0 WATER -50.0 ETHANOL 0.0 0.0 BOOZE
```

Example of how COMPOUND is commonly used to define a mixture (concrete). In a number-based input:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
MATERIAL 19.0 0.0 0.862 26.0 0.0 0.0 POTASSIUM
MATERIAL 0.0 0.0 2.35 27.0 0.0 0.0 CONCRETE
COMPOUND -0.01 3.0 -0.001 6.0 -0.529107 8. CONCRETE
```
In the above example, elements 3 (hydrogen), 6 (carbon), 8 (oxygen), 9 (magnesium), 10 (aluminium), 11 (iron), 14 (silicon), 19 (sodium) and 21 (calcium) are not defined because the corresponding pre-defined FLUKA materials are used. Potassium is not pre-defined, therefore it is assigned a new number 26 (that keeps the numbering sequence continuous, since the last FLUKA pre-defined material has number 25). The name is chosen to correspond with the potassium neutron cross section data set.

The same example, in a name-based input:

```plaintext
MATERIAL 19.0 0.0 0.862 0.0 0.0 0.0 POTASSIUM
MATERIAL 0.0 0.0 2.35 0.0 0.0 0.0 CONCRETE
COMPOUND -0.01 0.001 CARBON -0.529107 OXYGEN CONCRETE
COMPOUND -0.016 0.002 MAGNESIUM -0.033872 ALUMINUM CONCRETE
COMPOUND -0.013 0.013 POTASSIUM -0.044 CALCIUM CONCRETE
COMPOUND -0.014 IRON
```
7.9 CORRFACT

allows to alter material density for dE/dx and nuclear processes on a region-by-region basis

(see also ASSIGNMAT, COMPOUND, LOW-MAT, MATERIAL, MAT-PROP)

**WHAT(1)** > 0.0: density scaling factor for charged particle ionisation processes (dE/dx, delta ray production, Møller and Bhabha scattering)

= 0.0: ignored

-2.0...0.0: |WHAT(1)| assumed relative to WHAT(2), the final density correction factor will be |WHAT(1)| X WHAT(2)

≤ -2.0: reset to default

Default : 1.0

**WHAT(2)** > 0.0: density scaling factor for all other processes

= 0.0: ignored

< 0.0: reset to default

Default : 1.0

**WHAT(3)**: not used

**WHAT(4)**: lower index bound (or corresponding name) of regions where the scaling factors shall apply ("From region WHAT(4)...")

Default : 2.0

**WHAT(5)**: upper index bound (or corresponding name) of regions where the scaling factors shall apply ("...to region WHAT(5)...")

Default = WHAT(4)

**WHAT(6)** = step length in assigning region numbers ("...in steps of WHAT(6)"

Default = 1.0

SDUM : not used

Default (option CORRFACT not requested): no density scaling factors are applied

**Note**

1. Option CORRFACT is mainly used in connection with voxel geometries derived from a CT scan, where particle transport is done often in an equivalent material (e.g., water), but accounting for the density variations provided by scan at the voxel level. While this approach is reliable for what concerns ionisation, other reactions, which do not scale with density, must be simulated for the actual material composition.

2. Only density scaling factors in the range [2/3, 3/2] are allowed.
Example, in a number-based input:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
* Multiply density by a 0.85 factor for what concerns atomic processes
* in regions 7, 8, 9, 10, 11, 12
CORRFACT 0.85 0.0 0.0 7.0 12.

The same example, in a name-based input, supposing that the geometry is made of 12 regions:

CORRFACT 0.85 0.0 0.0 The7thRg @LASTREG
* Note the use of the name @LASTREG to indicate the maximum number of regions
* in the problem
### 7.10 DCYSCORE

**Associates selected scoring detectors of given estimator type with user-defined decay times or with combined prompt-decay particle scoring. In the first case, see warning in Note 1 below. Also needed for scoring when the source is a radioactive isotope.**

See also DCYTIMES, IRRPROFle, RADDECAY, RESNUCLEi

**WHAT(1) > 0.0:** cooling time index to be associated with the detector(s) of estimator type defined by SDUM and with number (or name) corresponding to WHAT(4)–WHAT(6) (see Note 2 below)
- Only allowed when decay is calculated in “activation study” non-analogue mode (see Note 1 of RADDECAY and Note 5 below).
- = -1.0 : if option RADDECAY has been requested with WHAT(1) > 1.0, i.e., for radioactive decays activated in semi-analogue mode, the detectors defined by WHAT(4)–WHAT(6) will score both prompt and radioactive decay particles. See Note 6, and 7 for the case where the source has been defined as a radioactive isotope.
- = 0.0 : no scoring

Default = 0.0

**WHAT(2) – WHAT(3): not used**

**WHAT(4):** lower index bound (or corresponding name) of detectors of type SDUM associated with the specified cooling time (if WHAT(1) > 0.) or with combined prompt-decay particle scoring (if WHAT(1) = -1.)

(“From detector WHAT(4) of estimator type SDUM...”)

Default = 1.0

**WHAT(5):** upper index bound (or corresponding name) of detectors of type SDUM associated with the specified cooling time or with combined prompt-decay particle scoring

(“... to detector WHAT(5) of estimator type SDUM...”)

Default = WHAT(4)

**WHAT(6):** step length in assigning indices

(“... in steps of WHAT(6)”)

Default = 1.0

**SDUM:** identifies the kind of estimator under consideration: EVENTBIN, RESNUCLEi, USRBDX, USRBIN, USRCOLL, USRTRACK, USRYIELD

Default : no default!

Default (option DCYSCORE not requested): no particles originated from radioactive decay are scored, in whatever mode decay is being calculated (see Notes 5, 6 and 7 below).

**Notes**

1. **Warning:** when the DCYSCORE option is applied to a detector with WHAT(1) > 0.0, all quantities are expressed per unit time (in seconds). For instance, the RESNUCLEi estimator will output Bq, dose estimators will provide dose rate, etc.
   - If WHAT(1) = -1., all quantities are normalized per unit primary weight, or per decay if the source has been defined as a radioactive isotope.

2. The cooling time index indicated by WHAT(1) > 0. must be one of those defined by means of option DCYTIMES.
   (p. 93)
3. **USRBIN** and **EVENTBIN** detectors are similar, therefore they are part of the same index sequence; this has to be taken into account for the numbering of the detectors. The same holds for **USRTRACK** and **USRCOLL** detectors.

4. The scoring of decay radiation in “activation study” non-analogue mode (**WHAT(1) > 0.0**, see Note 1 of **RADDECAY**) is different from all the rest: decay particles are transported once, and a factor is applied at scoring time depending on the decay time associated to each detector.

   This factor accounts for the buildup and decay of the parent nucleus at the specified decay time. This factor is not available in user routines such as **FLUSCW** and **COMSCW** (Sec. 13.2.6, 13.2.2).

5. If radioactive decay has been requested in “activation study” mode (command **RADDECAY** with **WHAT(1) = 1**), particles originated from radioactive decay are scored at cooling times requested with **DCYTIMES**. Command **DCYSCORE**, called with **WHAT(1) > 0.0**, is used to associate a detector of type **SDUM** to a particular cooling time. If **DCYSCORE** is not present, no particles originated from radioactive decay can be scored.

6. If radioactive decay has been requested in “semi-analogue” mode (Monte Carlo sampling: command **RADDECAY** with **WHAT(1) > 1.0**), particles originated from radioactive decay are scored by the selected detectors of type **SDUM** together with prompt particles, provided **DCYSCORE** is issued with **WHAT(1) = –1.0**. If **DCYSCORE** is not present, no particles originated from radioactive decay can be scored, and any detector will score only prompt particles.

7. If the source has been defined as a radioactive isotope (see command **BEAM** with **SDUM = ISOTOPE**), the radioactive decay must be activated in semi-analogue mode (see Note 1 of **RADDECAY**), and therefore **WHAT(1)** of **DCYSCORE** must be = −1.0. This can be considered as a special case of the situation described in Note 6, where only decay particles are present, and no prompt particles. Also in this case, if **DCYSCORE** is not present no particles originated from radioactive decay can be scored. And since no prompt particles are present, no scoring at all can take place.

Example, for a number-based input:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DCYTIMES 86400. 172800.
DCYSCORE 1. 0. 0. 4. 8. 2. USRBIN
DCYSCORE 2. 0. 0. 1. 5. USRTRACK
```

* Two cooling times have been defined. Binnings no. 4, 6 and 8 will be associated to the first cooling time (one day), and track-length detectors no. 1, 2, 3, 4 and 5 will be associated to the second cooling time (2 days)

The same example, in a name-based input:

```
DCYTIMES 86400. 172800.
DCYSCORE 1. 0. 0. binning4 binning8 2. USRBIN
DCYSCORE 2. 0. 0. trakDet1 trakDet5 USRTRACK
```
7.11 DCYTIMES

defines decay times for radioactive product scoring

See also DCYSCORE, IRRPROFIle, RADDECAY, RESNUCLEi

Option DCYTIMES defines the times with respect to the end of the irradiation at which selected quantities (e.g. residual dose) are scored.

WHAT(1) : cooling time (in s) after the irradiation end, to be associated to a scoring detector (see Note 1 below)
>=< 0.0 : a new decay time is added with delay WHAT(1)

Default : 0.0

WHAT(2) : the same as WHAT(1) (one more cooling time)
WHAT(3) : the same as WHAT(1) (one more cooling time)
WHAT(4) : the same as WHAT(1) (one more cooling time)
WHAT(5) : the same as WHAT(1) (one more cooling time)
WHAT(6) : the same as WHAT(1) (one more cooling time)

SDUM : not used

Default (option DCYTIMES not requested): no decay times are defined

Notes

1. Each cooling time is assigned an index, following the order in which it has been input. This index can be used in option DCYSCORE to assign that particular cooling time to one or more scoring detectors.
2. Multiple cards can be given, up to the maximum number of scoring times allowed MXTRDC (MXTRDC = 1500 as of version 2011.2c.5).
3. All decay times are counted from the end of the last irradiation period defined using the IRRPROFIle command. A null decay time corresponds to the end of irradiation. A negative decay time indicates a time during the irradiation.
4. If a time is indicated more than once, only the first occurrence will be considered and the repetitions will be ignored.

Example 1:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
DCYTIMES 0.0 10. 30. 3600. 43200. 86400.
* Six different times for scoring have been defined, each with an index corresponding to its input order:
* scoring time #1 is 0s, i.e. the end of the irradiation EoI
* scoring time #2 is 10s after EoI
* scoring time #3 is 30s after EoI
* scoring time #4 is 3600s (1 hour) after EoI
* scoring time #5 is 43200s (12 hours) after EoI
* scoring time #6 is 86400s (24 hours) after EoI
Example 2:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
DCYTIMES  -86400.  -3600.   0.0  3600.  43200.  86400.
* Six different times for scoring have been defined, each with an index
* corresponding to its input order:
* scoring time #1 is -86400s (24 hours) before EoI
* scoring time #2 is -3600s, (1 hour) before EoI
* scoring time #3 is 0s, i.e. at EoI
* scoring time #4 is 3600s (1 hour) after EoI
* scoring time #5 is 43200s (12 hours) after EoI
* scoring time #6 is 86400s (24 hours) after EoI

Example 3:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
DCYTIMES  10.   30.  3600.  43200.  86400.
* Five different times for scoring have been defined. WHAT(5) hasn’t been
* provided and the default 0.0 is taken. Therefore six scoring times are
* available:
* scoring time #1 is 10s after EoI
* scoring time #2 is 30s after EoI
* scoring time #3 is 3600s (1 hour) after EoI
* scoring time #4 is 43200s (12 hours) after EoI
* scoring time #5 is 86400s (24 hours) after EoI
* scoring time #6 is 0s, i.e. at EoI

Example 4:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
DCYTIMES  10.   10.  3600.  3600.
* Four different times for scoring have been defined. WHAT(5) and WHAT(6)
* haven’t been provided and the default 0.0 is taken. The duplicated times are
* ignored. Therefore three scoring times are available:
* scoring time #1 is 10s
* scoring time #2 is 3600s, i.e. 1 hour
* scoring time #3 is 0s, i.e. the end of the irradiation

Example 5:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
DCYTIMES  10.
DCYTIMES  10.
DCYTIMES  30.
DCYTIMES  30.
DCYTIMES  3600.
DCYTIMES  3600.
DCYTIMES  86400.
DCYTIMES  86400.
* Eight different cards with one time each have been used. The default 0.0 is
* taken for all the WHATs that haven’t been provided. The duplicated times are
* ignored. Therefore five scoring times are available:
* scoring time #1 is 10s after EoI
* scoring time #2 is 0s, i.e. at EoI
* scoring time #3 is 30s after EoI
* scoring time #4 is 3600s (1 hour) after EoI
* scoring time #5 is 86400s (24 hours) after EoI
7.12 DEFAULTS

Sets FLUKA defaults suitable for a specified kind of problems. Starting from FLUKA99.5 (June 2000) the standard defaults are those described under NEW-DEFAULTS below. That is, if no DEFAULTS card is issued the code behaves as if a card with NEW-DEFAULTS was given.

See also GLOBAL

**Important:** DEFAULTS declarations, if present, must precede any executable option

WHAT(1) – WHAT(6): not used

<table>
<thead>
<tr>
<th>SDUM</th>
<th>CALORIMEtry</th>
<th>defaults for calorimeter simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>EET/TRANsmut</td>
<td>EMF</td>
<td>defaults for Energy Transformer or transmutation calculations</td>
</tr>
<tr>
<td>EM–CASCade</td>
<td>ICARUS</td>
<td>defaults for pure EM cascades</td>
</tr>
<tr>
<td>HADROTHERapy</td>
<td>NEUTRONS</td>
<td>defaults for hadrotherapy calculations</td>
</tr>
<tr>
<td>NEW–DEFAULTs</td>
<td>PRECISION</td>
<td>defaults for precision simulations</td>
</tr>
<tr>
<td>SHIELDINg</td>
<td></td>
<td>defaults for hadron shielding calculations without gammas</td>
</tr>
</tbody>
</table>

Default: it is not allowed to leave SDUM blank. If the DEFAULTS card is missing, the standard defaults are unchanged (equivalent to setting SDUM = NEW-DEFAULTS)

Defaults changed by the various options

- **CALORIMEtry**

  - EMF on (no need for an EMF card)
  - Rayleigh scattering and inelastic form factor corrections to Compton scattering and Compton profiles activated (no EMFRAY needed)
  - Detailed photoelectric edge treatment and fluorescence photons activated (no EMFFLUO needed)
  - Low-energy neutron transport on down to thermal energies included (no LOW-NEUT needed). High energy neutron threshold at 20 MeV.
  - Fully analogue absorption for low-energy neutrons
  - Particle transport threshold set at $1 \times m_{\text{part}}/m_{\text{prot}}$ MeV, except for neutrons ($1 \times 10^{-5}$ eV) and (anti)neutrinos (0, but they are discarded by default anyway)
  - Multiple scattering threshold at minimum allowed energy, for both primary and secondary charged particles
  - Delta ray production on with threshold 100 keV (see option DELTARAY)
  - Restricted ionisation fluctuations on, for both hadrons/muons and EM particles (see option IONFLUCT)
  - Fraction of the kinetic energy to be lost in a step set at 0.08, number of dp/dx tabulation points set at 80 (see options DELTARAY, EMFFIX, FLUKAFIX)
  - Heavy particle $e^+e^-$ pair production activated with full explicit production (with the minimum threshold $= 2 m_e$)
• Heavy particle bremsstrahlung activated with explicit photon production above 300 keV
• Muon photomuclear interactions activated with explicit generation of secondaries
• Heavy fragment transport activated

EET/TRANsmut

• Low-energy neutron transport on down to thermal energies included, (high energy neutron threshold at 20 MeV)
• Non-analogue absorption for low-energy neutrons with probability 0.95 for the last (thermal) groups
• Particle transport threshold set at 1 MeV, except neutrons ($1 \times 10^{-5}$ eV) and (anti)neutrinos (0, but they are discarded by default anyway)
• Multiple scattering threshold for primary and secondary charged particles lowered to 10 and 20 MeV respectively
• Unrestricted ionisation fluctuations on, for both hadrons/muons and EM particles (if requested) (see option IONFLUCT)
• Both explicit and continuous heavy particle bremsstrahlung and pair production inhibited

EM–CASCAde

• Electromagnetic interactions on (no need for explicit option EMF)
• Rayleigh scattering and inelastic form factor corrections to Compton scattering and Compton profiles activated (no EMFRAY needed)
• Detailed photoelectric edge treatment and fluorescence photons activated (no EMFFLUO needed)
• Restricted ionisation fluctuations for EM particles (see option IONFLUCT)
• Both explicit and continuous heavy particle bremsstrahlung and pair production inhibited

HADROTHErapy

• EMF on
• Inelastic form factor corrections to Compton scattering and Compton profiles activated
• Low-energy neutron transport on down to thermal energies included, no need for option LOW–NEUT (high energy neutron threshold at 20 MeV)
• Fully analogue absorption for low-energy neutrons
• Particle transport threshold set at 100 keV, except for neutrons ($1 \times 10^{-5}$ eV) and (anti)neutrinos (0, but they are discarded by default anyway)
• Multiple scattering threshold at minimum allowed energy, for both primary and secondary charged particles
• Delta ray production on with threshold 100 keV (see option DELTARAY)
• Restricted ionisation fluctuations on, for both hadrons/muons and EM particles (see option IONFLUCT)
• Tabulation ratio for hadron/muon dp/dx set at 1.03, fraction of the kinetic energy to be lost in a step set at 0.02 (see options DELTARAY, EMFFIX, FLUKAFIX)

ICARUS
• EMF on
• Rayleigh scattering and inelastic form factor corrections to Compton scattering and Compton profiles activated (no EMFRAY needed)
• Detailed photoelectric edge treatment and fluorescence photons activated (no EMFFLUO needed)
• Low-energy neutron transport on down to thermal energies included, (high energy neutron threshold at 20 MeV)
• Fully analogue absorption for low-energy neutrons
• Particle transport threshold set at 100 keV, except neutrons ($1 \times 10^{-5}$ eV) and (anti)neutrinos (0, but they are discarded by default anyway)
• Multiple scattering threshold at minimum allowed energy, for both primary and secondary charged particles
• Delta ray production on with threshold 100 keV (see option DELTARAY)
• Restricted ionisation fluctuations on, for both hadrons/muons and EM particles (see option IONFLUCT)

• Tabulation ratio for hadron/muon dp/dx set at 1.04, fraction of the kinetic energy to be lost in a step set at 0.05, number of dp/dx tabulation points set at 80 (see options DELTARAY, EMFFIX, FLUKAFIX)
• Heavy particle $e^+e^-$ pair production activated with full explicit production (with the minimum threshold $= 2 m_e$)
• Heavy particle bremsstrahlung activated with explicit photon production above 300 keV
• Muon photomuclear interactions activated with explicit generation of secondaries
• Heavy fragment transport activated

**NEUTRONS**

• Low-energy neutron transport on down to thermal energies included, no need for LOW–NEUT (high energy neutron threshold at 20 MeV)
• Non analogue absorption for low-energy neutrons with probability 0.95 for the last (thermal) groups
• Both explicit and continuous heavy particle bremsstrahlung and pair production inhibited

**NEW–DEFAults** *(standard defaults active even if the DEFAULTS card is not present)*

• EMF on, with electron and photon transport thresholds to be set using EMFCUT command
• Inelastic form factor corrections to Compton scattering activated (no need for EMFRAY)
• Low-energy neutron transport on down to thermal energies included, (no need for LOW–NEUT). The neutron high energy threshold is set at 20 MeV.
• Non analogue absorption for low-energy neutrons with probability 0.95 for the last (thermal) groups
• Particle transport threshold set at 10 MeV, except for neutrons ($1 \times 10^{-5}$ eV), and (anti)neutrinos (0, but they are discarded by default anyway)
• Multiple scattering threshold for secondary charged particles lowered to 20 MeV (equal to that of the primary ones)
• Delta ray production on with threshold 1 MeV (see option DELTARAY)
• Restricted ionisation fluctuations on, for both hadrons/muons and EM particles (see option IONFLUCT)
• Heavy particle $e^+e^-$ pair production activated with full explicit production (with the minimum threshold $= 2 m_e$)
• Heavy particle bremsstrahlung activated with explicit photon production above 1 MeV
• Muon photonuclear interactions activated with explicit generation of secondaries

**PRECISION**

• **EMF** on
  - Rayleigh scattering and inelastic form factor corrections to Compton scattering and Compton profiles activated
  - Detailed photoelectric edge treatment and fluorescence photons activated
  - Low-energy neutron transport on down to thermal energies included (high energy neutron threshold at 20 MeV)
  - Fully analogue absorption for low-energy neutrons
  - Particle transport threshold set at 100 keV, except neutrons ($1 \times 10^{-5} \text{ eV}$) and (anti)neutrinos (0, but they are discarded by default anyway)
  - Multiple scattering threshold at minimum allowed energy, for both primary and secondary charged particles
  - Delta ray production on with threshold 100 keV (see option DELTARAY)
  - Restricted ionisation fluctuations on, for both hadrons/muons and EM particles (see option IONFLUCT)
  - Tabulation ratio for hadron/meson dp/dx set at 1.04, fraction of the kinetic energy to be lost in a step set at 0.05, number of dp/dx tabulation points set at 80 (see options DELTARAY, EMFFIX, FLUKAFIX)
  - Heavy particle $e^+e^-$ pair production activated with full explicit production (with the minimum threshold $= 2 m_e$)
  - Heavy particle bremsstrahlung activated with explicit photon production above 300 keV
  - Muon photonuclear interactions activated with explicit generation of secondaries
  - Heavy fragment transport activated

**SHIELDING**

• Low-energy neutron transport on down to thermal energies included (the neutron high energy threshold is set at 20 MeV)
• Non analogue absorption for low-energy neutrons with probability 0.95 for the last (thermal) group
• Particle transport threshold set at 10 MeV, except neutrons ($1 \times 10^{-5} \text{ eV}$) and (anti)neutrinos (0, but they are discarded by default anyway)
• Multiple scattering threshold for secondary charged particles lowered to 20 MeV (= primary ones)
• Both explicit and continuous heavy particle bremsstrahlung and pair production inhibited
• **EMF** off!!! This default is meant for simple hadron shielding only!

**Notes**

1. If an option does not appear in input, FLUKA provides default parameter values in most cases. Standard defaults are also applied when the option is present but not all its WHAT and SDUM parameters have been defined explicitly by the user. However, some types of problems are better handled using different defaults. Option DEFAULTS allows to override the standard ones with others, tuned to a specific class of transport problems.
The present set of defaults (valid if no DEFAULTS card is issued) is equivalent to that set by SDUM = NEW-DEFAULTS.

2. **Important!** Option DEFAULTS must be issued at the very beginning of input. It can be preceded only by a GLOBAL card and by TITLE. This is one of the rare cases, like GLOBAL, MAT-PROP and PLOTGEOM, where sequential order of input cards is of importance in FLUKA (see Chap. 6).

3. The name of the SHIELDING default refers to simple calculations for proton accelerators, where the electromagnetic component can be neglected. It is not applicable to electron accelerator shielding or any other shielding problem where the gamma component is important.

4. The responsibility of choosing reasonable defaults, compatible with the rest of input, is left to the user. In particular, choosing the defaults corresponding to pure EM cascade or to pure low-energy neutron problems has the effect of turning off all initialisations related to the hadronic generators. This will save a considerable time at the beginning of the run, but will lead to a crash if a hadron generator is called because of some other input option. In particular, SDUM = EM-CASCA is incompatible with option PHOTONUC and with beam/source particles different from PHOTON, ELECTRON and POSITRON; and SDUM = NEUTRONS is incompatible with option EMF, with any beam particle different from NEUTRON and with energies higher than 20 MeV. On the other hand, it is possible to override some of the defaults, in particular the various thresholds, by issuing the corresponding command after DEFAULTS (PART-THR, EMFCUT, DELTARAY, etc.)

Example:

```
+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
DEFAULTS 0.0 0.0 0.0 0.0 0.0 0.0 EM-CASCA
* The above declaration refers to a problem where only electrons, positrons
* and photons are transported.
```
<table>
<thead>
<tr>
<th>Command</th>
<th>DEFAULTS card defined</th>
<th>CALORIME</th>
<th>EFT/TRAN</th>
<th>EM-CASCA</th>
<th>HADROTHE</th>
<th>ICARUS</th>
<th>NEUTRONS</th>
<th>NEW-DEFA</th>
<th>PRECISIO</th>
<th>SHIELDIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELTARAY WHAT(1)</td>
<td>0.001</td>
<td>0.0001</td>
<td>-1.</td>
<td>-1.</td>
<td>0.0001</td>
<td>0.001</td>
<td>-1.</td>
<td>0.001</td>
<td>0.0001</td>
<td>-1.</td>
</tr>
<tr>
<td>WHAT(2)</td>
<td>50.</td>
<td>80.</td>
<td>50.</td>
<td>50.</td>
<td>50.</td>
<td>80.</td>
<td>50.</td>
<td>50.</td>
<td>80.</td>
<td>50.</td>
</tr>
<tr>
<td>WHAT(3)</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.03</td>
<td>1.04</td>
<td>1.15</td>
<td>1.15</td>
<td>1.04</td>
<td>1.15</td>
</tr>
<tr>
<td>EMF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>EMFFLUO WHAT(1)</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>EMFRAY WHAT(1)</td>
<td>3.</td>
<td>1.</td>
<td>0.</td>
<td>1.</td>
<td>3.</td>
<td>1.</td>
<td>0.</td>
<td>3.</td>
<td>1.</td>
<td>0.</td>
</tr>
<tr>
<td>EVENTYPE WHAT(3)</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>-2.</td>
<td>1.</td>
<td>1.</td>
<td>-2.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>FLUKAFIX WHAT(1)</td>
<td>0.1</td>
<td>0.08</td>
<td>0.1</td>
<td>0.05</td>
<td>0.02</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>IONFLUCT WHAT(1)</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>-1.</td>
<td>1.</td>
<td>1.</td>
<td>-1.</td>
<td>1.</td>
<td>-1.</td>
<td>-1.</td>
</tr>
<tr>
<td>WHAT(2)</td>
<td>1.</td>
<td>1.</td>
<td>-1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>-1.</td>
<td>1.</td>
<td>-1.</td>
<td>-1.</td>
</tr>
<tr>
<td>LOW–BIAS WHAT(1)</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>N.A.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>WHAT(3)</td>
<td>0.85</td>
<td>N.A.</td>
<td>0.95</td>
<td>N.A.</td>
<td>0.95</td>
<td>N.A.</td>
<td>N.A.</td>
<td>0.95</td>
<td>N.A.</td>
<td>0.95</td>
</tr>
<tr>
<td>LOW–NEUT WHAT(6)</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>MCSTHRES WHAT(1)</td>
<td>-0.02</td>
<td>1.</td>
<td>-0.01</td>
<td>-0.02</td>
<td>1.</td>
<td>1.</td>
<td>-0.02</td>
<td>-0.02</td>
<td>1.</td>
<td>-0.02</td>
</tr>
<tr>
<td>WHAT(2)</td>
<td>-0.02</td>
<td>1.</td>
<td>-0.02</td>
<td>-1.</td>
<td>1.</td>
<td>1.</td>
<td>-0.02</td>
<td>-0.02</td>
<td>1.</td>
<td>-0.02</td>
</tr>
<tr>
<td>PAIRBREM WHAT(1)</td>
<td>3.</td>
<td>3.</td>
<td>-3.</td>
<td>-3.</td>
<td>3.</td>
<td>3.</td>
<td>-3.</td>
<td>3.</td>
<td>-3.</td>
<td>-3.</td>
</tr>
<tr>
<td>WHAT(2)</td>
<td>0.</td>
<td>0.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>-1.</td>
<td>0.</td>
<td>N.A.</td>
<td>0.</td>
<td>0.</td>
<td>N.A.</td>
</tr>
<tr>
<td>WHAT(3)</td>
<td>0.001</td>
<td>0.0003</td>
<td>N.A.</td>
<td>N.A.</td>
<td>-1.</td>
<td>0.0003</td>
<td>N.A.</td>
<td>0.001</td>
<td>0.0003</td>
<td>N.A.</td>
</tr>
<tr>
<td>PART–THR WHAT(1)</td>
<td>-0.010</td>
<td>-0.001</td>
<td>-0.001</td>
<td>N.A.</td>
<td>-0.0001</td>
<td>-0.0001</td>
<td>N.A.</td>
<td>-0.010</td>
<td>-0.0001</td>
<td>-0.010</td>
</tr>
</tbody>
</table>

Table 7.1: Defaults defined by different SDUM values of the DEFAULTS command.
7.13 DELTARAY

Activates delta ray production by muons and charged hadrons and controls the accuracy of the dp/dx tabulations

See also IONFLUCT

WHAT(1) > 0.0: kinetic energy threshold (GeV) for delta ray production (discrete energy transfer).
Energy transfers lower than this energy are assumed to take place as continuous energy losses

= 0.0: ignored
< 0.0: resets the default to infinite threshold, i.e., no delta ray production
Default = 0.001 (1 MeV) if option DEFAULTS (p. 95) is not used, or if it is used with SDUM = NEW-DEFAULTS.
If DEFAULTS is used with SDUM = CALORIMETRY, HADROTHERAPY, CARUS or PRECISION, the default is 0.0001 (100 keV).
If it is used with any other SDUM value, the default is -1.0 (continuous slowing down approximation without production of delta rays)

WHAT(2) > 0.0: number of logarithmic intervals for dp/dx momentum loss tabulation

= 0.0: ignored
< 0.0: resets the default to 50.0
Default = 50.0 (this is the default if option DEFAULTS is not used, or is used with anything but SDUM = CALORIMETRY, ICARUS or PRECISION).
With the latter, the default is 80.
See Note 2 for more details

WHAT(3) > 1.0: logarithmic width of dp/dx momentum loss tabulation intervals (ratio between upper and lower interval limits)

0.0 ≤ WHAT(3) ≤ 1.0: ignored
≤ 0.0: resets the default to 1.15
Default = 1.15 (this is the default if option DEFAULTS is not used, or is used with any SDUM value but HADROTHERAPY, ICARUS or PRECISION).
If DEFAULTS is used with SDUM = ICARUS or PRECISION, the default is 1.04
With SDUM = HADROTHERAPY the default is 1.03
See Note 2 for more details

WHAT(4) = lower index bound (or corresponding name) of materials where delta ray production or specified tabulation accuracy are requested
("From material WHAT(4)...")
Default = 3.0

WHAT(5) = upper index bound (or corresponding name) of materials where delta ray production or specified tabulation accuracy are requested
("... to material WHAT(5)...")
Default = WHAT(4)

WHAT(6) = step length in assigning indices
("... in steps of WHAT(6)"")
Default = 1.0

SDUM = PRINT: prints dE/dx tabulations for the given materials on standard output (see Note 1)
= NOPRINT: resets to no printing a possible previous request for these materials
blank: ignored
Default = NOPRINT
**Default** (option `DELTARAY` not requested): the defaults depend on option `DEFAULTS` as explained above. See also Note 9 and Table 7.1 at p. 100.

**Notes**

1. To calculate energy loss by charged particles, FLUKA sets up and uses internally tables of momentum loss per unit distance (dp/dx) rather than the more commonly used dE/dx. However, if requested to print those tables, it outputs them as converted to dE/dx.

2. The upper and lower limit of the dp/dx tabulations are determined by the options `BEAM` (p. 73) and `PART–THR` (p. 202), or by the corresponding defaults. Therefore, either the number or the width of the intervals are sufficient to define the tabulations completely. If both `WHAT(2)` and `WHAT(3)` are specified, or if the value of both is defined implicitly by the chosen default, the most accurate of the two resulting tabulations is chosen.

3. The lower tabulation limit is the momentum of the charged particle which has the lowest transport threshold. The upper limit corresponds to the maximum primary energy (as set by `BEAM` plus an additional amount which is supposed to account for possible exoenergetic reactions, Fermi momentum and so on.

4. This option concerns only charged hadrons and muons. Delta rays produced by electrons and positrons are always generated, provided their energy is larger than the production threshold defined by option `EMFCUT`.

5. Request of delta ray production is not alternative to that of ionisation fluctuations (see `IONFLUCT`, p. 149). The two options, if not used at the same time, give similar results as far as transport and energy loss are concerned, but their effect is very different concerning energy deposition: with the `IONFLUCT` option the energy lost is sampled from a distribution but is deposited along the particle track, while `DELTARAY`, although leading to similar fluctuations in energy loss, will deposit the energy along the delta electron tracks, sometimes rather far from the primary trajectory. `IONFLUCT` can be used even without requesting the `EMF` option, while when requesting `DELTARAY` the `EMF` card must also be present (or implicitly activated by the selected default — see option `DEFAULTS`, p. 95) if transport of the generated electrons is desired.

6. Normally, the energy threshold for delta ray production should be higher than the electron energy transport cutoff specified by option `EMFCUT` (p. 116) for discrete electron interactions. If it is not, the energy of the delta electron produced is deposited on the spot. As explained above, this will result in correct energy loss fluctuations but with the energy deposited along the particle track, a situation similar to that obtained with `IONFLUCT` alone.

7. Note that FLUKA makes sure that the threshold for delta ray production is not set much smaller than the average ionisation potential.

8. Presently, `DELTARAY` can be used together with the `IONFLUCT` option with a threshold for delta rays chosen by the user. As a result, energy losses larger than the threshold result in the production and transport of delta electrons, while those smaller than the threshold will be sampled according to the correct fluctuation distribution.

9. Here are the settings for delta ray production and dp/dx tabulations corresponding to available `DEFAULTS` options:

   - **ICARUS, PRECISION:** threshold for delta ray production 100 keV; momentum loss tabulation with 80 logarithmic intervals or 1.04 logarithmic width (whichever is more accurate)
   - **CALORIMETRY:** threshold for delta ray production 100 keV; momentum loss tabulation with 80 logarithmic intervals or 1.15 logarithmic width
   - **HADROTHErapy:** threshold for delta ray production 100 keV; momentum loss tabulation with 50 logarithmic intervals or 1.03 logarithmic width
   - **NEW–DEFAults, or DEFAULTS missing:** threshold for delta ray production 1 MeV; momentum loss tabulation with 50 logarithmic intervals or 1.15 logarithmic width

Any other `SDUM` value: no delta ray production; momentum loss tabulation with 50 logarithmic intervals or 1.15 logarithmic width

Example, for a number-based input:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DELTARAY 0.01 30.0 0.0 3.0 18.0 PRINT
DELTARAY 0.02 0.0 1.05 4.0 12.0 8.0 NOPRINT
```
In this example, delta rays with energies higher than 20 MeV (0.02 GeV) will be produced in materials 4 and 12; for the same materials, logarithmic intervals with a ratio of 1.05 between the upper and the lower limit of each interval are requested for the dp/dx tabulation. For all other materials with number between 3 and 18, delta rays are produced above 10 MeV and 30 intervals are used in the dp/dx tabulation. Tabulations of dE/dx are printed for all materials except 4 and 12.

An equivalent example, for a name-based input, is:

```
DELTARAY 0.01 30. 0.0 HYDROGEN TANTALUM PRINT
DELTARAY 0.02 0.0 1.05 HELIUM COPPER 8.0 NOPRINT
```

The following is an example where a threshold of 500 keV is set for delta ray production in all materials:

```
DELTARAY 5.E-4 0.0 0.0 HYDROGEN @LASTMAT PRINT
```
DETECT

Scores energy deposition on an event by event basis (detector), providing coincidence and anti-coincidence capabilities such as those of a trigger.

In the following, an “event” means energy deposited in one or more detector regions by one primary particle and its descendants, i.e., between two successive calls to the FEEDER subroutine (case of an incident beam) or to a user-written SOURCE subroutine (case of an extended source, or of a source read from a collision file or sampled from a distribution).

A “signal” means energy deposited in one or more trigger regions by the same primary particle and descendants (i.e., between the same calls).

The output of DETECT is a distribution of energy deposited per event in the region(s) making up the detector in (anti-)coincidence with a signal larger than a given cutoff or threshold in the trigger region(s).

It is also possible to define detector combinations (NOT YET IMPLEMENTED!!!)

This option can extend over several sequential cards. The meaning of the parameters on the first card are:

\textbf{WHAT(1)} \leq 0.0 for a detector, \textgreater{} 0.0 for a combination of detectors (NOT YET IMPLEMENTED!).

\textbf{WHAT(1)} \leq 0.0:

\textbf{WHAT(1)} = number of channels if \textgreater{} 1024, otherwise number of channels is set to 1024.

\textbf{WHAT(2)} = minimum total energy to be scored in the detector regions in one event, i.e., lower limit of the event distribution

\textbf{Default} = 0.0

\textbf{WHAT(3)} = maximum total energy to be scored in the detector regions in one event, i.e., upper limit of the event distribution

\textbf{No default}

\textbf{WHAT(4)} = cutoff energy for the signal (coincidence/anti-coincidence threshold). The energy deposition event is scored only if a total of more than WHAT(4) GeV are/aren’t correspondingly deposited in the trigger regions

\textbf{Default} = 10^{-9} (= 1 \text{ eV})

\textbf{WHAT(5)} > 0.0: the detector regions, taken together, must be considered in coincidence with the trigger regions (also taken together)

\textbf{\leq 0.0}: the detector regions must be considered in anti-coincidence with the trigger regions

\textbf{Default}: anti-coincidence

\textbf{WHAT(6)}: region number or name not preceded by a minus sign: first region of the detector region number or name preceded by a minus sign: first region of the trigger (the other regions will be given with continuation cards, see below)

\textbf{No default}

\textbf{SDUM} = detector name (max. 10 characters) unless the character “&” is present

Continuation card (if present):

\textbf{WHAT(1)} = same as WHAT(1) for the first card

\textbf{WHAT(2)} – WHAT(6) = following regions (with sign). If not preceded by a minus sign, they are considered detector regions, otherwise trigger regions

\textbf{SDUM} = “&” in any position in column 71 to 78 (or in the last field if free format is used)
Note: if no trigger region is given (i.e., no region with negative sign), a simple event by event scoring takes place

<table>
<thead>
<tr>
<th>WHAT(1)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT(2) :</td>
<td>first detector to be considered for this combination, in coincidence if WHAT(2) is not preceded by a minus sign, in anticoincidence otherwise</td>
</tr>
<tr>
<td>Default</td>
<td>ignored</td>
</tr>
<tr>
<td>WHAT(3) :</td>
<td>second detector to be considered for this combination, in coincidence if WHAT(3) is not preceded by a minus sign, in anti-coincidence otherwise</td>
</tr>
<tr>
<td>Default</td>
<td>ignored</td>
</tr>
<tr>
<td>WHAT(4) :</td>
<td>third detector to be considered for this combination, in coincidence if WHAT(4) is not preceded by a minus sign, in anti-coincidence otherwise</td>
</tr>
<tr>
<td>Default</td>
<td>ignored</td>
</tr>
<tr>
<td>WHAT(5) :</td>
<td>fourth detector to be considered for this combination, in coincidence if WHAT(5) is not preceded by a minus sign, in anti-coincidence otherwise</td>
</tr>
<tr>
<td>Default</td>
<td>ignored</td>
</tr>
<tr>
<td>WHAT(6) :</td>
<td>fifth detector to be considered for this combination, in coincidence if WHAT(6) is not preceded by a minus sign, in anti-coincidence otherwise</td>
</tr>
<tr>
<td>Default</td>
<td>ignored</td>
</tr>
</tbody>
</table>

SDUM = combination name (max. 10 characters) unless the character “&” is present

Continuation card (if present):

WHAT(1) = same as WHAT(1) for the first card

WHAT(2) – WHAT(6) = following detectors (with sign). If not preceded by a minus sign, they are considered in coincidence, otherwise in anti-coincidence

SDUM = “&” in any position (or in the last field if free format is used)

Default (option DETECT not requested): no (anti-)coincidence scoring

Notes

1. Output from DETECT is written unformatted on logical unit 17. To recover the output, it is necessary to run a Fortran program containing the following lines:

   CHARACT...RUNIT, RUNTIM*32, CHNAME*10
   INTEG...NCASE, NDET, NBIN, IV(1024)
   REAL EMIN, EBIN, ECUT
   READ(17) RUNIT, RUNTIM, WEIPRI, NCASE
   READ(17) NDET, CHNAME, NBIN, EMIN, EBIN, ECUT
   READ(17) (IV(I), I = 1, NBIN)

This is the meaning of variables read:
- **RUNITIT**: title of the job (as given by input option TITLE)
- **RUTIM**: time of the job (printed also at the beginning of the main output)
- **WEIPRI**: total weight of the primary particles
- **NCASE**: number of primary particles
- **NDET**: detector number
- **CHNAME**: detector name (= SDUM of the first DETECT card)
- **NBIN**: number of energy bins (presently fixed = 1024)
- **EMIN**: minimum total energy (= WHAT(2) of the first DETECT card)
- **EBIN**: width of each energy bin
- **ECUT**: cutoff energy for the signal (= WHAT(4) of the first DETECT card)
- **NBIN** values IV(I): they are the spectrum channels, or energy bins

2. **Important**: option DETECT will give meaningful results *only* when FLUKA is used in a completely analogue mode, since correlations are destroyed by biasing. Thus, DETECT cannot be used together with any biasing option or weight-changing facility. It is recommended for this purpose to issue a GLOBAL command with WHAT(2) < 0.0 at the beginning of input (see GLOBAL, Sec 7.32).

A list of incompatible options is: BIASING, EMF–BIAS, LOW–BIAS, LAM–BIAS, WW–FACTOR, EMFCUT with WHAT(3) < 0.0, EMF with WHAT(6) ≠ 1.0, EXPTRANS, LOW–DOWN.

Example (number-based):

```plaintext
DETECT 0.0 1.E-4 1.E-2 5.E-5 1.0 7.0 Coincid_1
DETECT 0.0 -9.0 -12.0 10.0 11.0 &
```

* The meaning of the above lines is the following:
* a "signal" equal to energy deposition in regions 7 + 10 + 11 will be scored if:
* 1) that signal is larger than 1.E-4 GeV and smaller than 0.01 GeV
* 2) at the same time (in coincidence) an energy deposition of at least 5.0E-5 GeV occurs in regions 9 + 12
* The output will give a signal (event) spectrum between the energy limits 1.0E-4 and 0.010 GeV, distributed over a fixed number of channels (1024 in the standard version).

The same example, name-based:

```plaintext
DETECT 0.0 1.E-4 1.E-2 5.E-5 1.0 The7thRg Coincid_1
DETECT 0.0 -The9thRg -Region12 Region10 Region11 &
```
7.15 DISCARD

Defines the particle types to be discarded (i.e., not to be transported)

**WHAT(3) – WHAT(6)**: id-number or name of particles to be discarded (see particle numbers and names in Table 5.1, p. 43).

If one of the WHATs is preceded by a minus sign a previous corresponding DISCARD command (explicit or by default) will be canceled.

When full heavy particle transport is activated (see IONTRANS, p. 152), discarding of heavies can be performed setting the WHATs = (1000 + $K_{\text{heavy}}$), with $K_{\text{heavy}} = 3...6$ (heavy ion particle code):

- $3 = ^2\text{H}$,
- $4 = ^3\text{H}$,
- $5 = ^3\text{He}$,
- $6 = ^4\text{He}$,
- $7-12$ = fission fragments

Except for fission fragments, the corresponding names can also be used.

Undiscarding heavies is obtained by setting WHATs = (1000 - $K_{\text{heavy}}$), or by making the corresponding names to be preceded by a minus sign.

The whole scheme is shown in the following table:

<table>
<thead>
<tr>
<th>Discard</th>
<th>Undiscard</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^2\text{H}$</td>
<td>1003 or DEUTERON 997 or -DEUTERON</td>
</tr>
<tr>
<td>$^3\text{H}$</td>
<td>1004 or TRITON 996 or -TRITON</td>
</tr>
<tr>
<td>$^3\text{He}$</td>
<td>1005 or 3-HELIUM 995 or -3-HELIUM</td>
</tr>
<tr>
<td>$^4\text{He}$</td>
<td>1006 or 4-HELIUM 994 or -4-HELIUM</td>
</tr>
<tr>
<td>fission fragments</td>
<td>1007-1012 993-988</td>
</tr>
</tbody>
</table>

No default

**SDUM**: not used

Default (option DISCARD not given): only neutrinos and antineutrinos are discarded by default. Set the WHATs = -5.0, -6.0, -27.0, -28.0, -43.0, -44.0 or NEUTRIE, ANEUTRIE, NEUTRIM, ANEUTRIM, NEUTRIT, ANEUTRIT in order to have them transported.

**Notes**

1. There is no limit to the number of DISCARD definitions given.
2. Discarding a particle means that that type of particle will possibly be produced but not transported.
3. The user may want to process some particle types with other programs providing only the production by the FLUKA code. These particles can be discarded. The results will then not contain the contribution of the discarded particle types and of their descendants.
4. Neutrinos are always discarded by default, to avoid useless tracking. To force neutrinos (or other particles) to be *not* discarded, make their particle number or name to be preceded by a minus sign. In that case, however, remember that:
   - no neutrino cross sections are available for transport in FLUKA: these particles are just tracked through the geometry until they escape. Boundary crossing and track-length density can however be scored if requested
   - if neutrinos are not discarded, their transport threshold is set = 0.0 by default. This value can be changed (by option PART–THR, p. 202), but it must be kept in mind that the energy of any neutrino produced below the threshold *will be deposited locally*, generating a likely bias in dose calculations.
5. **Warning**: discarding the particles which propagate the hadronic cascade (neutrons, protons, pions) will lead in general to unpredictable results.

Example (number-based):
This example illustrates a typical situation where the use of DISCARD can considerably reduce the computing time: for instance in pure hadronic or neutron problems (hadron fluence calculations without interest in energy deposition). In this case electrons, positrons, photons, muons and pi0 do not contribute to the result and can be discarded.

The same example, name-based:

```
DISCARD ELECTRON POSITRON PHOTON MUON+ MUON- PIZERO
```
7.16  ELCFIELD

Defines an homogenous electric field

See also MGNFIELD

NOT YET IMPLEMENTED!!

WHAT(1) = largest angle (in degrees) that a particle is allowed to travel in a single step
Default : 20°

WHAT(2) = error of the boundary iteration (minimum accuracy accepted in determining a boundary
intersection)
Default : 0.01 cm

WHAT(3) = minimum step if the step is forced to be smaller due to a too large angle
Default : 0.1 cm

WHAT(4) = E_x (x-component of the electric field, in kV/cm)
WHAT(5) = E_y (y-component of the electric field, in kV/cm)
WHAT(6) = E_z (z-component of the electric field, in kV/cm)

Note

1. This option is being implemented, but it is not yet operational.
7.17 EMF

Activates **ElectroMagnetic FLUKA**: transport of electrons, positrons and photons

See also DEFAULTS, DELTARAY, EMF–BIAS, EMFCUT, EMFFIX, EMFFLUO, EMFRAY, MULSOPT, PHOTONUC

**WHAT(1) – WHAT(6):** not used

**SDUM = EMF–OFF** to switch off electron and photon transport. Useful with the new defaults where EMF is on by default.

**Default** : EMF on

**Default** (option EMF not requested): if option DEFAULTS is not used, or if it is used with **SDUM = NEW–DEFAults, CALORIMetry, EM–CASCade, HADROTHErapy, ICARUS** or **PRECISIOn**, electrons, positrons and photons are transported. If DEFAULTS is used with **SDUM = EET/TRANsmut, NEUTRONS, SHIELDING** or anything else, electrons, positrons and photons are not transported (see Note 2). To avoid their energy to be deposited at the point of production, it is generally recommended to discard those particles (see Note 5). See also Table 7.1 at p. 100.

**Notes**

1. Option EMF is used to request a detailed transport of electrons, positrons and photons. Even if the primary particles are not photons or electrons, photons are created in high-energy hadron cascades, mainly as a product of \( \pi^0 \) decay, but also during evaporation and fission of excited nuclei; and capture gamma-rays are generated during low-energy neutron transport. Electrons can arise from muon decay or can be set in motion in knock-on collisions by charged particles (delta rays).

2. If EMF has been turned off by overriding the default (by setting **SDUM = EMF–OFF** or by a DEFAULTS option which switches off electron-photon transport, such as **EET/TRANsmut, NEUTRONS, SHIELDING**, not accompanied by an explicit EMF request), such electrons, positrons and photons are not transported and their energy is deposited on the spot at the point of creation unless those particles are **DISCARD**ed (see Note 5 below).

3. Of course, it is also mandatory to request option EMF (either explicitly or implicitly via option DEFAULTS, p. 95) in any pure electron, positron or photon problem (i.e., with electrons, positrons or photons as primary particles).

4. Using EMF without any biasing can lead to very large computing times, especially in problems of high primary energy or with low-energy cutoffs. See in particular leading-particle biasing with **EMF–BIAS** (p. 111).

5. In case of a pure hadron or neutron problem (e.g., neutron activation calculation) it is recommended to **DISCARD** electrons, positrons and photons (id-number 3, 4 and 7, see p. 107). In this case it is irrelevant whether the EMF card is present or not. Discarding only electrons and positrons, but not photons, may also be useful in some cases (for instance when calculating photon streaming in a duct).

6. An alternative is to set very large energy cutoffs for electrons and positrons (see **EMFCUT**, p. 116). That will result in the electron energy being deposited at the point of photon interaction (kerma approximation, often sufficient for transport of photons having an energy lower than a few MeV).

7. Hadron photoproduction is dealt with by option **PHOTONUC** (p. 204).

**Example:**

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
EMF EMF-OFF
* This command must be issued without any WHAT parameter.
```
7.18 EMF–BIAS

Sets electron and photon special biasing parameters, including leading particle biasing region by region, and mean free path biasing material by material

See also EMF, EMFCUT, LAM–BIAS

For SDUM = LPBEMF (default):

WHAT(1) > 0.0: Leading Particle Biasing (LPB) is activated. Which combination of leading particle biasing is actually set up depends on the bit pattern of WHAT(1).

Let WHAT(1) be represented as:

\[ 2^0b_0 + 2^1b_1 + 2^2b_2 + 2^3b_3 + 2^4b_4 + 2^5b_5 + 2^6b_6 + 2^7b_7 + 2^8b_8 + 2^9b_9 \]

where the meaning of the ten bits is the following:

- \( b_0 = 1 \): LPB activated for bremsstrahlung and pair production (old default)
- \( b_1 = 1 \): LPB activated for bremsstrahlung
- \( b_2 = 1 \): LPB activated for pair production
- \( b_3 = 1 \): LPB activated for positron annihilation at rest
- \( b_4 = 1 \): LPB activated for Compton scattering
- \( b_5 = 1 \): LPB activated for Bhabha & Møller scattering
- \( b_6 = 1 \): LPB activated for photoelectric effect
- \( b_7 = 1 \): LPB activated for positron annihilation in flight
- \( b_8 = 1 \): not used
- \( b_9 = 1 \): not used

Note that WHAT(1) = 1022 activates LPB for all physical effects (values larger than 1022 are converted to 1022)

- < 0.0: leading particle biasing is switched off
- \( = 0.0 \): ignored

WHAT(2) > 0.0: energy threshold below which leading particle biasing is played for electrons and positrons (for electrons, such threshold refers to kinetic energy; for positrons, to total energy plus rest mass energy)

- < 0.0: resets any previously defined threshold to infinity (i.e., leading particle biasing is played at all energies)
- \( = 0.0 \): ignored

This value can be overridden in the user routine UBSSET (p. 387) by assigning a value to variable ELPEMF

Default: leading particle biasing is played at all energies for electrons and positrons

WHAT(3) > 0.0: energy threshold below which leading particle biasing is played for photons

- < 0.0: resets any previously defined threshold to infinity (i.e., leading particle biasing is played at all energies)
- \( = 0.0 \): ignored

This value can be overridden in the user routine UBSSET (p. 387) by assigning a value to variable PLPEMF.

Default: leading particle biasing is played at all energies for photons

WHAT(4) = lower bound (or corresponding name) of the region indices where the selected leading particle biasing has to be played

("From region WHAT(4). . .")
**EMF–BIAS**

**Default** = 2.0

**WHAT(5)** = upper bound (or corresponding name) of the region indices where the selected leading particle biasing has to be played

("...to region WHAT(5)...")

**Default** = WHAT(4)

**WHAT(6)** = step length in assigning indices

("...in steps of WHAT(6)...")

**Default** = 1.0

**SDUM** = LPEBEMF (Leading Particle Biasing for EMF). This is the default, for other values of SDUM see below. This value can be overridden in the user routine _UBSSET_ (p. 387) by assigning a value to variable LPEMF.

For **SDUM** = LAMBEMF, LAMBCOMP, LAMBBREM, LBRREMF, LBRRCOMP, LBRRBREM: not yet implemented for photons!

**WHAT(1)** > 0.0 and < 1.0: the interaction mean free paths for all electron and positron electromagnetic interactions (SDUM = LAMBEMF), or for electron/positron bremsstrahlung only (SDUM = LAMBBREM) are reduced by a multiplying factor = WHAT(1)

\[ \text{Default} = 0.0; \text{ ignored} \]

< 0.0 or \( \geq 1.0 \): resets to default (no mean free path biasing for electrons and positrons)

**WHAT(2)** > 0.0 and < 1.0: the interaction mean free paths for all photon electromagnetic interactions (SDUM = LAMBEMF), or for Compton scattering only (SDUM = LAMBCOMP) are reduced by a multiplying factor = WHAT(2)

\[ \text{Default} = 0.0; \text{ ignored} \]

< 0.0 or \( \geq 1.0 \): resets to default (no mean free path biasing for photons)

**WHAT(3)** = generation up to which the biasing has to be applied

**Default** : biasing is applied only the first generation (i.e., the primary _BEAM_ or _SOURCE_ particles)

**WHAT(4)** = lower bound (or corresponding name) of the indices of materials in which the indicated mean free path biasing has to be applied

("From material WHAT(4)...")

**Default** = 3.0

**WHAT(5)** = upper bound (or corresponding name) of the indices of materials in which the indicated mean free path biasing has to be applied

("...to material WHAT(5)...")

**Default** = WHAT(4)

**WHAT(6)** = step length in assigning indices

("...in steps of WHAT(6)...")

**Default** = 1.0

**SDUM** = LAMBEMF (LAMbda Biasing for ElectroMagnetic FLUKA): mean free path biasing is applied to all electron, positron and photon interactions, and both the incident and the secondary particle are assigned a reduced weight
= LAMBCOMP (LAMbda Biasing for Compton interactions): mean free path biasing is applied only to photon Compton effect, and both the incident photon and the secondary electron are assigned a reduced weight

= LAMBBREM (LAMbda Biasing for BREMsstrahlung interactions): mean free path biasing is applied only to electron and positron bremsstrahlung, and both the incident electron/positron and the secondary photon are assigned a reduced weight

= LBRREMF (Lambda Biasing with Russian Roulette for ElectroMagnetic FLUKA): mean free path biasing is applied to all electron, positron and photon interactions, and the incident particle either is suppressed or survives with the same weight it had before collision, depending on a random choice

= LBRRCOMP (Lambda Biasing with Russian Roulette for Compton interactions): mean free path biasing is applied only to photon Compton effect, and the incident photon either is suppressed or survives with the same weight it had before collision, depending on a random choice

= LBRRBREM (Lambda Biasing with Russian Roulette for BREMsstrahlung interactions): mean free path biasing is applied only to electron and positron bremsstrahlung, and the incident electron/positron either is suppressed or survives with the same weight it had before collision, depending on a random choice

Default : LPBEMF (see above)

Default : (option EMF–BIAS not requested): none of the above biasings apply.

Notes

1. Depending on the SDUM value, different kinds of biasing are applied to the secondary particles issued from the reaction.

2. If SDUM = LPBEMF, the interaction point of electrons, positrons and photons is sampled analogically and Leading Particle Biasing is applied to the secondary particles.

3. With all other values of SDUM, the interaction point is sampled from an imposed (biased) exponential distribution, in a manner similar to that provided by option LAM–BIAS for hadrons and muons (p. 155). Further differences in SDUM values allow to restrict biasing to one specific type of interaction and/or to select different treatments of the incident particle.

4. If SDUM = LAMBEMF, LAMBCOM, LAMBBREM, the weights of both the incident and the secondary particle are adjusted according to the ratio between the biased and the physical interaction probability at the sampled distance.

5. If SDUM = LBRREMF, LBRRCOM, LBRRBREM, the suppression or survival of the incident particle (with unchanged weight) is decided by Russian Roulette with a probability equal to the ratio between the biased and the physical interaction probability at the sampled distance. The weight of the secondary particle is adjusted by the same ratio.

6. When using option EMF–BIAS, and in particular when choosing the Russian Roulette alternative, it is suggested to set also a weight window (cards WW–FACTOr, p. 286 and WW–THRESSh, p. 291) in order to avoid too large weight fluctuations.

7. LAMBCOMP (LBRRCOMP) and LAMBBREM (LBRRBREM) are synonyms: i.e., input concerning photon interaction biasing given with SDUM = LAMBBREM (LBRRBREM) is accepted and treated in the same way as with SDUM = LAMBCOMP (LBRRCOMP); and input concerning electron/positron interaction biasing with SDUM = LAMBCOMP (LBRRCOMP) is the same as with LAMBBREM (LBRRBREM). This allows to issue just a single EMF–BIAS card requesting both electron and photon interaction biasing at the same time.

8. Option EMF–BIAS concerns only electromagnetic interactions; photonuclear interaction biasing is provided by option LAM–BIAS (p. 155).

9. Leading Particle Biasing (LPB):
Leading particle biasing (available only for electrons, positrons and photons) is generally used to avoid the geometrical increase with energy of the number of particles in an electromagnetic shower. It is characteristic of all electromagnetic interactions that two particles are present in the final state: when this option is selected, only one of them (with a probability proportional to its energy) is randomly retained and its weight is adjusted
accordingly. Derived from the Egs4 implementation [140], it has been modified to account for the indirectly enhanced penetration potential of positrons due to the emission of annihilation photons. The probability of each of the two particles to be selected is therefore not proportional to their kinetic energy but rather to their “useful” energy (kinetic plus — in the case of positrons only — twice the mass energy).

The weight of the particle selected is adjusted multiplying it by the inverse of the selection probability. This kind of biasing is aimed at reducing the mean computing time per history rather than the variance of the scored quantities (computer cost is defined as the product of variance times the computing time per primary particle). It is mainly used to estimate shower punchthrough (but comparable and even better efficiency can be obtained with importance splitting, see BIASING, p. 82), or to reduce the time spent in simulating secondary electromagnetic showers produced by $\pi^-$ in hadronic cascades. As any other kind of biasing, leading particle biasing must be used with judgement, since it may lead to a slower convergence of dose estimation in some regions of phase space (see Note 5 to option BIASING).

In particular, the fact that the particle of highest energy is selected preferentially can have the following effects:

(a) the radial profile of the electromagnetic shower might be reproduced less efficiently. This is in general not very important for showers generated inside hadronic cascades, since the overall lateral spread is governed essentially by hadrons.

(b) a few low-energy particles might result with a very large weight giving rise to strong energy deposition fluctuations (this inconvenience can be limited to some extent by the use of a weight window). Therefore, biasing should be avoided in scoring regions and in adjacent ones, especially when using energy deposition bins of very small volume.

When applied in energy deposition calculations, the use of weight windows is recommended in order to avoid large local dose fluctuations (see WW–FACTOR, p. 286 and WW–THRESH, p. 291).

Example 1 (number-based):

```
+......1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
EMF–BIAS 152. 0. 5.E–4 16. 20. 2.LPBEMF
* LPB is applied in regions 16, 18 and 20 as regards Compton scattering
* below 0.5 MeV and positron annihilation in flight and at rest.
* Code 152 = 2^3 (annihilation at rest) + 2^4 (Compton) + 2^7
 (annihilation in flight).
```

The same example, name-based:

```
EMF–BIAS 152. 0. 5.E–4 Rsixteen Rtwenty 2.LPBEMF
```

Example 2 (number-based):

```
+......1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
EMF–BIAS 1022. 0.0 0.0 3.0 8.0
* LPB is applied in regions 3, 4, 5, 6, 7 and 8 for all electron and photon
 interactions at all energies
```

The same example, name-based:

```
EMF–BIAS 1022. 0.0 0.0 thirdReg eighthReg
```

Example 3 (number-based):

```
+......1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
EMF–BIAS 1022. 0.0 0.0 1.0 15.0
EMF–BIAS 1022. 0.0
WW–FACTOR 0.5 5.0 1.0 1.0 15.0
WW–FACTOR 0.5 5.0 0.2 7.0 11.0 2.0
WW–THRESH 1.0 0.001 20.0 3.0 4.0
WW–THRESH 1.0 1.E–4 20.0 7.0
```
The above example illustrates the combined use of leading particle biasing and a region-dependent weight-window. Leading particle biasing is requested in all regions from 1 to 15, except 7, 9 and 11. To avoid too large weight fluctuations, a weight window is defined such that at the lowest energies (<= 20 keV for photons and <= 200 keV for electrons in regions 7, 9, 11; <= 100 keV for photons and <= 1 MeV for electrons in the other regions), Russian Roulette will be played for particles with a weight <= 0.5 and those with weight larger than 5.0 will be splitted. The size of this window (a factor 10) is progressively increased up to 20 at the higher threshold (200 MeV for both electrons and photons in regions 7, 9 and 11, 1 GeV in the other regions).

The same example, name-based, assuming that the 15 regions are all the regions of the problem:

```
EMF-BIAS 1022. 0.0 0.0 first @LASTREG
EMF-BIAS -1. 0.0 0.0 seventh eleventh 2.0
WW-FACTOR 0.5 5.0 1.0 1.0 15.0
WW-FACTOR 0.5 5.0 0.2 seventh eleventh 2.0
WW-THRESH 1.0 0.001 20.0 ELECTRON POSITRON
WW-THRESH 1.0 1.0E-4 20.0 PHOTON
```
Sets the energy thresholds for electron and photon production in different materials, and electron and photon transport cutoffs in selected regions. It also allows to set an arbitrary energy threshold for all electron and photon interactions managed by EMF on a material basis. This is of course non-physical and it is provided primarily for particular studies where the user wants to switch off selectively a physical process. Only meaningful when the EMF option is chosen (explicitly or implicitly via option DEFAULTS).

See also EMF, PART–THR, MATERIAL

For SDUM = PROD–CUT:

<table>
<thead>
<tr>
<th>WHAT(1)</th>
<th>=</th>
<th>Energy threshold for electron and positron production in GeV:</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt; 0.0:</td>
<td></td>
<td>Energy threshold for electron and positron production is expressed as total energy (kinetic plus rest mass)</td>
</tr>
<tr>
<td>&lt; 0.0:</td>
<td></td>
<td>Energy threshold for electron and positron production is expressed as kinetic energy</td>
</tr>
<tr>
<td>= 0.0:</td>
<td></td>
<td>not allowed</td>
</tr>
<tr>
<td>Default</td>
<td>:</td>
<td>equal to the lowest electron transport cutoff in all regions made of this material (see Note 1)</td>
</tr>
</tbody>
</table>

WHAT(2) > 0.0: Energy threshold for γ production in GeV

WHAT(3) : FUDGEM parameter. This parameter takes into account the contribution of atomic electrons to multiple scattering. For production and transport cutoffs larger than 100 keV it must be set = 1.0, while in the keV region it must be set = 0.0

WHAT(4) = lower bound (or corresponding name) of the FLUKA material number where e± and photon production thresholds respectively equal to WHAT(1) and WHAT(2) apply. The material numbers or names are those pre-defined or assigned using a MATERIAL card. (“From material WHAT(4) . . .”)

WHAT(5) = upper bound (or corresponding name) of the FLUKA material number where e± and photon production thresholds respectively equal to WHAT(1) and WHAT(2) apply. The material numbers or names are those pre-defined or assigned using a MATERIAL card. (“. . . to material WHAT(5) . . .”)

WHAT(6) = step length in assigning the material number. (“. . . in steps of WHAT(6)”)

Default (option EMFCUT with SDUM = PROD–CUT not requested): production cutoffs in a material are set equal to the lowest transport cutoffs in the regions with that material.
For SDUM = blank, or PROMPT, or DELAYED:

\[ \text{WHAT(1)} \] = electron and positron transport energy cutoff in GeV. If SDUM = blank, the cutoff refers to all e\(^\pm\); if SDUM = PROMPT, it concerns only prompt ones; if SDUM = DELAYED, only electrons and positrons emitted as decay radiation.

- \( > 0.0 \): electron and positron cutoff is expressed as total energy (kinetic plus rest mass)
- \( < 0.0 \): electron and positron cutoff is expressed as kinetic energy
- \( = 0.0 \): not allowed.

This value can be overridden in the user routine UBSSET (p. 387) by assigning a value to variable ELECUT.

Default: the e\(^\pm\) transport cutoff is set equal to the production threshold for discrete electron interactions.

WHAT(2) > 0.0: photon transport energy cutoff (GeV). If SDUM = blank, the cutoff refers to all photons; if SDUM = PROMPT, it concerns only prompt ones; if SDUM = DELAYED, only photons emitted as decay radiation.

- \( = 0.0 \): not allowed.

This value can be overridden in the user routine UBSSET (p. 387) by assigning a value to variable GAMCUT.

Default: the photon transport cutoff is set equal to threshold for photon production by electron bremsstrahlung.

WHAT(3) = not used.

WHAT(4) = lower bound (or corresponding name) of the region indices with electron cutoff equal to \[ \text{WHAT(1)} \] and/or photon cutoff equal to WHAT(2).

(“From region WHAT(4) . . .”)

Default = 2.0

WHAT(5) = upper bound (or corresponding name) of the region indices with electron cutoff equal to \[ \text{WHAT(1)} \] and/or photon cutoff equal to WHAT(2).

(“. . . to region WHAT(5) . . .”)

Default = WHAT(4)

WHAT(6) = step length in assigning indices.

(“. . . in steps of WHAT(6)”)

Default = 1.0

Default (option EMFCUT with SDUM = blank not requested): transport cutoffs in a region are set equal to the production cutoffs in the material of that region.

For SDUM = ELPO–THR:

WHAT(1) > 0.0: kinetic energy threshold (GeV) for e\(^\pm\) bremsstrahlung

- \( = 0.0 \): ignored
- \( < 0.0 \): resets to default

Default = 1.0

WHAT(2) > 0.0: kinetic energy threshold (GeV) for Bhabha/Møller scattering

- \( = 0.0 \): ignored
- \( < 0.0 \): resets to default

Default = 1.0
WHAT(3) > 0.0: kinetic energy threshold (GeV) for e± photonuclear interactions
  = 0.0: ignored
  < 0.0: resets to default
  Default = 0.0

WHAT(4) – WHAT(6): see below

For SDUM = ANNH-THR:

WHAT(1) > 0.0: kinetic energy threshold (GeV) for e+ annihilation
  = 0.0: ignored
  < 0.0: resets to default
  Default = 0.0

WHAT(2) – WHAT(3): not used

WHAT(4) – WHAT(6): see below

For SDUM = PHOT-THR:

WHAT(1) > 0.0: energy threshold (GeV) for Compton scattering
  = 0.0: ignored
  < 0.0: resets to default
  Default = 0.0

WHAT(2) > 0.0: energy threshold (GeV) for photoelectric effect
  = 0.0: ignored
  < 0.0: resets to default
  Default = 0.0

WHAT(3) > 0.0: energy threshold (GeV) for gamma pair production
  = 0.0: ignored
  < 0.0: resets to default
  Default = 0.0

WHAT(4) – WHAT(6): see below

For SDUM = PHO2-THR:

WHAT(1) > 0.0: energy threshold (GeV) for Rayleigh scattering
  = 0.0: ignored
  < 0.0: resets to default
  Default = 0.0

WHAT(2) > 0.0: energy threshold (GeV) for photonuclear interactions
  = 0.0: ignored
  < 0.0: resets to default
  Default = 0.0

WHAT(3) : not used

WHAT(4) – WHAT(6): see below
**For SDUM = ELPO-THR, ANNH-THR, PHOT-THR, PHO2-THR:**

**WHAT(4) =** lower bound (or corresponding name) of the material indices in which the respective thresholds apply.  
("From material WHAT(4)...")

**Default =** 3.0

**WHAT(5) =** upper bound (or corresponding name) of the material indices in which the respective thresholds apply.  
("... to material WHAT(5)...")

**Default =** WHAT(4)

**WHAT(6) =** step length in assigning indices.  
("... in steps of WHAT(6)")

**Default =** 1.0

**Default (option EMFCUT not requested):** Transport cutoffs are set equal to production thresholds for discrete electron interactions and for discrete photon production.

**Notes**

1. Default values are available for the electron and photon production thresholds in electromagnetic interactions, but they are generated by a complex logic based on possible other settings (transport cutoffs, delta-ray production thresholds, DEFAULTS card, other defaults). It is not always guaranteed that the resulting values be appropriate to the problem of interest. Therefore, in order to have a good control of the physics, the user is recommended to provide explicit threshold values, or at least to check them on the main output.

2. Electron and positron transport cutoffs (indicated in the main output with $E_{cut}$) and photon transport cutoffs ($P_{cut}$) are assigned by region, while electron/positron production cutoffs ($A_e$) and photon production cutoffs ($A_p$) are assigned by material.  
   When the transport cutoffs in a given region are larger than those of production for discrete interactions in the corresponding material, particles with energy higher than production thresholds and lower than transport cutoffs are not transported but are still generated (their energy is deposited at the point of production). It is suggested to avoid such a situation unless it is really necessary, as particle generation demands a considerable computer time and partially offsets the gain due to a higher transport cutoff.  
   When instead the transport cutoffs are lower than the production ones, they are increased to be equal to them.

3. The minimum threshold energy for transport and production of photons is 100 eV. For electrons and positrons, it is 1 keV.

4. Different transport cutoffs for prompt and decay $e^+ / e^- / \gamma$ can be set also by WHAT(5) of command RADDECAY, but only identically for all regions, while EMFCUT with SDUM = PROMPT or DELAYED can be tuned per region.

**Example 1 (number-based):**

\[
\begin{array}{ccccccc}
\text{EMFCUT} & -1.0E-5 & 1.0E-5 & 0.0 & 4.0 & 8.0 & \text{PROD-CUT} \\
\end{array}
\]

* A production threshold of 10 keV is set for electrons, positrons and photons in all materials from 4 to 8.

**Example 2 (number-based):**

\[
\begin{array}{cccccc}
\text{EMFCUT} & -1.0E-5 & 1.0E-5 & 0.0 & \text{HELIUM} & \text{OXYGEN} & \text{PROD-CUT} \\
\end{array}
\]
A kinetic energy transport cutoff for electrons and positrons is set at 100 keV in regions 7, 9, and 11 and at 2 MeV in all other regions from 1 to 15. Photon transport cutoff is set equal to 10 keV in regions 7, 9, 11 and to 200 keV in the other regions.

The same example, name-based, assuming that the 15 regions are all the regions of the problem:

EMFCUT -0.002 2.E-4 1.0 FirstReg @LASTREG
EMFCUT -1.0E-4 1.E-5 -1.0 Seventh Eleventh 2.0
7.20 **EMFFIX**

Sets the size of electron steps corresponding to a fixed fraction of the total energy. The setting is done by material, giving as many EMFFIX definitions as needed. Only meaningful when the EMF option has been requested (explicitly or implicitly via option DEFAULTS).

See also EMF, FLUKAFIX, MULSOPT, STEPSIZE

WHAT(1) = index or name of the material concerned

WHAT(2) = maximum fraction of the total energy to be lost in a step

**Default**: 20% (it is strongly recommended not to set higher than this value!)

WHAT(3) = same as WHAT(1)

WHAT(4) = same as WHAT(2)

WHAT(5) = same as WHAT(1)

WHAT(6) = same as WHAT(2)

**SDUM** = PRINT : electron and positron dE/dx and maximum allowed step tabulations for this material are printed

= NOPRINT : tabulations are not printed (cancels any previous PRINT request for the given materials)

blank : ignored

**Default** = NOPRINT

**Default** (option EMFFIX not requested): the energy lost per step is 20% for all materials.

**Notes**

1. The default provided (step length such that 20% of the energy is lost) is acceptable for most routine problems. In dosimetry problems and in thin-slab geometries it is recommended not to exceed 5–10%.

For a detailed discussion of the step length problem, see [81].

2. Related options are STEPSIZE (p. 245), MCSTHRESH (p. 176), FLUKAFIX (p. 136) and MULSOPT (p. 180). MCSTHRESH and FLUKAFIX concern only heavy charged particles (hadrons and muons), while STEPSIZE applies to all charged particles (hadrons, muons, electrons and positrons). However, STEPSIZE defines the steplength in cm and by region, while EMFFIX relates the step length to the maximum allowed energy loss and is based on materials. STEPSIZE works also in vacuum and is adapted to problems with magnetic fields; if both options are used, the smallest of the two steps is always chosen. Note however that if a step required by STEPSIZE is too small for the Molière algorithm, multiple scattering is turned off (contrary to what happens with EMFFIX). MULSOPT is very CPU-time consuming; however, it gives the highest accuracy compatible with the Molière theory. It is used rarely, mostly in low-energy and in backscattering problems.
Example (number based):

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....
MATERIAL 13.  0.0  2.6989  3.  0.  0. ALUMINUM
MATERIAL 82.  0.0  11.35  4.  0.  0. LEAD
MATERIAL 29.  0.0  8.96  12.  0.  0. COPPER
MATERIAL 6.  0.0  2.00  26.  0.  0. CARBON
MATERIAL 7.  0.0  0.012  27.  0.  0. NITROGEN
MATERIAL 8.  0.0  0.014  28.  0.  0. OXYGEN
MATERIAL 1.  0.0  0.001  29.  0.  0. HYDROGEN
MATERIAL 0.  0.0  1.0000  30.  0.  0. TISSUE
COMPOUND 5.57E-3  26.0  1.118E-3  27.  2.868E-2  28. TISSUE
COMPOUND 6.082E-2  29.0  0.0  0.0  0.0  0.0 TISSUE
EMFFIX  3.  0.15  4.  0.15  12.  0.15
EMFFIX  30.  0.05  0.  0.0  0.  0.0 PRINT

* In this example, a maximum energy loss per step of 15% is requested
* for aluminium, copper and lead, while a more accurate 5% is requested
* for tissue

The same example, name based:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....
MATERIAL 13.  0.0  2.6989  0.0  0.  0. ALUMINUM
MATERIAL 82.  0.0  11.35  0.0  0.  0. LEAD
MATERIAL 29.  0.0  8.96  0.0  0.  0. COPPER
MATERIAL 6.  0.0  2.00  0.0  0.  0. CARBON
MATERIAL 7.  0.0  0.012  0.0  0.  0. NITROGEN
MATERIAL 8.  0.0  0.014  0.0  0.  0. OXYGEN
MATERIAL 1.  0.0  0.001  0.0  0.  1. HYDROGEN
MATERIAL 0.  0.0  1.0000  0.0  0.  0. TISSUE
COMPOUND 5.57E-3  CARBON  1.118E-3  NITROGEN  2.868E-2  OXYGEN TISSUE
COMPOUND 6.082E-2  HYDROGEN  0.0  0.0  0.0  0.0 TISSUE
EMFFIX  ALUMINUM  0.15  LEAD  0.15  COPPER  0.15
EMFFIX  TISSUE  0.05  0.0  0.0  0.0 PRINT
7.21 EMFFLUO

Activates a detailed treatment of photoelectric interactions and of the following atomic deexcitation, with production of fluorescence X-rays (and a rough treatment of Auger electrons)

See also EMF

This option, meaningful only if the EMF option has been requested (explicitly or implicitly via option DEFAULTS), requires a special unformatted file, pre-connected as logical input unit 13 (see Chap. 3). This file is delivered with the FLUKA code.

WHAT(1) > 0.0: set fluorescence on
< 0.0: set fluorescence off
= 0.0: ignored
Default = -1.0 (no fluorescence) if option DEFAULTS is not used, or if it is used with anything but CALORIMEtry, DAMAGE, EM–CASCAde, HADROTherapy, ICARUS or PRECI-SION.

WHAT(2) = lower bound (or corresponding name) of the material indices in which fluorescence is activated ("From material WHAT(2)...")
Default = 3.0

WHAT(3) = upper bound (or corresponding name) of the material indices in which fluorescence is activated ("... to material WHAT(3)...")
Default = WHAT(2)

WHAT(4) = step length in assigning indices ("... in steps of WHAT(4)"")
Default = 1.0

WHAT(5), WHAT(6), SDUM: not used

Default (option EMFFLUO not requested): fluorescence is not simulated unless option DEFAULTS is chosen with SDUM = CALORIMEtry, DAMAGE, EM–CASCA, HADROTherapy, ICARUS or PRECI-SION.

See also Table 7.1 at p. 100.

Notes

1. Selection of EMFFLUO option is only meaningful for a material defined with electron and photon cutoffs lower than the highest K-edge in the elements constituents of that material.

2. When EMFFLUO is activated for a compound material, if the incident photon energy is lower than the highest K-edge for any constituent element, FLUKA uses separate parameterised representations of the photoelectric cross section between different edges of each constituent element (all levels are tabulated).

If the photon energy is higher than the highest K-edge, average cross sections for the compound are used, but FLUKA still samples a single element on which to interact, in order to generate the correct fluorescence photon or Auger electron.

Example (number-based):

```
......1....+....2....+....3....+....4....+....5....+....6....+....7....
EMF
EMFCUT 1.E-5 1.E-5 0.0 17. 18.
EMFFLUO 1.0 17. 18.
* In the above example, the user activates fluorescence production in
* Lead and Tantalum (standard FLUKA material numbers 17 and 18). The
```
* photon and electron cutoff has been set at 10 keV (the K-edge for Pb and Ta is of the order of 100 keV).

The same example, name-based:

```
EMF
EMFCUT 1.E-5 1.E-5 0.0 LEAD TANTALUM
EMFFLUO 1.0 LEAD TANTALUM
```
Activates Rayleigh (coherent) scattering, Compton binding corrections and profile function corrections, and acolinearity in annihilation at rest in selected regions. Only meaningful when the EMF option has been requested, explicitly or implicitly via option DEFAULTS.

See also EMF

**WHAT(1)**
<  
no Rayleigh scattering and neither binding corrections nor Compton profile function, no acolinearity in annihilation at rest
0.0: no acolinearity in annihilation at rest
1.0: both Rayleigh scattering and Compton binding corrections are activated, no Compton profile function, no acolinearity in annihilation at rest
2.0: only Rayleigh scattering is activated, naive Compton
3.0: only Compton binding corrections are activated
4.0: all Rayleigh, binding corrections, and profile function in Compton are activated, no acolinearity in annihilation at rest
5.0: only Rayleigh scattering is activated, naive Compton
6.0: only binding corrections and profile function in Compton are activated, no Rayleigh, no acolinearity in annihilation at rest
100.0: ignored for Rayleigh and Compton, acolinearity in annihilation at rest activated
101.0: both Rayleigh scattering and Compton binding corrections are activated, no Compton profile function, acolinearity in annihilation at rest activated
102.0: only Rayleigh scattering and acolinearity in annihilation at rest activated, naive Compton
103.0: binding corrections in Compton only and acolinearity in annihilation at rest activated, no Rayleigh
104.0: all Rayleigh, binding corrections and profile function in Compton, acolinearity in annihilation at rest activated
105.0: Rayleigh and acolinearity in annihilation at rest activated, naive Compton
106.0: binding corrections and profile function in Compton are activated, no Rayleigh, acolinearity in annihilation at rest activated

Default: if option DEFAULTS is used with SDUM = CALORIMetry, EM–CASCAde, ICARUS, HADROTherapy, PRECISION or DAMAGE the default is 104.0.
With any other value of SDUM or if option DEFAULTS is not used, the default is 3.0.

**WHAT(2)**
= lower bound (or corresponding name) of the region indices where Rayleigh scattering and/or Compton binding corrections and/or Compton profile function and/or acolinearity in annihilation at rest are requested.
("From region WHAT(2)...")

Default = 2.0

**WHAT(3)**
= upper bound (or corresponding name) of the region indices where Rayleigh scattering and/or Compton binding corrections and/or Compton profile function and/or acolinearity in annihilation at rest are requested.
("... to region WHAT(3)...")

Default = WHAT(2)

**WHAT(4)**
= step length in assigning indices.
("... in steps of WHAT(4)")

Default = 1.0

WHAT(5), WHAT(6), SDUM: not used
**Default** (option EMFRAY not requested): if option DEFAULTS is used with $\text{SDUM} = \text{CALORIMEtry, EMCASTAUde, ICARUS, HADROTHErapy, PRECISIOon, or DAMAGE}$, Rayleigh scattering, binding corrections and profile function in Compton, and acolinearity in annihilation at rest are activated. With any other value of $\text{SDUM}$ or if option DEFAULTS is not used, only binding corrections in Compton scattering are activated.

See also Table 7.1 at p. 100.

**Notes**

1. The treatment of Rayleigh scattering is rather poor for non monoatomic materials (it assumes additivity and does not take into account important molecular effects). However, Rayleigh scattering, in general, has little effect on energy deposition and on particle transport.

2. The full treatment of electron binding and motion in Compton scattering (referred above as “binding corrections and profile function”) is now available. It is particular important for low energies and/or heavy materials, and in general for all problems where the best accuracy for photon transport is requested.

Example (number based):

```
...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
EMF EMFRAY 1.0 8.0 12.0 4.0
EMFRAY 3.0 9.0 15.0 2.0
```

* In the above example, Compton binding corrections are requested in regions 8 to 15, excluding regions 10 and 14.
* Rayleigh scattering is requested only in regions 8 and 12

The same example, name-based:

```
EMF EMFRAY 1.0 EightReg TwelvReg 4.0
EMFRAY 3.0 NineReg FifteenR 2.0
```
7.23 EVENTBIN

For calorimetry only.
Superimposes a binning structure to the geometry and prints the result after each “event”

See also USRBIN, EVENTDAT

For a description of input for this option, refer to USRBIN (7.83). Meaning of WHATs and SDUM is practically identical for the two options. The only difference here is that if WHAT(1) is given with a negative sign, only non-zero data (“hit cells”) are printed.

For Cartesian binning, WHAT(1) = 0.0 prints all cells, and a negative number > -0.5 must be used to print only the “hit cells”.

See Note 2 below and Note 3 to option ROTPRBIN (p. 231).

This card is similar to USRBIN (p. 263), but the binning data are printed at the end of each event (primary history).

Information about the binning structure is printed at the beginning, then binning data are printed at the end of each event without any normalisation (i.e., energy per bin and not energy density per unit incident particle weight).

If the sign of WHAT(1) in the first card defining the binning is negative, only those elements of the binning which are non zero are printed at the end of each event, together with their index.

Default (option EVENTBIN not requested): no event-by-event binning.

To read EVENTBIN unformatted output, see instructions for USRBIN, with the following differences:

- first all binning definitions are written
- then, for each event all binnings are dumped, two records for each binning:
  - First record: NB, NCASE, WEIGHT (resp. binning number, number and weight of the event)
  - Second record: binning energy deposition data (see USRBIN)
- if the LNTZER flag (only non-zero cells) is activated, the energy deposition can be read as
  
  \[
  \text{READ (...) NHITS, (IHELP(J), GMHELP(J), J = 1, NHITS)}
  \]

  where:
  - IHELP = cell index = IX + (IY-1)*NX + (IZ-1)*NX*NY
  - GMHELP = cell content

Notes

1. Normally, this option is meaningful only in fully analogue runs. Any biasing option should be avoided, and a GLOBAL declaration with WHAT(2) < 0.0 is recommended (p. 145). Also, it is recommended to request an option DEFAULTS with SDUM = CALORIMetry, ICARUS or PRECISION (p. 95).

2. In many cases, binnings defined by EVENTBIN result in a number of sparse “hit” cells, while all other bins are empty (scoring zero). In such cases, it is convenient to print to file only the content of non-empty bins. In these circumstances, it may also be convenient to allocate a reduced amount of storage (see option ROTPRBIN, p. 231), and in particular the Note 3 to that option.
Example 1 (number-based):

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....

EVENTBIN 10.0 208.0 25.0 150.0 200.0 180. Firstscore

The above example, the user requests an event-by-event scoring of energy deposition (generalised particle 208), in a Cartesian three-dimensional array. The bins are 4 cm wide in x (75 bins between x = -150 and x = 150), 2 cm wide in y (50 bins between y = 100 and y = 200), and 10 cm wide in z (20 bins between z = -20 and z = 180).

The results are written, formatted, on logical unit 25. The name given to the binning is "Firstscore".

The same example, name-based:

EVENTBIN 10.0 ENERGY 25.0 150.0 200.0 180. Firstscore

Example 2 (number-based):

* Event-by-event scoring of photon fluence in a cylindrical mesh of 1200x3800 bins 1 mm wide in R and Z. Results are written unformatted on logical unit 27. The user requests not to print bins with zero content.

EVENTBIN -11.0 7.0 -27.0 600.0 0.0 1900. Bigcylindr

The same example, name-based:

EVENTBIN -11.0 PHOTON -27.0 600.0 0.0 1900. Bigcylindr
7.24 EVENTDAT

For calorimetry only.
Prints event by event the scored star production and/or energy deposition in each region, and the total energy balance. energy deposition star production

See also EVENTBIN, SCORE

EVENTDAT requests separate scoring by region of energy and/or star density for each event (primary history). The quantities to be scored are defined via a SCORE command (see SCORE for details, p. 234). As for SCORE, a maximum per run of 4 different energy or star densities is allowed. The EVENTDAT output includes also a detailed energy balance event by event.

WHAT(1) = output unit. If WHAT(1) < 0.0, the output is unformatted. Values of |WHAT(1)| < 21 should be avoided (with the exception of +11).

Default = 11 (standard output)

WHAT(2) – WHAT(6): not used

SDUM = output file name (no default!). Max. 10 characters.

Default (option EVENTDAT not requested): no event by event scoring

Notes

1. Unformatted data are written as follows.
   Once, at the beginning of the run:
   RUNTIT, RUNTIM, NREGS, NSCO, (ISCORE(IS), IS = 1, NSCO)
   Then, for each primary particle:

   - NCASE, WEIPRU, ENETOT
   - (ENDIST(IE), IE = 1, 12)
   - Then, NSCO times:
     - (ISC, ISCORE(ISC))
     - (REGSCO(IR,ISC), IR = 1, NREGS)
   - one dummy record (for historical reasons):
     NDUM, DUM1, DUM2
   - ISEED1, ISEED2, SEED1, SEED2, SOPP1, SOPP2

   where:
   RUNTIT = title of the run (CHARACTER*80 variable), which appears also at the beginning of the standard output
   RUNTIM = time of the run (CHARACTER*32 variable), which appears also at the beginning of the standard output
   NREGS = number of regions
   NSCO = number of scoring distributions requested by SCORE
   ISCORE(I) = Ith requested (generalised) particle distribution (see 5.1)
   NCASE = number of primaries handled so far (current one included)
   WEIPRU = primary weight
EVENTDAT

**ENETOT** = primary particle total energy (GeV)

**ENDIST(I)** = 12 energy contributions to the total energy balance, some of which appear also at the end of the standard output. Here they are given separately for each primary history (in GeV) and *not* normalised to the weight of the primary. Note that some of the contributions are meaningful only in specific contexts (e.g., if low-energy neutron transport has been requested).

**ENDIST(1)** = energy deposited by ionisation

**ENDIST(2)** = energy deposited by π⁰, electrons, positrons and photons

**ENDIST(3)** = energy deposited by nuclear recoils and heavy fragments

**ENDIST(4)** = energy deposited by particles below threshold

**ENDIST(5)** = energy leaving the system

**ENDIST(6)** = energy carried by discarded particles

**ENDIST(7)** = residual excitation energy after evaporation

**ENDIST(8)** = energy deposited by low-energy neutrons (kerma, proton recoil energy not included)

**ENDIST(9)** = energy of particles out of the time limit

**ENDIST(10)** = energy lost in endothermic nuclear reactions (gained in exothermic reactions if < 0.0) above 20 MeV (not implemented yet)

**ENDIST(11)** = energy lost in endothermic low-energy neutron reactions (gained in exothermic reactions if < 0.0) (not implemented yet)

**ENDIST(12)** = missing energy

**REGSCO(IR, ISC)** = energy or stars (corresponding to the ISCth generalised particle distribution) deposited or produced in the IRth region during the current primary history. *Not* normalised, neither to the primary weight nor to the region volume.

**NDUM, DUM1, DUM2** = three dummy variables, with no meaning

**ISEED1, ISEED2, SEED1, SEED2, SOPP1, SOPP2** = random number generator information to be read in order to reproduce the current sequence (skipping calls, see option RANDOMIZE, p. 224).

2. All the above quantities are written in single precision (**REAL*4**), except **RUNTIT** and **RUNTIM** (which are of type **CHARACTER**) and those with a name beginning with **I, J, K, L, M, N** (which are integer).

3. The different items appearing in the **EVENTDAT** energy balance may sometimes give overlapping information and are not all meaningful in every circumstance (for instance residual excitation energy is meaningful only if gamma deexcitation has not been requested). Unlike the balance which is printed at the end of standard output, these terms are not additive.

4. An example on how to read **EVENTDAT** unformatted output is given below.

```fortran
PROGRAM RDEVDT
 CHARACTER*80 RUNTIT, FILNAM
 CHARACTER*32 RUNTIM
 DIMENSION ISCORE(4), ENDIST(12), REGSCO(5000,4)
 WRITE(*,*) 'Name of the EVENTDAT binary file?'
 READ(*,'(A)') FILNAM
 IB = INDEX(FILNAM, ' ')
 OPEN(UNIT = 7, FORM = 'UNFORMATTED', FILE = FILNAM(1:IB-1),
 & STATUS = 'OLD')
 OPEN(UNIT = 8, FORM = 'FORMATTED', FILE = FILNAM(1:IB-1)//'.txt',
 & STATUS = 'NEW')
 * Once, at the beginning of the run:
 READ(7) RUNTIT, RUNTIM, NREGS, NSCO, (ISCORE(IS), IS = 1, NSCO)
```

Once, at the beginning of the run:

```fortran
READ(7) RUNTIT, RUNTIM, NREGS, NSCO, (ISCORE(IS), IS = 1, NSCO)
```
WRITE(8,'(A80)') RUNTIT
WRITE(8,'(A32)') RUNITM
WRITE(8,'(A16,5X,A,I4)') 'Number of regions: ', NREGS,
& ' Number of scored quantities: ', NSCO
WRITE(8,'(A,4I6)') 'The scored quantities are: ',
& (ISCORE(IS), IS = 1, NSCO)

* Loop on each primary particle:
100 CONTINUE
WRITE(8,*)
READ(7,END=300) NCASE, WEIPRU, ENETOT
WRITE(8,'(A,I10,1P,2G12.4)') 'NCASE, WEIPRU, ENETOT: ', NCASE, WEIPRU, ENETOT
READ(7) (ENDIST(IE), IE = 1, 12)
WRITE(8,'(A)') 'ENDIST: '
DO 400 IE = 1, 12, 2
WRITE(8,'(2(I5,5X,1P,G12.4))') IE,ENDIST(IE),IE+1,ENDIST(IE+1)
400 CONTINUE
DO 200 ISC = 1, NSCO
READ(7) IISC, ISCORE(ISC)
* IISC is redundant, must be equal to ISC
IF(IISC .NE. ISC) STOP 'Wrong sequence'
WRITE(8,'(A,I2,A,I3,A)') 'Quantity n. ',ISC, ' (',ISCORE(ISC),'):'
READ(7) (REGSCO(IR,ISC), IR = 1, NREGS)
WRITE(8,*)'Scoring per region:'
DO 500 IR = 1, NREGS
WRITE(8,'(I7,3X,1P,G12.4)') IR, REGSCO(IR,ISC)
500 CONTINUE
200 CONTINUE
READ(7) NDUM, DUM1, DUM2
IF (DUM1 .LT. 0.) THEN
* DUM1 < 0 is used to signal that seeds follow
READ(7) ISEED1, ISEED2, SEED1, SEED2, SOPP1, SOPP2
WRITE(8,*) ISEED1, ISEED2, SEED1, SEED2, SOPP1, SOPP2
ELSE
BACKSPACE 7
END IF
* This event is finished, start again with the next one
GO TO 100
300 CONTINUE
WRITE(8,*) "End of a run of ", NCASE, " particles"
CLOSE (UNIT = 7)
CLOSE (UNIT = 8)
END

Example (number-based):
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
SCORE 208. 211. 201. 8. 0. 0. 0. 0. 0. 0. 0. EVT.SCOR
EVENTDAT -23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. EVT.SCOR
* In this example, the user requests (with option SCORE) scoring of
* total and electromagnetic energy deposition, total stars and
* neutron-produced stars. The average scores for each region will be
* printed on standard output (as an effect of SCORE command), and
* corresponding scores, as well as the energy balance, will be written
* separately for each primary particle on an unformatted file EVT.SCOR
The same example, name-based:

<table>
<thead>
<tr>
<th>SCORE</th>
<th>ENERGY</th>
<th>EM-ENRGY</th>
<th>ALL-PART</th>
<th>NEUTRON</th>
<th>0.000000</th>
<th>0.000000</th>
<th>0.000000</th>
<th>0.000000</th>
<th>0.000000</th>
<th>EVT.SCOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-23.</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
7.25 **EXPTRANS**

Requests an exponential transformation (“path stretching”)

**NOT YET IMPLEMENTED!!!**

WHAT(1) $\geq 0.0$: WHAT(2)...WHAT(5) are used to input a parameter defining the exponential transformation in various regions

WHAT(2) $<$ 0.0: WHAT(2)...WHAT(5) are used to define the particles to which the exponential transformation must be applied

Default $= 0.0$

**For WHAT(1) $\geq 0.0$:**

WHAT(2) = exponential transformation parameter $\eta$ ($0.0 \leq |\eta| < 1.0$).

This value can be overridden in user routine UBSSET (p. 387) by assigning a value to variable EXPTR

Default $= 0.0$

WHAT(3) = lower bound (or corresponding name) of the region indices with exponential transformation parameter $\eta = \text{WHAT}(2)$

(“From region $\text{WHAT}(3)$...”)

Default $= 2.0$

WHAT(4) = upper bound (or corresponding name) of the region indices with exponential transformation parameter equal to $\text{WHAT}(2)$

(“...to region $\text{WHAT}(4)$...”)

Default $= \text{WHAT}(3)$

WHAT(5) = step length in assigning indices.

(“...in steps of $\text{WHAT}(5)$”)

Default $= 1.0$

WHAT(6) and SDUM: not used

**For WHAT(1) $< 0.0$:**

WHAT(2) = lower bound (or corresponding name) of the particle indices to which exponential transformation is to be applied

(“From particle $\text{WHAT}(2)$...”)

Default $= 1.0$

WHAT(3) = upper bound (or corresponding name) of the particle indices to which exponential transformation is to be applied

(“...to particle $\text{WHAT}(3)$...”)

Default $= \text{WHAT}(2)$ if $\text{WHAT}(2) > 0.0$, otherwise $= 40.0$ (low-energy neutrons)

WHAT(4) = step length in assigning indices.

(“...in steps of $\text{WHAT}(4)$”)

Default $= 1.0$

WHAT(5), WHAT(6) and SDUM: not used
**Default** (option EXTRANS not given): no exponential transformation is applied

Example (number based):
```
...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
EXPTRANS 1. 0.8 10. 18. 8. 0.
EXPTRANS -1. 7. 8. 0. 0. 0.
```
* Exponential transformation is requested for photons (particle no. 7) and neutrons (particle 8), in regions 10 and 18 with an ETA parameter equal to 0.8

The same example, name-based:
```
EXPTRANS 1. 0.8 tenthReg eighteen 8. 0.
EXPTRANS -1. PHOTON NEUTRON 0. 0. 0.
```
**7.26 FIXED**

| Re-establishes fixed-format input after a *FREE* command |

See also *FREE*, *GLOBAL*

**WHAT(1) – WHAT(6)** and *SDUM* are not used.

**Default** (option *FIXED* not given): the following input is in free format if a *FREE* (p. 137) command has been previously issued, or is all in free format if it has been chosen via a *GLOBAL* command (p. 145).

In any other case, input is in fixed format.
### 7.27 FLUKAFIX

Sets the size of the step of muons and charged hadrons to a fixed fraction of the kinetic energy in different materials.

See also EMFFIX, MULSOPT, STEPSIZE

**WHAT(1)** = fraction of the kinetic energy to be lost in a step (must not be $> 0.2$)

**Default**: if option DEFAULTS is used with SDUM = ICARUS, the default is 0.02. With SDUM = HADROTHErapy or PRECISION, the default is 0.05. If SDUM = CALORIMEtry, the default is 0.08. With any other SDUM value, or if DEFAULTS is missing, the default is 0.1.

**WHAT(4)** = lower index bound (or corresponding name) of materials where the specified energy loss per step is to be applied.

(“From material WHAT(4) . . .”)

**Default** = 3.0

**WHAT(5)** = upper index bound (or corresponding name) of materials where the specified energy loss per step is to be applied.

(“. . . to material WHAT(5) . . .”)

**Default** = WHAT(4)

**WHAT(6)** = step length in assigning indices.

(“. . . in steps of WHAT(6)”)

**Default** = 1.0

**SDUM** : not used

**Default** (option FLUKAFIX not given): the defaults listed above apply. See also Table 7.1 at p. 100.

### Notes

1. Usually there is no need for changing the default value of 10% (0.1) for WHAT(1).

2. The input value is actually applied as such only at intermediate energies (between about a few tens of MeV and 1 GeV): at low energies it is slowly increased to twice the requested value, while at high energies it decreases to a limit about $\frac{1}{100}$ of the input value.

**Example (number based):**

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....*

FLUKAFIX 0.03 0. 0. 21. 0. 0.

* The maximum fractional energy loss for hadrons and muons is set to
* 3 percent in material 21.

**Example (name based):**

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....*

FLUKAFIX 0.03 0. 0. CALCIUM 0. 0.

The same example, name based:
7.28 FREE

Activates free-format input

See also FIXED, GLOBAL

WHAT(1) – WHAT(6) and SDUM are not used.

**Default** (option FREE not given): input must follow the standard FLUKA format \((A8,2X,6E10.0,A8)\) (see Chap. 6), unless free format has been chosen via a GLOBAL command (p. 145)

**Notes**

1. FREE can be given at any point in input, excluding the geometry. All successive input (excepted the geometry) will be read in free format, VOXELS and LATTICE cards included, until a FIXED (p. 135) command will possibly re-establish fixed-format input.

2. In free-format input, keywords, WHATs and SDUMs do not need to be aligned in columns but can be written anywhere on the input line, alternating with “separators” in a manner similar to that of list-oriented format in Fortran (but character strings — keywords and SDUMs — must not be put between quotes!). A separator is any one of the following:
   - One of the five characters \(,\) (comma), \(;\) (semicolon), \(\%\) (percent), \(\backslash\) (backslash), \(:\) (colon), preceded or not by one or more blanks, and followed or not by one or more blanks
   - One or more successive blanks without any non-blank separator

3. Different separators may be used on the same line.

4. If a non-blank separator is immediately followed by another one (with or without blanks in between), a value of 0.0 is assumed to be given between them.

5. Zero values must be given explicitly or as empty places between two non-blank separators as explained above.

6. Geometry input (i.e., input between GEOBEGIN and GEOEND cards not included, see Chap. 8) must still respect the column format described in Chapter 8, except if free-format geometry input has been requested by GLOBAL.

7. PLOTGEOM input, whether in a separate file PLG.GFXINDAT or directly after a PLOTGEOM card in standard input, must still be formatted as shown in the description of that option (see p. 215).

8. If FREE has been issued, from then on all constants must be written without any blank imbedded (e.g., \(5.3 \ \text{E-5}\) is not allowed, but must be written \(5.3\ \text{E-5}\) or \(5.30\ \text{E-5}\))

9. Free format, if requested, applies to option cards of the form
   \[
   \text{KEYWORD} \quad \text{WHAT(1)} \quad \text{WHAT(2)} \quad \ldots \ldots \quad \text{WHAT(6)} \quad \text{SDUM}
   \]
   but not to any data card specific to certain options (for instance the card following TITLE)

10. Free format can be requested also by option GLOBAL (p. 145), but extended to the whole input and not only from the point where the command is issued. GLOBAL can also be used to request free format geometry input.

**Example 1:**
The following fixed-format input line

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
BEAM 20. 0.0 -1.0 E-2 -0.02 1.0 PION+
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
```

is equivalent to

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
FREE
BEAM 20. 0.0 0.0 -1.0E-2 -0.02 1.0 PION+
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
```

or to
Example 2:
At any moment the `FIXED` card re-establishes the fixed-format input mode.

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
FREE
BEAM, 20.,0.0, 0.0, -1.0E-2; -0.02 1.0 %PION+ ! 20 GeV/c momentum?
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
FREE
BEAMPOS 0. 0. 200. -0.012 0.0652336 NEGATIVE
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
```

etc... Note the possibility to insert comments at the end of the line!
7.29 GCR-SPE

Initialises Galactic Cosmic Ray or Solar Particle Event calculations

See also SPECSOUR
WHAT(1) = \( i_0 + i_1 \times 1000 \), where:

\( i_0 = 0 \): centered dipole field, geomagnetic coordinates (used also for computing rigidity cut-off’s in the spectrum generating routine)
\( = 1 \): exact multipole fields, geographic coordinates
\( = 2 \): undefined, standard MAGFLD user routine called for regions with magnetic field
\( = 3 \): dipolar field for infinite plane at given latitude
\( > 3 \): undefined, standard MAGFLD user routine called for regions with magnetic field

\( i_1 \): number of atmospheric shells (see Note 2)
\( = 1000 \): no atmospheric shells
\( = 51 \): 50 atmospheric shells (not supported)
\( = 101 \): 100 atmospheric shells
\( = 201 \): 200 atmospheric shells (not supported)

Default: centered dipole field, 100 shells

WHAT(2) : not used
WHAT(3) : not used
WHAT(4) = Earth radius (Default provided)
WHAT(5) = Earth equatorial magnetic field (Default provided)
WHAT(6) : not used

SDUM = name identifying both the spectra files (extension .spc) and the data file (extension .sur) produced by the auxiliary program atmloc2011.f (see Note 2).

Default (option GCR-SPE not given): no GCR/SPE calculation

Notes

1. Cosmic ray calculations, initialised by GCR-SPE, are defined by means of command SPECSOUR and a number of auxiliary programs. Details are presented in Chap. 16

2. The cards for the geometry description of the atmospheric shells must be prepared using the auxiliary programs and datacards in the directory $FLUPRO/gcrtools. Program Atmloc2011.f writes a file atmloc.geo, containing the geometry input to be inserted into the FLUKA input file (or to be read by setting WHAT(3) in the GEOBEGIN card), a file atmlocmat.cards containing the extra material assignments, and a file atmloc.sur containing auxiliary data and the scoring areas. The user shall rename the file atmloc.sur to <xxxxxx>.sur, where <xxxxxx> is an identifier of exactly 7 characters which must appear also in the input spectra file names: the spectra must have the names <zz><xxxxxx>.spc, where <zz> is the atomic number of the primary. The example spectra distributed with FLUKA come with two identifiers: <zz>phi0465 for solar minimum and <zz>phi1440 for solar maximum, and with zz=01-28.
7.30 GEOBEGIN

GEOBEGIN

Starts the geometry description

See also GEOEND, PLOTGEOM

WHAT(1) \(> 0.0\): switches on online parenthesis expansion. If during expansion at initialization the length of an expression (measured in number of terms) exceeds the original length by a multiplicative factor \(\text{NINT(WHAT(1))}\), expansion is aborted and online parenthesis expansion is used.

WHAT(2) \(> 0.0\): absolute accuracy parameter \(A_a\) in units of \(10^{-6}\) cm. It is used for tracking and boundary identification. \(A_a\) should be larger than \(A_r \times L\), where \(L\) is the largest coordinate value in the geometry description (excluding the outer black-hole shell containing it) and \(A_r\) is the relative accuracy achievable in double precision (of the order of \(10^{-14} \div 10^{-15}\)).

Default \(= 0.0001\)

WHAT(3) \(> 0.0\): logical unit for geometry input. The name of the corresponding file must be input on the next card if WHAT(3) is different from 5.0. Note that values of WHAT(3) \(\neq 5.0\) and \(< 21.0\) must be avoided because of possible conflicts with FLUKA pre-defined units.

\(\leq 0.0\): Set to default value of 5. Input follows.

Default \(= 5.0\) (i.e., geometry input follows)

WHAT(4) \(> 0.0\): logical unit for geometry output. If different from 11, the name of the corresponding file must be input on the next card if WHAT(3) = 0.0 or 5.0, otherwise on the card following the next one. Values of WHAT(3) \(\neq 11.0\) and \(< 21.0\) must be avoided because of possible conflicts with FLUKA pre-defined units.

\(\leq 0.0\): Set to default value of 11.

Default \(= 11.0\) (i.e., geometry output is printed on the standard output)

WHAT(5) = \(ip_0 + ip_1 \times 1000\), where \(ip_0\) indicates the level of parentheses optimisation and \(ip_1\), if > 0, forces the geometry optimisation even when there are no parentheses

\(ip_0 = 1\): logical optimisation only activated

\(ip_0 = 2\): logical plus “plane” optimisation activated

\(ip_0 = 3\): logical plus “plane” plus “bounding box” optimisation activated

Default : \(ip_0 = 3\) and \(ip_1 = 0\)

WHAT(6) : if > 0 it indicates the number of geometry output lines to be skipped before starting writing debugging lines. Please note that the output can rapidly become huge

SDUM = COMBINAT: Combinatorial Geometry is used. See Chapter 8 on Combinatorial Geometry for input description. Other geometries, available in older versions of FLUKA, are no longer supported.

SDUM = COMBNAME: Combinatorial Geometry is used in free format, and names can be used instead of body and region numbers.

SDUM = FLUGG: The FLUGG interface to the GEANT4 geometry is used. In this case, the GEOEND card must immediately follow the GEOBEGIN card. The FLUGG interface is available and described on the FLUKA web site.

Default : COMBINAT
Default (option GEOBEGIN not given): not allowed! GEOBEGIN and GEOEND must always be present.

Notes

1. Geometry input and output:
   
i) If WHAT(3) and WHAT(4) are both \( \leq 0.0 \), the geometry input and output are part of the standard I/O streams: the GEOBEGIN card must be immediately followed by the Combinatorial Geometry input, and then by GEOEND. (See Example 1 below).

   ii) If WHAT(3) is > 0.0 (and not = 5.0) and WHAT(4) is \( \leq 0.0 \), GEOBEGIN must be followed by one card with the name of the CG input file, and then by GEOEND. (See Example 2 below).

   iii) If WHAT(4) is > 0.0 (and not = 11.0) and WHAT(3) is \( \leq 0.0 \), GEOBEGIN must be followed by one card with the name of the CG output file, then by the CG input, and then by GEOEND. (See Example 3 below).

   iv) Otherwise, if WHAT(3) is > 0.0 (and not = 5.0), and WHAT(4) is > 0.0 (and not = 11.0), GEOBEGIN must be followed, in the order, by a line with the name of the CG input file, another line with the name of the CG output file and then the GEOEND card. (See Example 4 below).

The first part of the CG output (p. 320) is essentially an echo of the input, and gives in addition some information on storage allocation of body and region data. Then follow an “Interpreted body echo” and an “Interpreted region echo”, useful in the case where free geometry input format has been requested. It is recommended to check on this output that the geometry description has been correctly reproduced, especially if fixed input format has been chosen, since column alignment errors are critical due to the CG strict input format. In case of severe error (“next region not found”, or similar) the CG output will also contain all error and debugging messages. Minor tracking problems, however, are reported on the error message file (logical unit 15, see Chap. 3 and Sec. 9.4), unless reporting has been de-activated by setting WHAT(6) \( \leq 0.0 \).

2. Special algorithms have been implemented in the Combinatorial Geometry package of FLUKA in order to minimise tracking errors due to rounding, to improve tracking speed and to handle charged particle transport near boundaries and in magnetic fields.

3. A voxel geometry is also available in FLUKA (8.3). It is fully integrated into the FLUKA CG and it is even possible to describe a geometry partly as made of voxels and partly of conventional CG regions.

4. Information on how to set up Combinatorial Geometry input is given in Chap. 8.

5. End of geometry information must end with a GEOEND card (p. 143). The same card can also be used to activate a geometry debugger.

6. Option PLOTGEOM (p. 215) allows to draw sections of the geometry on planes specified by the user.

7. Only one GEOBEGIN card is allowed.

8. The WHAT(2) parameter might need to be increased in case of very large geometries (i.e., \( L > 100 \) m).

Example 1:

* CG Input follows, output is printed as part of Main Output
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
GEOBEGIN 0. 0. 0. 0. 0. 0. 0.COMBINAT

Example 2:

* CG Input read from file BigHall.geo, output printed as part of Main Output
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
GEOBEGIN 0. 0. 25. 0. 0. 0. 0.COMBINAT
BigHall.geo

Example 3:
Example 4:

* CG Input follows, output is printed on file geo2.out
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
GEOBEGIN  0.  0.  0.  26.  0.  0.COMBINAT
geo2.out

* CG Input read from file BigHall.geo, output printed on file geo2.out
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
GEOBEGIN  0.  0.  25.  26.  0.  0.COMBINAT
BigHall.geo
geo2.out
7.31 GEOEND

**Ends the geometry definitions.**
This option can also be used to debug the geometry: in this case it may extend over two cards

See also GEOBEGIN, PLOTGEOM

Normally, only one GEOEND card is issued, at the end of the geometry description, with all the WHATs and the SDUM equal to zero or blank. However, GEOEND can also be used to activate the FLUKA geometry debugger: in this case one or two GEOEND cards are needed, providing the information described below.

**First GEOEND card:**

WHAT(1)	X_{\text{max}}	of the geometry region to be debugged (no default)
WHAT(2)	Y_{\text{max}}	of the geometry region to be debugged (no default)
WHAT(3)	Z_{\text{max}}	of the geometry region to be debugged (no default)
WHAT(4)	X_{\text{min}}	of the geometry region to be debugged (no default)
WHAT(5)	Y_{\text{min}}	of the geometry region to be debugged (no default)
WHAT(6)	Z_{\text{min}}	of the geometry region to be debugged (no default)

SDUM = DEBUG to activate the debugger, otherwise must be left blank

**Second (optional) GEOEND card:**

| WHAT(1) | Number of mesh intervals in the X-direction between X_{\text{min}} and X_{\text{max}}. |
| Reset to default if ≤ 0. |
| Default = 20.0 |
| WHAT(2) | Number of mesh intervals in the Y-direction between Y_{\text{min}} and Y_{\text{max}}. |
| Reset to default if ≤ 0. |
| Default = 20.0 |
| WHAT(3) | Number of mesh intervals in the Z-direction between Z_{\text{min}} and Z_{\text{max}}. |
| Reset to default if ≤ 0. |
| Default = 20.0 |
| WHAT(4) | Maximum number of errors after which geometry debugging stops. |
| Reset to default if ≤ 0. |
| Default = 500.0 |
| WHAT(5) – WHAT(6): not used |

SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)

Default (option GEOEND not given): not allowed! GEOBEGIN and GEOEND must always be present.

**Notes**

1. The geometry debugger can detect both undefined points (points which are not included in any defined region) and multiple defined points (points which are included in more than one region (i.e., there are overlapping regions) in the selected X,Y,Z mesh. The first kind of error is likely to cause a run-time error every time a
particle is passing through the undefined zone, the second one is more subtle and it is not usually detected at run-time. It is impossible to predict to which actual region such multiple defined points will be assigned.

2. The geometry debugger cannot assure that a bug-free geometry input is what the user would like to describe, however it seldom occurs that users are able to define a bug-free input different from what they wanted to describe. It must be stressed that only the points of the defined X,Y,Z mesh are checked, therefore mesh dimensions and pitches should be chosen according to the present geometry, taking into account region thicknesses etc.

3. It must be stressed that only the points of the defined X,Y,Z mesh are checked, therefore mesh dimensions and pitches should be chosen according to the present geometry, taking into account region thicknesses etc.

4. Another useful tool is available for this purpose: the PLOTGEOM program, which is activated by means of the PLOTGEOM command (7.57).

5. It must be stressed too that the geometry debugger can be very time consuming, so don’t ask for 100 µm pitches in X,Y,Z over a 10 m distance, or the code will run forever! Make use as much as possible of geometry symmetries (for example for a cylindrical geometry there is no need for a 3-D scan) and possibly “zoom” with fine meshes only around points where you suspect possible errors. Note that as many areas as wished can be scanned with different meshes of the same geometry, simply changing the mesh parameters each time.

6. **Warning**: the program does not stop if an error is detected but a message is issued on the output units, and checking goes on. If the code is “stepping” into an area erroneously defined, it is likely that plenty of such error messages will be printed. If your operating system allows inspection of output files before they are closed, check the size of your output from time to time. If it is growing too much, stop the code and correct the geometry for the printed errors before restarting the debugger.

Example of a normal GEOEND card without debugging:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
GEOEND 0. 0. 0. 0. 0. 0.
```

* The next is an example of geometry debugging:

```
GEOEND 150. 75. 220. 30. 0. -220.DEBUG
GEOEND 120. 1. 110. 0. 0. 0. &
```

* The above cards request a scan of the geometry portion delimited by planes x = 30, x = 150, y = 0, y = 75, z = -220, z = 220, with 120 steps 1-cm wide along x, one single step along y and 110 4-cm wide steps along z. A single step in one direction (here y) is typical of searches through cylindrically symmetric geometries.
7.32 GLOBAL

Makes a global declaration about the present run, setting some important parameters that must be defined before array memory allocation

See also DEFAULTS, FIXED, FREE

**Important:** GLOBAL declarations, if present, must precede any executable option.

WHAT(1) = maximum number of regions (must be $\leq 20000$)
Default = 1000

WHAT(2) = declaration of “how analogue” this run must be: fully analogue, as biased as possible, or automatically chosen by the program?

- $< 0.0$: as analogue as possible (provided the input is consistent with this choice)
- $> 1.0$: as biased as possible (allowed also for a run in which no explicit biasing option is requested: in this case it simply means “do not try to be analogue”)
- $0.0 \leq$ WHAT(2) $\leq 1.0$: as analogue as decided by the program according to the selected biasing options
Default = 0.0 (input decides the amount of biasing)

WHAT(3) = declaration about the use of the DNEAR variable (see Note 4) when computing physical steps:
- $= 0.0$: use Dnear when computing the tentative length of particle steps only when random seed reproducibility is assured (full reproducibility of random seeds within the same geometry package, possible non reproducibilities among different geometry packages describing the same geometry)
- $= -1.0$: do not use Dnear when computing the tentative length of particle steps (full reproducibility of random seeds starting from different histories, some penalty in CPU)
- $= -2.0$: do not use Dnear at all
Default = 0.0 (random number sequence reproducible within the same geometry package)

WHAT(4) flag to request various types of input

- $< 0.0$: resets the default
- $= 0.0$: ignored
- $= 1.0$: requests the use of names (alphanumerical 8-character strings beginning by alphabetical) instead of numbers as identifiers of particles, materials and regions in the relevant “WHAT” fields of input commands. If fixed format is used, each name must be contained inside the corresponding 10-character field. If free-format, name-based geometry input has not been requested (see WHAT(5) and Note 6), the region names, generated automatically by FLUKA, can be found on standard output.
- $= 2.0$: requests free-format input for all input commands (for geometry body and region input, see WHAT(5)). The six “WHAT” fields must all be input, or replaced by two successive separators (together with zero or more blanks)
- $= 3.0$: the two previous options are both requested, i.e., alphanumerical 8-character names are used to identify particles, materials and regions in the relevant “WHAT” fields of input commands, and free format is also used (for geometry body and region input, see WHAT(5)). The six “WHAT” fields must all be input, or replaced by two successive separators (together with zero or more blanks)
GLOBAL = 4.0: forces numerical-format input for all input command

Default = 1.0 (name-based, fixed-format input)

WHAT(5) : flag to request free format in the geometry input for bodies and regions. This format is described in 8.2.3.2 and 8.2.7.3, and requires the use of names (alphanumerical 8-character strings beginning by alphabetical) as identifiers. Parentheses, are allowed.
< 0.0: resets the default
= 0.0: ignored
> 0.0: geometry input for bodies and regions will be in free format and name-based

WHAT(6) and SDUM: not used

Default = -1.0 (numerical, fixed format geometry input)

Notes
1. In most cases the user should not worry about the number of geometry regions. Despite the fact that FLUKA input does not follow any specific order, the program is able to manage initialisation of all geometry-dependent arrays by allocating temporary areas of memory even before the actual dimensions of the problem are known. The unused parts of such areas are recovered at a later time when the whole input has been read. However, if the number of regions is very large (> 1000), the program needs to be informed in order to increase the size of such temporary areas. This information must be given at the very beginning: therefore GLOBAL (together with DEFAUTS, MAT–PROP and PLOTGEOM) is a rare exception to the rule that the order of FLUKA input cards is free.

2. The “hard” limit of 20000 regions represents the maximum that can be obtained without recompiling the program. It can be overridden, but only by increasing the value of variable MXXRN in the INCLUDE file DMPAR and recompiling the whole code. In this case, however, it is likely that the size of variable NBLNX in INCLUDE file BLNXCM will have to be increased too.

3. In a “fully analogue” run, each interaction is simulated by sampling each exclusive reaction channel with its actual physical probability. In general, this is not always the case, especially concerning low-energy neutron interactions. Only issuing a GLOBAL declaration with WHAT(2) < 0.0 can it be ensured that analogue sampling is systematically carried out whenever it is possible. The lack of biasing options in input is not sufficient for this purpose. This facility should be used in problems where fluctuations or correlations cannot be ignored, but it is likely to lead to longer computing times.

4. DNEAR designates the distance between the current particle position and the nearest boundary (or a lower bound to that distance), and it is used by FLUKA to optimise the step length of charged particles. The concept and the name have been borrowed from the Egs4 code [140], but the FLUKA implementation is very different because it is fully automatic rather than left to the user, and it is tailored for Combinatorial Geometry, where a region can be described by partially overlapping sub-regions (described in input by means of the OR operator). The sequential order in which overlapping sub-regions are considered when evaluating DNEAR is irrelevant from the point of view of particle tracking, but can affect the random number sequence. This does not have any effect on the average results of the calculation, but the individual histories can differ due the different random number sequence used. Option GLOBAL can be used in those cases where the user wants to reproduce exactly each particle history, or on the contrary to forgo it in order to get a better step optimisation.

5. Free format can be requested also by option FREE, but only for the part of input that follows the command. FREE cannot be used to request free format geometry input. See the Notes to FREE for the rules governing separators (Note 2 and following, on p. 137).

6. Free-format, name-based geometry input can be requested also by setting SDUM = COMBNAME in command GEOBEGIN (p. 140)

Example 1:

*...*+....+....2....+....3....+....4....+....5....+....6....+....7....+...
TITLE
A fully analogue run (no other commands precede this TITLE card)
GLOBAL 2000. -1. 1. 0. 0. 0.
* This run needs more than the default maximum number of regions. It is
* requested to be as analogue as possible and to avoid using DNEAR if
  * it risks to affect the random number sequence.

Example 2:

```plaintext
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+

TITLE
 Full free-format input (no other commands precede this TITLE card)
 GLOBAL 0.0 0.0 0.0 2.0 1.0 0.
* The following input will be all in free format (both the FLUKA commands
 * and the geometry description)
7.33 HI–PROPERt

Specifies the properties of a heavy ion primary, or a radioactive isotope primary

See also BEAM

WHAT(1) = Atomic number Z of the heavy ion
Default = 6.0 (Carbon)

WHAT(2) = Mass number A of the heavy ion
Default = 12.0

WHAT(3) = Excitation energy of the heavy ion above ground state
if > 0 (not yet implemented), isomeric state of the heavy ion if < 0
Default = 0.0

WHAT(4) – WHAT(6), SDUM: not used

SDUM : not used

Default (option HI–PROPERt not given): a HEAVYION projectile is assumed to be 12C in the ground state.

Note

1. Option HI–PROPERt is used to specify the properties of a generic heavy ion primary declared by a BEAM command (p. 73) with SDUM = HEAVYION, or by a user-written subroutine SOURCE (p. 380) with id-number IJ = -2.

Example:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
* Primary particles are 10 GeV/u Au-197 ions in the ground state:
BEAM -10.0 0.0 0.0 0.0 0.0 0.0 HEAVYION
HI–PROPE 79.0 197.0 0.0 0.0 0.0 0.0.
7.34 IONFLUCT

Calculates ionisation energy losses of charged hadrons, muons, and electrons/positrons with ionisation fluctuations.

See also DELTARAY

For any SDUM but PRIM–ION:

WHAT(1) \geq 1.0: switches the restricted energy loss fluctuations for hadrons and muons on
\leq -1.0: switches the restricted energy loss fluctuations for hadrons and muons off
$= 0.0$: ignored
Default : restricted energy loss fluctuations for hadrons and muons are activated if option DEFAULTS is missing or if it is used with SDUM = CALORIMEtry, EET/TRANSmut, HADROTHErapy, ICARUS, NEW–DEFAults or PRECISION. With any other SDUM value, they are not activated.

WHAT(2) \geq 1.0: switches the restricted energy loss fluctuations for electrons and positrons on
\leq -1.0: switches the restricted energy loss fluctuations for electrons and positrons off
$= 0.0$: ignored
Default : restricted energy loss fluctuations for electrons and positrons are activated if option DEFAULTS is missing or if it is used with SDUM = CALORIMEtry, EM–CASCAde, HADROTHErapy, ICARUS, NEW–DEFAults or PRECISION. With any other SDUM value, they are not activated.

WHAT(3) : If WHAT(1) \geq 1.0 (resp. WHAT(2) \geq 1.0), WHAT(3) represents the accuracy parameter for the ionisation fluctuation algorithm [73] (see 1.2.1.4) for hadrons and muons (resp. electrons and positrons). The accuracy parameter can take integer values from 1 to 4 (corresponding to increasing levels of accuracy)
< 0.0: resets to default
Default = 1.0 (minimal accuracy)

WHAT(4) = lower bound (or corresponding name) of the indices of the materials in which the restricted energy loss fluctuations are activated
(“From material WHAT(4) . . .”)
Default = 3.0

WHAT(5) = upper bound (or corresponding name) of the indices of the materials in which the restricted energy loss fluctuations are activated
(“. . . to material WHAT(5) . . .”)
Default = WHAT(4)

WHAT(6) = step length in assigning indices
(“. . . in steps of WHAT(6)”)
Default = 1.0

SDUM : blank

For SDUM = PRIM–ION: generation of primary ionisation electrons is switched on
(or switched off, if WHAT(3) < 0)

Delta rays below threshold for explicit generation are generated anyway: for close collisions down to the threshold, and for distant collisions down to an internally computed value, such as to match the input 1st ionisation potential and the average number of primary ionisations per unit length.
WHAT(1) = effective 1st ionisation potential (eV) (meaningless for model 1)
Default : No default

WHAT(2) = number of primary ionisations cm for a minimum ionising particle (assumed to be a μ^+
at $\beta\gamma = 3$). For gases it must be the value at NTP.
If set = 0 (valid value), only primary electrons related to close collisions will be produced
and WHAT(1) and WHAT(3) will be meaningless.
Default : No default

WHAT(3) = primary ionisation model type (1, 2, 3 or 4).
0 is ignored if a previous call set a value > 0, otherwise it forces the default. A value < 0
switches off primary ionisation production
Default = 1.0

WHAT(4) = lower bound (or corresponding name) of the indices of the materials in which the choices
represented by WHAT(1), (2) and (3) apply
(“From material WHAT(4)...”)
Default = 3.0

WHAT(5) = upper bound (or corresponding name) of the indices of the materials in which the choices
represented by WHAT(1), (2) and (3) apply
(“... to material WHAT(5)...”)
Default = WHAT(4)

WHAT(6) = step length in assigning indices
(“... in steps of WHAT(6)”)
Default = 1.0

SDUM = PRIM-ION

Warning: the following section describes a feature that is not yet implemented

For SDUM = SECO-ION: generation of secondary ionisation electrons is switched on (not yet implemented)

WHAT(1) = average energy spent per ion couple (eV).
Default : No default

WHAT(2) = number of secondary ionisations per cm for a minimum ionising particle (assumed to be a μ^+
at $\beta\gamma = 3$). For gases it must be the value at NTP.
If set = 0 (valid value), only primary electrons related to close collisions will be produced
and WHAT(1) as well as WHAT(3) will be meaningless.
Default : No default

WHAT(3) = secondary ionization flag.
0 is ignored if a previous call set a value > 0, otherwise it forces the default. A value < 0
switches off primary ionisation production
Default = 1.0

WHAT(4) = lower bound (or corresponding name) of the indices of the materials in which the choices
represented by WHAT(1), (2) and (3) apply
(“From material WHAT(4)...”)
Default = 3.0
WHAT(5) = upper bound (or corresponding name) of the indices of the materials in which the choices represented by WHAT(1),(2) and (3) apply

(“... to material WHAT(5)...

Default = WHAT(4)

WHAT(6) = step length in assigning indices

(“... in steps of WHAT(6)"

Default = 1.0

SDUM = SECO–ION

Default (option IONFLUCT not given): ionisation fluctuations are simulated or not depending on option DEFAULTS as explained above. Explicit primary ionisation events are never simulated by default.

See also Table 7.1 at p. 100.

Notes

1. The energy loss fluctuation algorithm is fully compatible with the DELTARAY option (p. 101). (See Example below).

2. Primary ionisation electron energies are stored in COMMON ALLDLT at each step in the selected materials.

Use with care and possibly for gases only. The number of primary ionisation electrons can quickly escalate, particularly when multiply charged ions are involved. No COMMON saturation crash should occur since the code is piling up all the remaining primary electrons into the last COMMON location if no further one is available, however CPU penalties can be severe if used without wisdom.

Example (number-based):

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
IONFLUCT   0.0  1.0  3.0  7.0  16.0  3.0
IONFLUCT   1.0  0.0  2.0  8.0  10.0  2.0
DELTARAY  1.E-3  0.0  0.0  10.0  11.0
```

* The special FLUKA algorithm for ionisation fluctuations is activated
* with accuracy level 3 for photons and electrons in materials 7, 10, 13 and 16 (Nitrogen, Aluminum, Silver and Mercury). The same algorithm is activated,
* at an accuracy level = 2, for materials 8 and 10 (Oxygen and Aluminum), but
* in the latter material only for ionisation losses with energy transfer
* < 1 MeV. Losses with larger energy transfer will result in explicit delta
* electron production. In material 11 (Iron), delta rays will be produced if
* the energy transfer is larger than 1 MeV, but fluctuations for lower energy
* transfers will be ignored.

The same example, name based:

```
IONFLUCT   0.0  1.0  3.0  NITROGEN  MERCURY  3.0
IONFLUCT   1.0  0.0  2.0  OXYGEN  ALUMINUM  2.0
DELTARAY  1.E-3  0.0  0.0  ALUMINUM  IRON
```
7.35 IONTRANS

Determines the transport of ions \((A < 1)\), allowing to limit it to subsets of light ions \((A > 5)\) and to choose between approximate and full transport (including nuclear interactions)

WHAT(1) ≤ 1.0: no transport, full or approximate, of any light or heavy ion

= 0.0: ignored

= -1.0: approximate transport (without interactions) of all light and heavy ions

= -2.0: full transport of all light and heavy ions

-6.0 ≤ WHAT(1) ≤ -3.0: full transport of light ions with FLUKA id ≥ WHAT(1)

\((-3 = d, -4 = t, -5 = ^3He, -6 = ^4He)\), and approximate transport of all other ions

Default = 0.0 (no ion transport, unless a ion beam is requested by the BEAM card (p. 73), see Note 2)

WHAT(2) − WHAT(6): not used

SDUM: not used

Notes

1. When requested, interactions at energies larger than 125 MeV/n are performed provided that the external event generators DPMJET and RQMD are linked (through the script $FLUPRO/flutil/lqmqmud). For energies lower than 125 MeV/n, the BME event generator is already included in the main $FLUPRO/libflukahp.a library and linked in the standard $FLUPRO/fluka hp executable.

2. In the presence of a heavy ion beam, full transport of all ions is enabled by default (no need for IONTRANS).
7.36 IRRPROFIle

defines an irradiation profile for radioactive decay calculations

See also DCYT TIMES, DCYSCORE, RADDECAY, RESNUCLEi

WHAT(1) : length of a newly defined irradiation interval (in s)
 > 0.0: a new interval is added with length WHAT(1)
 = 0.0: ignored
 < 0.0: the last defined interval (if any) is deleted
 Default : no new irradiation interval is defined

WHAT(2) : beam intensity of the newly defined (see WHAT(1)) irradiation interval
 ≥ 0.0: beam intensity in particles/s (0.0 is accepted)
 < 0.0: considered as 0.0
 Default = 0.0 particles/s

WHAT(3) : the same as WHAT(1)

WHAT(4) : the same as WHAT(2)

WHAT(5) : the same as WHAT(1)

WHAT(6) : the same as WHAT(2)

SDUM : not used

 Default (option IRRPROFIle not given): no irradiation interval is defined

Notes

1. Decay times as requested by DCYT TIMES commands (p. 93) will be calculated from the end of the last one. Scoring during irradiation can be obtained giving negative decay times in DCYT TIMES.

2. Several cards can be combined up to the desired number of irradiation intervals.

3. A negative value inserted in an odd WHATs (i.e. WHAT(1), WHAT(3), WHAT(5)) will delete the previous irradiation interval. A series of negative odd WHATs will delete as many previously defined intervals.

Example 1:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
IRRPROFI 3600. 1.5E12 7200. 0.0 600. 4.2E12
IRRPROFI 1200. 0.0 3600. 1.0E10

* The defined irradiation profile consists of:
 * 3600s (1 hour) of irradiation at an intensity of 1.5E12 particles/s
 * 7200s (2 hours) of cooling (no beam)
 * 600s (10 minutes) of irradiation at an intensity of 4.2E12 particles/s
 * 1200s (20 minutes) of cooling (no beam)
 * 3600s (1 hour) of irradiation at an intensity of 1.0E10 particles/s
Example 2:
The same profile could have been achieved using separate IRRPROFI cards
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
IRRPROFI 3600. 1.5E12
IRRPROFI 7200. 0.0
IRRPROFI 600. 4.2E12
IRRPROFI 1200. 0.0
IRRPROFI 3600. 1.0E10
* The defined irradiation profile consists of:
* 3600s (1 hour) of irradiation at an intensity of 1.5E12 particles/s
* 7200s (2 hours) of cooling (no beam)
* 600s (10 minutes) of irradiation at an intensity of 4.2E12 particles/s
* 1200s (20 minutes) of cooling (no beam)
* 3600s (1 hour) of irradiation at an intensity of 1.0E10 particles/s

Example 3:
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
IRRPROFI 3600. 1.5E12 7200. 0.0 600. 4.2E12
IRRPROFI -1200. 0.0 -3600. 1.0E10
* The 4th and 5th irradiation intervals defined have negative duration, therefore
* the two previous intervals will be deleted. The irradiation profile will
* consist of a single interval 3600s long with an intensity of 1.5E12 particle/s
7.37 LAM–BIAS

Used to bias the decay length of unstable particles, the inelastic nuclear interaction length of hadrons, photons, electrons and muons and the direction of decay secondaries

See also EMF–BIAS

The meaning of WHAT(1) . . . WHAT(6) depends on the value of SDUM.

SDUM = DCDRBIAS and SDUM = DCY–DIRE are used to activate and define decay direction biasing.

SDUM = GDECAY selects decay length biasing and inelastic nuclear interaction biasing.

If SDUM = blank, decay life biasing and inelastic nuclear interaction biasing are selected.

Other LAM–BIAS cards with SDUM = DECPRI, DECALL, INEPRI, INEALL allow to restrict biasing to primary particles or to extend it also to further generations.

For SDUM = DCY–DIRE:

The decay secondary product direction is biased in a direction indicated by the user by means of a unit vector of components U, V, W (see Notes 4 and 5):

WHAT(1) = U (x-direction cosine) of the preferred direction to be used in decay direction biasing

Default = 0.0

WHAT(2) = V (y-direction cosine) of the preferred direction to be used in decay direction biasing

Default = 0.0

WHAT(3) = W (z-direction cosine) of the preferred direction to be used in decay direction biasing

Default = 1.0

WHAT(4) > 0.0: \(\lambda \) for decay direction biasing. The degree of biasing decreases with increasing lambda (see Note 5)

\(= 0.0: \) a user provided routine (UDCDRL, p. 388) will be called at each decay event, to provide both direction and lambda for decay direction biasing

\(< 0.0: \) resets to default (\(\lambda = 0.25 \))

Default = 0.25

WHAT(5), WHAT(6): not used

For SDUM = DCDRBIAS:

WHAT(1) > 0.0: decay direction biasing is activated (see Notes 4 and 5):

\(= 0.0: \) ignored

\(< 0.0: \) decay direction biasing is switched off

WHAT(2), WHAT(3): not used
WHAT(4) = lower bound of the particle id-numbers (or corresponding name) for which decay direction biasing is to be applied
(“From particle WHAT(4) . . .”)
Default = 1.0

WHAT(5) = upper bound of the particle id-numbers (or corresponding name) for which decay direction biasing is to be applied
(“. . . to particle WHAT(5) . . .”)
Default = WHAT(4) if WHAT(4) > 0.0, 64.0 otherwise

WHAT(6) = step length in assigning numbers
(“. . . in steps of WHAT(6)”)
Default = 1.0

For all other SDUMs:

WHAT(1) : biasing parameter for decay length or life, applying only to unstable particles (with particle numbers ≥ 8). Its meaning differs depending on the value of SDUM, as described below.

For SDUM = GDECAY:

-1.0 < WHAT(1) < 0.0: the mean decay length (in cm) of the particle in the laboratory frame is set = |WHAT(1)| if smaller than the physical decay length (otherwise it is left unchanged). At the decay point sampled according to the biased probability, Russian Roulette (i.e., random choice) decides whether the particle actually will survive or not after creation of the decay products. The latter are created in any case and their weight is adjusted taking into account the ratio between biased and physical survival probability.

0.0 < WHAT(1) < 1.0: the mean life of the particle in the laboratory frame is reduced by a factor = WHAT(1). At the decay point sampled according to the biased probability, the particle always survives with a reduced weight. Its daughters are given the same weight.

|WHAT(1)| > 1.0: a possible previously given biasing parameter is reset to the default value (no biasing)

WHAT(1) = 0.0: ignored

For SDUM = blank:

-1.0 < WHAT(1) < 0.0: the mean life of the particle in its rest frame is reduced by a factor = |WHAT(1)|. At the decay point sampled according to the biased probability, Russian Roulette (i.e., random choice) decides whether the particle actually will survive or not after creation of the decay products. The latter are created in any case and their weight is adjusted taking into account the ratio between biased and physical survival probability.

0.0 < WHAT(1) < 1.0: the mean life of the particle in the rest frame is reduced by a factor = WHAT(1). At the decay point sampled according to the biased probability, the particle always survives with a reduced weight. Its daughters are given the same weight.

|WHAT(1)| > 1.0: a possible previously given biasing parameter is reset to the default value (no biasing)

WHAT(1) = 0.0: ignored

WHAT(2) : biasing factor for hadronic inelastic interactions

-1.0 < WHAT(2) < 0.0: the hadronic inelastic interaction length of the particle is reduced by a multiplying factor |WHAT(2)|. At the interaction point sampled according to the biased probability, Russian Roulette (i.e., random choice) decides whether the particle actually will survive or not after creation of the secondaries. The latter are created in any case and their weight is adjusted taking into account the ratio between biased and physical survival probability.

0.0 < WHAT(2) < 1.0: the hadronic inelastic interaction length of the particle is reduced by a multiplying factor WHAT(2). At the interaction point sampled according to the biased probability, the particle always survives with a reduced weight. The secondaries are created in any case and their weight adjusted taking into account the ratio between biased and physical survival probability.
WHAT(2) = 0.0: ignored
|WHAT(2)| ≥ 1.0: a possible previously set biasing factor is reset to the default value of 1.0 (no biasing).

WHAT(3) > 2.0: number or name of the material to which the inelastic biasing factor has to be applied.
< 0.0: resets to the default a previously assigned value
= 0.0: ignored if a value has been previously assigned to a specific material; otherwise: all materials (default)
0.0 < WHAT(3) ≤ 2.0: all materials.
WHAT(4) = lower bound of the particle id-numbers (or corresponding name) for which decay or inelastic interaction biasing is to be applied
("From particle WHAT(4) . . .")
Default = 1.0
WHAT(5) = upper bound of the particle id-numbers (or corresponding name) for which decay or inelastic interaction biasing is to be applied
(". . . to particle WHAT(5) . . .")
Default = WHAT(4) if WHAT(4) > 0.0, 64.0 otherwise
WHAT(6) = step length in assigning numbers
(". . . in steps of WHAT(6)")
Default = 1.0

For SDUM = DECPRI, DECALL, INEPRI, INEALL:

SDUM = DECPRI : decay biasing, as requested by another LAM–BIAS card with SDUM = GDECAY or blank, must be applied only to primary particles.
SDUM = DECALL : decay biasing, as requested by another LAM–BIAS card with SDUM = GDECAY or blank, must be applied to all generations (default).
SDUM = INEPRI : inelastic hadronic interaction biasing, as requested by another LAM–BIAS card with SDUM = blank, must be applied only to primary particles.
SDUM = INEALL : inelastic hadronic interaction biasing, as requested by another LAM–BIAS card with SDUM = blank, must be applied to all generations (default)

Default (option LAM–BIAS not given): no decay length, decay direction, or inelastic interaction biasing

Notes

1. Option LAM–BIAS can be used for three different kinds of biasing:
 (a) biasing of the particle decay length (or life),
 (b) biasing of the direction of the decay secondaries, and
 (c) biasing of the inelastic hadronic interaction length.

2. Depending on the SDUM value, two different kinds of biasing are applied to the particle decay length (or life). In both cases, the particle is transported to a distance sampled from an imposed (biased) exponential distribution: If WHAT(1) is positive, decay products are created, but the particle survives with its weight and the weight of its daughters is adjusted according to the ratio between the biased and the physical survival probability at the sampled distance. If WHAT(1) is negative, decay is performed and the weight of the daughters is set according to the biasing, but the survival of the primary particle is decided by Russian Roulette according to the biasing. Again, the weights are adjusted taking the bias into account.

3. The laboratory decay length corresponding to the selected mean decay life is obtained by multiplication by $\beta \gamma c$

4. Decay direction biasing is activated by a LAM–BIAS card with SDUM = DCDRBIAS. The direction of decay secondaries is sampled preferentially close to the direction specified by the user by means of a second LAM–BIAS card with SDUM = DCY–DIRE.
5. The biasing function for the decay direction is of the form \(e^{-\frac{1 - \cos(\theta)}{\lambda}} \) where \(\theta \) is the polar angle between the sampled direction and the preferential direction (transformed to the centre of mass reference system). The degree of biasing is largest for small positive values of \(\lambda \) (producing direction biasing strongly peaked along the direction of interest) and decreases with increasing \(\lambda \). Values of \(\lambda \geq 1.0 \) result essentially in no biasing.

6. Biasing of hadronic inelastic interaction length can be done either in one single material (indicated by \texttt{WHAT(3)}) or in all materials (default). No other possibility is foreseen for the moment.

7. When choosing the Russian Roulette alternative, it is suggested to set also a weight window (options \texttt{WW–FACTOR} and \texttt{WW–THRESH}, p. 286, 291) in order to avoid too large weight fluctuations.

8. Reduction factors excessively small can result in an abnormal increase of the number of secondaries to be loaded on the stack, especially at high primary energies. In such cases, FLUKA issues a message that the secondary could not be loaded because of a lack of space. The weight adjustment is modified accordingly (therefore the results are not affected) but if the number of messages exceeds a certain limit, the run is terminated.

9. Biasing of the hadronic inelastic interaction length can be applied also to photons, electrons and positrons (provided option \texttt{PHOTONUC} is also requested with the relevant parameters, p. 204) and muons (provided option \texttt{MUPHOTON} is also requested, p. 184); actually, it is often a good idea to do this in order to increase the probability of photonuclear interaction.

10. For photons, a typical reduction factor of the hadronic inelastic interaction length is the order of 0.01 to 0.05 for a shower initiated by 1 GeV photons or electrons, and of 0.1 to 0.5 for one at 10 TeV. For electrons and positrons, a typical reduction factor is about \(5 \times 10^{-4} \).

Examples (number based):

\begin{verbatim}
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
LAM-BIAS -3.E+3 1. 1. 13. 16. 0.GDECAY
* The mean decay length of pions and kaons (particles 13, 14, 15 and 16) is set equal to 30 m. Survival of the decaying particle is decided by Russian Roulette.
LAM-BIAS 0.0 0.02 11. 7. 0. 0.INEP R I
* The interaction length for nuclear inelastic interactions of primary photons (particle 7) is reduced by a factor 50 in material 11. (Note that such a large reduction factor is often necessary for photons, but generally is not recommended for hadrons). The photon survives after the nuclear interaction with a reduced weight.

The same examples, name based:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
LAM-BIAS -3.E+3 1. 1. PION+ KAON- 0.GDECAY
* LAM-BIAS 0.0 0.02 11. PHOTON 0. 0.INEPRI
\end{verbatim}
7.38 LOW–BIAS

Requests non-analogue absorption and/or an energy cutoff during low-energy neutron transport on a region by region basis

See also PART–THR, LOW–DOWN, LOW–NEUT

WHAT(1) > 0.0: group cutoff (neutrons in energy groups with number \(\geq \) WHAT(1) are not transported).
This value can be overridden in user routine UBSSET (p. 387) by assigning a value to variable IGCU0
Default = 0.0 (no cutoff)

WHAT(2) > 0.0: group limit for non-analogue absorption (neutrons in energy groups \(\geq \) WHAT(2) undergo non-analogue absorption).
Non-analogue absorption is applied to the NMGP–WHAT(2)+1 groups with energies equal or lower than those of group WHAT(2) if WHAT(2) is not \(> \) NMGP, otherwise it isn’t applied to any group (NMGP is the number of neutron groups in the cross section library used: it is \(= \) 260 in the standard FLUKA neutron library).
This value can be overridden in user routine UBSSET (p. 387) by assigning a value to variable IGNONA.
Default: if option DEFAULTS is used with SDUM = CALORIMetry, ICARUS, NEUTRONS or PRECISION, the default is \(= \) NMGP+1 (usually 261), meaning that non-analogue absorption is not applied at all.
If DEFAULTS is missing, or is present with any other SDUM value, the default is the number of the first thermal group (usually 230).

WHAT(3) > 0.0: non-analogue survival probability. Must be \(\leq \) 1.0
This value can be overridden in user routine UBSSET (p. 387) by assigning a value to variable PNONAN.
Default: if option DEFAULTS is used with SDUM = EET/TRANsmut, HADROTHErapy, NEW–DEFAults or SHIELDINg, the default is 0.95.
If DEFAULTS is missing, or is present with any other SDUM value, the default is 0.85.

WHAT(4) = lower bound of the region indices (or corresponding name) in which the indicated neutron cutoff and/or survival parameters apply
(“From region WHAT(4)...”)
Default = 2.0

WHAT(5) = upper bound of the region indices (or corresponding name) in which the indicated neutron cutoff and/or survival parameters apply
(“... to region WHAT(5)...”)
Default = WHAT(4)

WHAT(6) = step length in assigning indices.
(“... in steps of WHAT(6)”)
Default = 1.0

SDUM : not used

Default (option LOW–BIAS not given): the physical survival probability is used for all groups except thermal ones, which are assigned a probability of 0.85. However, if option DEFAULTS has been chosen with SDUM = EET/TRANsmut, HADROTHErapy, NEW–DEFAults or SHIELDINg, this default value is changed to 0.95.
If SDUM = CALORIMetry, ICARUS, NEUTRONS or PRECISION, the default is equal to the physical survival probability for all groups, including thermal.
See also Table 7.1 at p. 100.
Notes

1. The groups are numbered in decreasing energy order (see Chap. 10 for a detailed description). Setting a group cutoff larger than the last group number (e.g., 261 when using a 260-group cross section set) results in all neutrons being transported, i.e., no cutoff is applied.

2. Similarly, if WHAT(2) is set larger than the last group number, non-analogue neutron absorption isn’t applied to any group (this is recommended for calorimetry studies and all cases where fluctuations and correlations are important).

3. The survival probability is defined as $1 - \frac{\Sigma_{abs}}{\Sigma_T}$ where Σ_{abs} is the inverse of the absorption mean free path and Σ_T the inverse of the mean free path for absorption plus scattering (total macroscopic cross section). The LOW–BIAS option allows the user to control neutron transport by imposing an artificial survival probability and corrects the particle weight taking into account the ratio between physical and biased survival probability.

4. In some programs (e.g., Morse) the survival probability is always forced to be equal to 1.0. In FLUKA, if the LOW–BIAS option is not chosen, the physical survival probability is used for all non-thermal groups, and the default 0.85 is used for the thermal groups. (The reason for this exception is to avoid endless thermal neutron scattering in materials having a low thermal neutron absorption cross section). To get the physical survival probability applied to all groups, as needed for fully analogue calculations, the user must use LOW–BIAS with WHAT(2) larger than the last group number.

5. In selecting a forced survival probability for the thermal neutron groups, the user should have an idea of the order of magnitude of the actual physical probability. The latter can take very different values: for instance it can range between a few per cent for thermal neutrons in 10B to about 80-90% in Lead and 99% in Carbon. Often, small values of survival probability will be chosen for the thermal groups in order to limit the length of histories, but not if thermal neutron effects are of particular interest.

6. Concerning the other energy groups, if there is interest in low-energy neutron effects, the survival probability for energy groups above thermals in non-hydrogenated materials should be set at least equal to 0.9, otherwise practically no neutron would survive enough collisions to be slowed down. In hydrogenated materials, a slightly lower value could be acceptable. Setting less than 80% is likely to lead to erroneous results in most cases.

7. Use of a survival probability equal or smaller than the physical one is likely to introduce important weight fluctuations among different individual particles depending on the number of collisions undergone. To limit the size of such fluctuations, which could slow down statistical convergence, it is recommended to define a weight window by means of options WW–THRES (p. 291), WW–FACTOr (p. 286) and WW-PROFIle (p. 289).

Example (number based):

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
LOW–BIAS 60.0 47.0 0.95 5.0 19.0 0.0
LOW–BIAS 261.0 230.0 0.82 7.0 15.0 4.0
* Note that the second LOW–BIAS card overrides the settings of the first one
* concerning regions 7, 11 and 15. Therefore, we will have an energy cutoff
* equal to the upper edge of the 60th group (4.493290 MeV in the standard
* FLUKA neutron library) in regions 5,6,8,9,10,12,13,14,16,17,18 and 19. In
* these same regions, analogue neutron absorption is requested down to an
* energy equal to the upper edge of group 47 (6.592384 MeV in the standard
* library), and biased absorption, with a fixed probability of 95%, at lower
* energies.
* In regions 7, 11 and 15, no cutoff is applied (supposing we are using the
* standard 260-group library), and non-analogue absorption is requested for
* groups 230 to 260 (the thermal groups in our case), with a probability of
* 82%.
```

The same example, name based:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
LOW–BIAS 60.0 47.0 0.95 FifthReg Nineteen 0.0
LOW–BIAS 261.0 230.0 0.82 RegSeven Fifteen 4.0
```
7.39 **LOW–DOWN**

Biases the downscattering probability during low-energy neutron transport on a region by region basis

See also LOW-BIAS, LOW–NEUT

WHAT(1) > 0.0: group limit for biased downscattering probability.

- Neutrons in energy groups \(IG \geq \text{WHAT}(1) \) are given downscattering importances
 \(= \text{WHAT}(2) \cdot IG - \text{WHAT}(1) \).
- This value can be overridden in user routine UBSSET (p. 387) by assigning a value to variable \(\text{IGDWSC} \).

 Default = 0.0 (no biased downscattering)

WHAT(2) = biasing factor for down-scattering from group \(IG-1 \) into group \(IG \).

- This value can be overridden in user routine UBSSET (p. 387) by assigning a value to variable \(\text{FDOWSC} \).

 Default = 1.5

WHAT(3) : not used

WHAT(4) = lower bound of the region indices (or corresponding name) in which downscattering biasing is to be applied

 (“From region \(\text{WHAT}(4) \)...”)

 Default = 2.0

WHAT(5) = upper bound of the region indices (or corresponding name) in which downscattering biasing is to be applied

 (“... to region \(\text{WHAT}(5) \)...”)

 Default = \(\text{WHAT}(4) \)

WHAT(6) = step length in assigning indices.

 (“... in steps of \(\text{WHAT}(6) \)”)

 Default = 1.0

SDUM : not used

Default (option LOW–DOWN not given): no downscatter biasing

Notes

1. This option can be useful only in very particular problems, for instance to calculate the response of instruments based on moderation (Bonner spheres, rem-counters). Very powerful but also very dangerous, it can lead to errors of orders of magnitude if not used by experts.

2. The groups are numbered in *decreasing* energy order (see Chap. 10 for a detailed description).

3. When this option is used, the natural probabilities of scatter from group \(I \) to group \(J \), \(P(I \rightarrow J) \), are altered by an importance factor \(V(J) \). Selection of the outgoing group \(J \) is made from a biased distribution function \(P(I \rightarrow J) \cdot V(J) \) with an associated weight correction.

Example (number based):

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
LOW–DOWN 38.0 1.1 0.0 4.0 25.0 0.0
* In all regions from 4 to 25, neutron downscattering is biased from
* group 38 to last. Assuming we are using the standard FLUKA library with
* 260 groups, that means all energies below 7.985162 MeV. In group 38, the

!!! Use with the maximum care !!!

!!!! especially with hydrogenated materials !!!!
* downscattering relative importance is set equal to 1.1, in group 39 to
* $1.1^{**2} = 1.21$, in group 40 to $1.1^{**3} = 1.331$ etc.

The same example, name based:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
LOW-DOWN  38.0  1.1  0.0  RegFour  The25Reg  0.0
```
7.40 LOW–MAT

Sets the correspondence between Fluka materials and low-energy neutron cross sections

See also LOW–NEUT

WHAT(1) = number or name of the Fluka material, either taken from the list of standard Fluka materials (see Tables 10.4.1, p. 340 and 5.3, p. 47, or defined via a MATERIAL option (p. 169).

Default : No default!

WHAT(2) = first numerical identifier of the corresponding low-energy neutron material.

Not used if = 0.0

WHAT(3) = second numerical identifier of the corresponding low-energy neutron material.

Not used if = 0.0

WHAT(4) = third numerical identifier of the corresponding low-energy neutron material.

Not used if = 0.0

WHAT(5) = Not used.

WHAT(6) = Not used.

Notes

1. Each material in the Fluka low-energy neutron libraries (see Chap. 10) is identified by an alphanumeric name (a string of ≤ 8 characters, all in upper case), and by three integer numbers. Correspondence with Fluka materials (standard or user-defined) is based on any combination of name and zero or more identifiers. In case of ambiguity, the first material in the list fulfilling the combination is selected.

2. Option LOW–MAT should be avoided if it is not really necessary (experience has shown that it is often misinterpreted by beginner users). The option is not required if the following 3 conditions are all true:

 i) the low-energy neutron material desired is unique or is listed before any other material with the same name in Table 10.3

 and

 ii) that name is the same as one in the Fluka list (Table 10.3) or as given by a MATERIAL option

 and

 iii) there is only one Fluka material associated with that low-energy neutron material
3. On the other hand, the option **is required** in any one of the following cases:

i) there is more than one low-energy neutron material with that name (this can happen because of data sets coming from different sources, or corresponding to different neutron temperatures, or concerning different isotopes, or weighted on different spectra, etc), and the one desired is not coming first in the list. In this case it is sufficient to provide just as many identifiers as required to remove ambiguity

or

ii) The Fluka name is different from the name of the low-energy neutron material

or

iii) There is more than one Fluka material associated with the given low-energy neutron material. This can happen for instance when the same material is present with different densities in different regions. In reality this is a special case of ii) above, since to distinguish between the different densities, different names must be used and one at least will not be equal to the name of the low-energy neutron material.

Example (number based):

| MATERIAL | 6. | 0.0 | 2.000 | 6. | 0.0 | 0.0 | CARBON |
| MATERIAL | 6. | 0.0 | 1.700 | 15. | 0.0 | 0.0 | GRAPHITE |
| MATERIAL | 6. | 0.0 | 3.520 | 16. | 0.0 | 0.0 | DIAMOND |
| LOW-MAT | 15.0 | 6. | -3. | 296. | 0.0 | 0.0 | CARBON |
| LOW-MAT | 16.0 | 6. | -2. | 296. | 0.0 | 0.0 | CARBON |

* We have three materials with the same atomic composition, but different density (amorphous carbon, graphite and diamond). Graphite is declared as having the cross section of Graphite bound natural Carbon, while diamond is declared as having the same low-energy neutron cross section as Free Gas Carbon.

The same example, name based:

| MATERIAL | 6. | 0.0 | 2.000 | 0.0 | 0.0 | 0.0 | CARBON |
| MATERIAL | 6. | 0.0 | 1.700 | 0.0 | 0.0 | 0.0 | GRAPHITE |
| MATERIAL | 6. | 0.0 | 3.520 | 0.0 | 0.0 | 0.0 | DIAMOND |
| LOW-MAT | GRAPHITE | 6. | -3. | 296. | 0.0 | 0.0 | CARBON |
| LOW-MAT | DIAMOND | 6. | -2. | 296. | 0.0 | 0.0 | CARBON |
7.41 LOW–NEUT

Activates low-energy neutron transport (which in fact is already activated by several DEFAULTS choices), dumps on request information concerning groupwise treatment ingredients, and allows to activate generation of secondary charged particles and correlated photon cascades, as well as pointwise cross section treatment, both available only for special cases.

See also LOW–BIAS, LOW–MAT

WHAT(1) = number of neutron groups in the neutron cross section library used. The FLUKA standard neutron library has 260 groups (see Chap. 10).

\[
\text{Default } = 260.0
\]

WHAT(2) = number of gamma groups.

\[
\text{Default } : \text{No default if WHAT(1) is given, 42.0 otherwise}. \quad (\text{The standard FLUKA neutron library has 42 gamma groups}).
\]

WHAT(3) = maximum energy of the low-energy cross section neutron library. For the standard FLUKA neutron library, the maximum energy is 0.020 GeV.

\[
\text{Default } = 0.020
\]

WHAT(4) = printing flag (see p. 321 for a detailed description of the printed output):

- from 0.0 to 4.0 increases the amount of output about cross sections, kerma factors, etc.:
 - 1.0: Standard output includes integral cross sections, kerma factors and probabilities
 - 2.0: In addition to the above, downscattering matrices and group neutron-to-gamma transfer probabilities are printed
 - 3.0: In addition to the above, scattering probabilities and angles are printed
 - 4.0: In addition to the above, information about residual nuclei is printed (see Note 10 below)

\[
\text{Default } : 0.0 \quad (\text{minimum output})
\]

WHAT(5) = number of neutron groups to be considered as thermal ones. (The standard FLUKA neutron library has 31 thermal groups).

\[
= 0.0: \text{ignored} \\
> 0.0: \text{resets to the default } = 31.0 \\
\text{Default } = 31.0
\]

WHAT(6) = \(i_0 + 10 \cdot i_1\):

- \(i_0 \geq 0\): available pointwise cross sections are used (see important details in Note 5 below), explicit and correlated secondary generation for \(^{10}\text{B}(n,\alpha)^7\text{Li}\) is activated, as well as correlated photon cascade for \(^{192}\text{Xe}(n,\gamma)^{100}\text{Xe}\) and \(^{113}\text{Cd}(n,\gamma)^{114}\text{Cd}\)

\[
= 1: \text{lower thresholds for pointwise treatment set at default values: } 10^{-5} \text{ eV for free gas materials } 3.059023 \text{ eV (260 groups) for materials for which } S(a,b) \text{ treatment is available (default for some DEFAULTS, PRECISION ...)}
\]

\[
= 2: \text{lower thresholds for pointwise treatment set at: } 10^{-5} \text{ eV for free gas materials } 3.059023 \text{ eV (260 groups) for materials for which } S(a,b) \text{ treatment is available}
\]

\[
= 3: \text{lower thresholds for pointwise treatment set at: } 3.059023 \text{ eV (260 groups) for all materials}
\]

\[
= 4: \text{lower thresholds for pointwise treatment set at: } 10^{-5} \text{ eV for all materials}
\]

\[
= 0: \text{ignored}
\]

- \(\leq -1\): resets to the default (pointwise cross sections are not used)

- \(i_1 = 1\): fission neutron multiplicity is forced to 1, with the proper weight

\[
= 0: \text{ignored}
\]

\[
\leq -1: \text{resets to the default (normal fission multiplicity)}
\]
Default $= -11$, unless option DEFAULTS has been chosen with SDUM = CALORIMetry, ICARUS, NEUTRONS or PRECISION, in which case the default is 1.0 (pointwise treatment – see Note 5 – and generation of secondary charged particles and correlated photon cascades are performed when available, and fission multiplicity is not forced)

SDUM : not used

Default (option LOW–NEUT not given): if option DEFAULTS has been chosen with SDUM = CALORIMetry, EET/TRANsmut, HADROTherapy, ICARUS, NEUTRONS, NEW–DEFAULTs, PRECISION or SHIELDING, low-energy neutrons are transported and a suitable cross section library must be available.

In all other cases, low-energy neutrons are not transported, and their energy is deposited as explained in Note 2 below.

Notes

1. In Fluka, transport of neutrons with energies lower than a certain threshold is performed by a multigroup algorithm. For the neutron cross section library currently used by Fluka, this threshold is 0.020 GeV. The multigroup transport algorithm is described in Chap. 10.

2. If low-energy neutrons are not transported (because of the chosen DEFAULTS, or because so requested by the user, see Note 3) the energy of neutrons below threshold (default or set by PART–THR, p. 202) is deposited on the spot. This is true also for evaporation neutrons.

3. If there is no interest in transporting low-energy neutrons, but this feature is implicit in the DEFAULTS option chosen, it is suggested to use PART–THRES (p. 202) with an energy cutoff WHAT(1) = 0.020. However, even in this case the availability of the low-energy neutron cross sections for the materials defined in input is checked. To avoid the run being stopped with an error message, the user should issue a LOW–MAT command for each material for which cross sections are missing, pointing them to any available material.

4. Gamma data are used only for capture gamma generation and not for transport (transport is done via the ElectroMagnetic Fluka module Emf using continuous cross sections). The actual precise energy of a photon generated by (n,γ) or by inelastic reactions such as (n,n') is sampled randomly within the gamma energy group concerned, except for a few important reactions where a single monoenergetic photon is emitted, as the 1H$(n,\gamma)^2$H reaction where the actual photon energy of 2.226 MeV is used. It is possible to get (single or correlated) physical gammas also for the capture in 6Li, 10B, 40Ar, 129Xe and 133Cd, by setting WHAT(6) = 1.0 or 11.0 (see Note 5 for the additional requirement applying to 6Li and 40Ar).

5. Pointwise neutron transport, fully alternative to the groupwise one, is available only for 1H (above 10 eV) and 6Li (all reactions), by setting WHAT(6) = 1.0 or 11.0. In the case of 6Li, in order to get the pointwise treatment it is mandatory to define the respective monoisotopic material through a MATERIAL card and name it LITHIU-6 (or with a character string containing Li-6 or 6-Li).

Pointwise treatment has been developed also for 40Ar but with some limitations making it not suitable for all applications. It requires an additional cross section file to be requested to the authors. In addition, as for 6Li, one has to define the respective monoisotopic material and call it ARGON-40 (or with a character string containing AR-40 or 40-AR). The physical gammas from the 40Ar$(n,\gamma)^{41}$Ar capture reaction can be obtained only in the context of the pointwise treatment.

6. Recoil protons are always transported explicitly, and so is the proton from the 14N$(n,p)^{14}$C reaction.

7. The groups are numbered in decreasing energy order (see Chap. 10 for a detailed description). The energy limits of the thermal neutron groups in the standard Fluka neutron library are reported in 10.4.1.1.

8. Here are the settings for transport of low-energy neutrons corresponding to available DEFAULTS SDUM options:

- CALORIMetry, ICARUS, NEUTRONS, PRECISION: low-energy neutrons are transported, with generation of charged secondaries, correlated photon cascades and use of pointwise cross sections when available
- EET/TRANsmut, HADROTherapy, NEW–DEFAULTs (or DEFAULTS missing), SHIELDING: low-energy neutrons are transported using always multigroup cross sections

Any other SDUM value of DEFAULTS: no low-energy neutron transport

9. If treatment of low energy neutrons is requested, one must make sure that the transport threshold for neutrons (set with PART–THR) be equal to the minimum energy needed for neutron transport (typically 10^{-5} eV). Please note that the behaviour of the PART–THR option for neutrons has changed with respect to past releases.
10. For a given neutron group and material (see example below), the residual nuclei production probabilities printed in the output are normalized to the non-elastic cross section (e.g. a 0.5 probability means that that nucleus is produced on average every other non-elastic interaction).

Example:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
LOW-NEUT 260.0 42.0 0.020 2.0 31.0 11.0
* The low-energy neutron library used is the (260n, 42gamma) standard multigroup library. The user requests a printout of cross sections, kerma factors, probabilities, downscattering matrices and n-->gamma transfer probabilities. Pointwise treatment and generation of secondary charged particles and correlated photon cascades will be performed where available (see WHAT(6) and Note 5 above), and only one neutron per low-energy fission will be emitted, with an adjusted weight.
7.42 LOW-PWXS

sets the correspondence between the Fluka and the pointwise low energy neutron xsec materials

WHAT(1) isomer code of the target \((Z \times 10000 + A \times 10 + m)\) \(Z, A, m\), are the atomic, mass and isomer number of the isotope; no default, a value < 0 resets the association to null.

WHAT(2) if > 0 a uniform grid data set is looked for, 0 (default) means non uniform grid data set, < 0 resets to default, actually 0 or < 0 behave the same.

WHAT(3) pointwise xsec temperature (def.= 296, 0 is ignored, < 0 resets to default), actually 0 or < 0 behave the same

WHAT(4) = from material ”WHAT(4)” (def. 3)

WHAT(5) = to material ”WHAT(5)” (def. WHAT(4))

WHAT(6) = in step of ”WHAT(6)” (def. 1)

SDUM =SDUM10 = extra character for the pointwise cross section file (default=blank).

- 1-H PWXS − > means the built-in 1-H pointwise cross sections (no external file needed).
- 2-H PWXS: − > means the built-in 2-H pointwise cross sections (no external file needed).
- 3-HE PWXS: − > means the built-in 3-He pointwise cross sections (no external file needed).
- 4-HE PWXS: − > means the built-in 4-He pointwise cross sections (no external file needed).
- 6-LI PWXS: − > means the built-in 6-Li pointwise cross sections (no external file needed).
- 12-C PWXS: − > means the built-in 12-C pointwise cross sections (no external file needed).

The file name looked for by Fluka in the directory $FLUKA/pwxs is composed as:

<isomer code>−<extra character if any>−(uni)<temp>.pwx

where -uni is present if WHAT(2) > 0

Notes

Default :
7.43 MATERIAL

Defines a single-element material or (coupled to a COMPOUND card) a compound

See also COMPOUND, LOW–MAT, MAT–PROP

WHAT(1) = atomic number (meaningful only when not coupled to a COMPOUND card; otherwise WHAT(1) must be = 0.0)
No default

WHAT(2) = NOT to be filled. It allows to overwrite the default value of atomic weight (in g/mole)
Default: computed according to the natural composition of an element with atomic number WHAT(1) or to the identity of its isotope specified by WHAT(6). Meaningless if coupled to a COMPOUND card.

WHAT(3) = density in g/cm3. Note that if the density is lower than 0.01, the material is considered to be a gas at atmospheric pressure unless set otherwise by MAT–PROP (p. 171)
No default

WHAT(4) = number (index) of the material. NOT to be filled in case of name-based input.
Default = NMAT+1, where NMAT is the greatest number of current defined materials. The number sequence of the defined materials must be uninterrupted. Its value is = 25 before any MATERIAL card is given, and doesn’t change if WHAT(4) overrides a number which has already been assigned.

WHAT(5) > 2.0: alternate material number (or name, in name-based input) for ionisation processes (this material will be used instead of WHAT(1) for dE/dx etc.)
≥ 0.0 and ≤ 2.0: ignored
< 0.0: reset to default
Default: no alternate material

WHAT(6) = mass number of the material. Only integer values (still in real format) make sense.
Default = 0 i.e. natural isotopic composition of the WHAT(1) element (but see Note 8). For isotopic composition other than natural or single isotope, see COMPOUND.

SDUM = name of the material
No default
Default (option MATERIAL not given): standard pre-defined material numbers are used (see list in Table 5.3, p. 47).

Notes

1. MATERIAL cards can be used in couple with COMPOUND cards in order to define compounds, mixtures or isotopic compositions. See COMPOUND for input instructions (p. 86).

2. Material number 1.0 is always Black Hole (called also External Vacuum) and it cannot be redefined. (All particles vanish when they reach the Black Hole, which has an infinite absorption cross section)

3. Material number 2.0 is always Vacuum (of zero absorption cross section) and it cannot be redefined.

4. In name-based inputs it is recommended to omit the number of the material (and use its name in COMPOUND and ASSIGNMAt commands). On the contrary, if the input is number-based, it is not recommended to omit it.

5. In an explicitly number-based input (declared as such by WHAT(4)= 4.0 in command GLOBAL) it is allowed to redefine a material name overriding a number already assigned (either by default, see list in Table 5.3, or by a previous MATERIAL card), or by using a new number.
If the number has not been assigned before, it must be the next number available (26.0, 27.0... for successive MATERIAL cards). In a number-based input, it is dangerous to leave empty gaps in the number sequence, although the program takes care of redefining the number: in fact, the incorrect number is likely to be still used in other commands such as ASSIGNMAt and COMPOUND, leading to crashes or to undetected errors.
If the input is name-based and the number is not given explicitly, the program automatically assigns it and the number sequence is automatically respected. The assigned number can be read from standard output, but the user only needs to refer to that material by its name in other input cards.

6. Materials having a different density at the macroscopic and at the microscopic level (e.g., spongy matter or approximations for not entirely empty vacuum) need a special treatment regarding stopping power (density effect). In such cases, see MAT–PROP, p. 171.

7. If low-energy neutron transport is desired, the material name must coincide with that of one of the low-energy neutron cross section materials in the FLUKA library (see 10.4), or a correspondence must be set using option LOW–MAT, p. 163.

8. If the card concerns an element that does not exist in nature, setting WHAT(6) = 0.0 cannot provide the natural isotopic composition. Therefore a single isotope will be selected (usually the one with the longest half-life). To avoid confusion, it is suggested to declare explicitly instead the isotope desired.

9. The largest atomic number that can be handled by FLUKA is 100.

Example:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
MATERIAL 1. 8.988E-5 0.0 1. HYDROGEN
LOW-MAT HYDROGEN 1. 11. 296. 0.0 0. HYDROGEN
MATERIAL 6. 2.265 0.0 0. CARBON
MATERIAL 6. 2.0 0.0 0. GRAPHITE
LOW-MAT CARBON 6. -3. 296. 0.0 0. GRAPHITE
MATERIAL 41. 8.57 0.0 0. NIOBIUM
MATERIAL 48. 8.650 0.0 0. CADMIUM
MATERIAL 24. 7.19 0.0 0. CHROMIUM
MATERIAL 27. 8.90 0.0 0. COBALT
```

* Several (name-based) cases are illustrated:
 * Hydrogen, pre-defined as material 3, is re-defined as monoisotopic 1-H.
 * Command LOW-MAT has been added to force this material to be mapped to CH2-bound 1-H for what concerns low energy neutron transport.
 * Carbon, pre-defined as material 6.0, is re-defined with a different density, and is also redefined with a different name (GRAPHITE), mapped to graphite-bound carbon.
 * Niobium, Cadmium, Chromium and Cobalt are added to the list.
7.44 MAT–PROP

Provides extra information about materials

See also MATERIAL, STERNHEIme

This command can be used for several different tasks:

1. to supply extra information about gaseous materials and materials with fictitious or effective density
2. to override the default average ionisation potential
3. to set a flag to call the user routine USRMED (p. 390) every time a particle is going to be transported in selected material(s)
4. to set the energy threshold for DPAs (Displacements Per Atom)

For SDUM ≠ DPA–ENER, USERDIREctive:

WHAT(1) > 0.0: gas pressure in atmospheres (see Note 1 below).
 = 0.0: ignored
 < 0.0: resets to 1 atm a possible previously input pressure value
Default = 1.0

WHAT(2) = RHOR factor: this factor multiplies the density of a material when calculating the density effect parameters (e.g., if a reduced density is used to simulate voids, but of course the density effect parameters must be computed with the actual local physical density at the microscopic level). See Note 3 below.
 = 0.0: ignored
 < 0.0: a possible previously input value is restored to default = 1.0
Default = 1.0

WHAT(3) > 0.0: average ionisation potential to be used for dE/dx calculations (eV)
 < 0.0: a default value of the average ionisation potential is obtained from the systematics of Ziegler [209] or Sternheimer, Berger and Seltzer [194,195]
 = 0.0: ignored
Default : ionisation potential calculated from systematics

WHAT(4) = lower bound of the indices of materials, or corresponding name, in which gas pressure, RHOR factor or ionisation potential are set
 (“From material WHAT(4). . .”)
Default = 3.0

WHAT(5) = upper bound of the indices of materials, or corresponding name, in which gas pressure, RHOR factor or ionisation potential are set
 (“. . . to material WHAT(5). . .”)
Default = WHAT(4)

WHAT(6) = step length in assigning indices
 (“. . . in steps of WHAT(6)”)
Default = 1.0

Default: (option MAT–PROP not given): if the density of the default material or that assigned by a MATERIAL card is > 0.01, the material is not assumed to be a gas. Otherwise it is a gas at a default pressure of 1 atmosphere. If the material is a compound, the average ionisation potential is that resulting from applying Bragg’s rule of additivity to stopping power.
For SDUM = DPA–ENER:

WHAT(1) > 0.0: Damage energy threshold (eV) for the given materials. (see Note 5)

= 0.0: ignored
< 0.0: resets to default

Default = 30 eV

WHAT(2) and WHAT(3): not used

WHAT(4) = lower bound of the indices of materials, or corresponding name, in which the damage energy threshold has to be applied

(“From material WHAT(4)…”)

Default = 3.0

WHAT(5) = upper bound of the indices of materials, or corresponding name, in which the damage energy threshold has to be applied

(“…to material WHAT(5)…”)

Default = WHAT(4)

WHAT(6) = step length in assigning indices

(“…in steps of WHAT(6)”)

Default = 1.0

Default (option MAT–PROP not given): Damage energy threshold = 30 eV for all materials

For SDUM = USERDIREctive:

WHAT(1) = 0.0: ignored
> 0.0: a call to the user routine USRMED (p. 390) will be performed at run time every time a particle is going to be transported in the selected materials (spot depositions are anyway performed: i.e., they cannot be killed by USRMED)
< 0.0: a possible previously given value is restored to default (i.e., no call to USRMED is made)

WHAT(2) and WHAT(3): not used

WHAT(4) = lower bound of the indices of materials, or corresponding name, in which the call to USRMED must be performed

(“From material WHAT(4)…”)

Default = 3.0

WHAT(5) = upper bound of the indices of materials, or corresponding name, in which the call to USRMED must be performed

(“…to material WHAT(5)…”)

Default = WHAT(4)

WHAT(6) = step length in assigning indices

(“…in steps of WHAT(6)”)

Default = 1.0

Default (option MAT–PROP not given): no extra information about the assigned materials is supplied
Notes

\[SDUM = \text{blank (i.e., } \neq \text{DPA–ENER, USERDIREctive)} : \]

1. When issuing a MATERIAL definition the gas pressure is set to 1 atm if the density RHO is \(< 0.01\). If this value is not acceptable to the user, a MAT–PROP card must be issued after the MATERIAL card to force a different value of the gas pressure. Note that this is one of the rare cases (with GLOBAL, DEFAULTS and PLOTGEOM) where sequential order of input cards is of importance in FLUKA.

A non-zero value of WHAT(1) must be given only for gases: it is important when calculating the density effect parameters of the stopping power (see Note 1 to option STERNHEIme, p. 247, and Note 2 here below).

2. If WHAT(1) is set to a value \(> 0.0\), the transport of charged particles will be calculated according to a density \(RHO\) defined at the actual pressure by the corresponding MATERIAL card, while the density effect correction to stopping power will be calculated using a density \(\rho(\text{NTP}) = RHO/WHAT(1)\) and then re-scaled to the actual density \(RHO\).

3. When giving a WHAT(2) non-zero value, remember that if RHO (defined by a MATERIAL card) indicates the “transport (effective) density”, the “physical density” used to calculate the density effect on stopping power will be \(RHO*RHO = WHAT(2)*RHO\).

- **For SDUM = DPA–ENER:**

4. Displacement damage can be induced by all particles produced in a cascade, including high energy photons. The latter, however, have to initiate a reaction producing charged particles, neutrons or ions.

5. The damage threshold is the minimum energy needed to produce a defect. Typical values used in the Njoy99 code [141] are:

<table>
<thead>
<tr>
<th>Material</th>
<th>Threshold (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>10</td>
</tr>
<tr>
<td>C in SiC</td>
<td>20</td>
</tr>
<tr>
<td>Graphite</td>
<td>30-35</td>
</tr>
<tr>
<td>Al</td>
<td>27</td>
</tr>
<tr>
<td>Si</td>
<td>25</td>
</tr>
<tr>
<td>Mn, Fe, Co, Ni, Cu, Nb</td>
<td>40</td>
</tr>
<tr>
<td>Mo</td>
<td>60</td>
</tr>
<tr>
<td>W</td>
<td>90</td>
</tr>
<tr>
<td>Pb</td>
<td>25</td>
</tr>
<tr>
<td>Li</td>
<td>35</td>
</tr>
</tbody>
</table>

6. In most problems, the expected DPA values are generally expressed by very small numbers.

- **SDUM = USERDIREctive:**

7. User routine USRMED is typically used to implement albedo and refraction, especially in connection with optical photon transport as defined by OPT–PROP (p. 193). See 13.2.28 for instructions.

Example 1 (number based):

* Call USRMED every time a particle is going to be transported in Pb Glass or in plexiglas (PMMA)

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
MATERIAL 1. 0.0 8.3748E-5 3. 0.0 1. HYDROGEN
MATERIAL 6. 0.0 2.265 6. 0.0 0. CARBON
MATERIAL 8. 0.0 0.01429 8. 0.0 0. OXYGEN
MATERIAL 14. 0.0 2.33 14. 0.0 0. SILICON
MATERIAL 22. 0.0 4.54 11. 0.0 0. TITANIUM
MATERIAL 33. 0.0 5.73 12. 0.0 0. ARSENIC
MATERIAL 82. 0.0 11.35 17. 0.0 0. LEAD
MATERIAL 0. 0. 6.22 18. 0.0 0. LEADGLAS
COMPOUND -0.156453 8. -0.080866 14. -0.008092 11. LEADGLAS
COMPOUND -0.002651 12. -0.751938 17. 0.0 0. LEADGLAS
MATERIAL 0. 0. 1.19 15. 0.0 0. PMMA
COMPOUND -0.080538 3. -0.599848 6. -0.319614 8. PMMA
MAT–PROP 1.0 0.0 0.0 15. 18. 3. USERDIRE
```

The same example, name based:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
MATERIAL 1. 0.0 8.3748E-5 0.0 0.0 1. HYDROGEN
MATERIAL 6. 0.0 2.265 0.0 0.0 0. CARBON
MATERIAL 8. 0.0 0.01429 0.0 0.0 0. OXYGEN
```
Example 2:

* Lung tissue with ICRP composition and Sternheimer parameters
*...
 MATERIAL 1. 0.0 8.3748E-5 3. 0.0 1. HYDROGEN
 MATERIAL 6. 0.0 2.265 6. 0.0 0. CARBON
 MATERIAL 7. 0.0 0.0011653 7. 0.0 0. NITROGEN
 MATERIAL 8. 0.0 0.001429 8. 0.0 0. OXYGEN
 MATERIAL 12. 0.0 1.74 9. 0.0 0. MAGNESIUM
 MATERIAL 11. 0.0 0.971 10. 0.0 0. SODIUM
 MATERIAL 26. 0.0 7.874 11. 0.0 0. IRON
 MATERIAL 16. 0.0 2.0 12. 0.0 0. SULFUR
 MATERIAL 17. 0.0 2.9947E-3 13. 0.0 0. CHLORINE
 MATERIAL 19. 0.0 0.862 14. 0.0 0. POTASSIUM
 MATERIAL 15. 0.0 2.2 16. 0.0 0. PHOSPHORUS
 MATERIAL 30. 0.0 7.133 17. 0.0 0. ZINC
 MATERIAL 20. 0.0 1.55 21. 0.0 0. CALCIUM
 MATERIAL 0.0 0.0 0.3 18. 0.0 0. LUNG

* Average density of lung is 0.3 g/cm³
 MATERIAL 0.0 0.0 0.3 18. 0.0 0. LUNG
 COMPOUND -0.101278 HYDROGEN -0.10231 CARBON -0.02865 NITROGEN LUNG
 COMPOUND -0.757072 OXYGEN -0.00184 SODIUM -0.00073 MAGNESIUM LUNG
 COMPOUND -0.0008 PHOSPHORUS -0.00225 SULFUR -0.00266 CHLORINE LUNG
 COMPOUND -0.00194 POTASSIUM -0.00009 CALCIUM -0.00037 IRON LUNG

* Local density of lung is 1.05 = 0.3*3.50 g/cm³. Average ionisation
 potential is 75.3 eV (At. Data Nucl. Data Tab. 30, 261 (1984))
MAT-PROP 0.0 3.50 75.3 18. 0. 0.
STERNHEI 3.4708 0.2261 2.8001 0.8588 3.5353 0. 18

The same example, name based:

 *...
 MATERIAL 1. 0.0 8.3748E-5 3. 0.0 1. HYDROGEN
 MATERIAL 6. 0.0 2.265 6. 0.0 0. CARBON
 MATERIAL 7. 0.0 0.0011653 7. 0.0 0. NITROGEN
 MATERIAL 8. 0.0 0.001429 8. 0.0 0. OXYGEN
 MATERIAL 12. 0.0 1.74 9. 0.0 0. MAGNESIUM
 MATERIAL 11. 0.0 0.971 10. 0.0 0. SODIUM
 MATERIAL 26. 0.0 7.874 11. 0.0 0. IRON
 MATERIAL 16. 0.0 2.0 12. 0.0 0. SULFUR
 MATERIAL 17. 0.0 2.9947E-3 13. 0.0 0. CHLORINE
 MATERIAL 19. 0.0 0.862 14. 0.0 0. POTASSIUM
 MATERIAL 15. 0.0 2.2 16. 0.0 0. PHOSPHORUS
 MATERIAL 30. 0.0 7.133 17. 0.0 0. ZINC
 MATERIAL 20. 0.0 1.55 21. 0.0 0. CALCIUM
 MATERIAL 0.0 0.0 0.3 18. 0.0 0. LUNG
 COMPOUND -0.101278 HYDROGEN -0.10231 CARBON -0.02865 NITROGEN LUNG
 COMPOUND -0.757072 OXYGEN -0.00184 SODIUM -0.00073 MAGNESIUM LUNG
 COMPOUND -0.0008 PHOSPHORUS -0.00225 SULFUR -0.00266 CHLORINE LUNG
 COMPOUND -0.00194 POTASSIUM -0.00009 CALCIUM -0.00037 IRON LUNG
Example 3 (number based):

* Definition of air at non-standard pressure.

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

MATERIAL 6. 0.0 2.265 6. 0.0 0.0 CARBON
MATERIAL 7. 0.0 0.0011653 7. 0.0 0.0 NITROGEN
MATERIAL 8. 0.0 0.001429 8. 0.0 0.0 OXYGEN
MATERIAL 18. 0.0 1.662E-3 20. 0.0 0.0 ARGON

* AIR defined as air with normal NTP density (0.001205)

MATERIAL 0.0 0.0 0.001205 10. 0.0 0.0 AIR

MATERIAL 0.0 0.0 0.002410 11. 0.0 0.0 AIR2

* AIR2 defined as air with a density 0.002410, double of that at NTP

MATERIAL 0.0 0.0 0.002410 11. 0.0 0.0 AIR2

* The pressure of AIR2 is 2 atm. Set also the ionisation potential = 85.7 eV

MAT-PROP 2.0 0.0 85.7 11.

The same example, name based:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

MATERIAL 6. 0.0 2.265 0.0 0.0 0.0 CARBON
MATERIAL 7. 0.0 0.0011653 0.0 0.0 0.0 NITROGEN
MATERIAL 8. 0.0 0.001429 0.0 0.0 0.0 OXYGEN
MATERIAL 18. 0.0 1.662E-3 0.0 0.0 0.0 ARGON

MATERIAL 0.0 0.0 0.001205 0.0 0.0 0.0 AIR

MATERIAL 0.0 0.0 0.002410 0.0 0.0 0.0 AIR2

MATERIAL 0.0 0.0 0.001205 0.0 0.0 0.0 AIR

MATERIAL 0.0 0.0 0.002410 0.0 0.0 0.0 AIR2

MATERIAL 0.0 0.0 0.001205 0.0 0.0 0.0 AIR2

MAT-PROP 2.0 0.0 85.7 11.

STERNHEI 10.5961 1.7418 4.2759 0.10914 3.3994 0. 11
7.45 MCSTHRESh

Defines some of the accuracy requirements for Multiple Coulomb Scattering (MCS) of heavy charged particles (hadrons and muons).

See also MULSOPT

WHAT(1) ≥ 0.0: detailed multiple Coulomb scattering for primary charged hadrons and muons down to the minimum energy allowed by Molière’s theory

< 0.0: detailed multiple Coulomb scattering for primary charged hadrons and muons down to a kinetic energy equal to |WHAT(1)| (GeV)

Default = 1.0 if option DEFAULTS (p. 95) has been chosen with SDUM = CALORIMetry, HADROTherapy, ICARUS or PRECISION.

If SDUM = EET/TRANsmut, the default is = −0.01 (transport of primaries with multiple Coulomb scattering down to 10 MeV).

With any other SDUM value, or if DEFAULTS is missing, the default is = −0.02 (transport of primaries with multiple Coulomb scattering down to 20 MeV).

WHAT(2) ≥ 0.0: detailed multiple Coulomb scattering for secondary charged hadrons and muons down to the minimum energy allowed by Molière’s theory

< 0.0: detailed multiple Coulomb scattering for secondary charged hadrons and muons down to a kinetic energy equal to |WHAT(2)| (GeV)

Default = 1.0 if DEFAULTS has been chosen with SDUM = CALORIMetry, HADROTherapy, ICARUS or PRECISION.

If SDUM = EET/TRANsmut, NEW–DEFAults or SHIELDINg, the default is = −0.02 (transport of secondaries with multiple Coulomb scattering down to 20 MeV).

With any other SDUM value, or if DEFAULTS is missing, the default is = −1.0 (transport of secondaries with multiple Coulomb scattering down to 1 GeV).

WHAT(3) – WHAT(6), SDUM: not used

Default : (option MCSTHRES not given): the defaults depend on option DEFAULTS as explained above and in Note 6. See also Table 7.1 on p. 100.

Notes

1. The MCSTHRES option is not used often, since option DEFAULTS ensures the MCS parameter setting most appropriate for a wide range of problems. In most cases, it is suggested to have multiple Coulomb scattering fully activated for both primary and secondary particles over the whole energy range. This corresponds to using WHAT(1) ≥ 0.0 and WHAT(2) ≥ 0.0 (or at least WHAT(2) < 0.0 with an absolute value much smaller than beam energy).

2. WHAT(1) < 0.0 with |WHAT(1)| not much smaller than primary energy should generally be avoided. The reason is twofold:
 (a) tracking accuracy would be spoiled for no substantial gain in speed
 (b) FLUKA tracking without MCS does not take into account the variation of nuclear interaction cross section with energy

3. However, there are some cases where it can be useful to set WHAT(1) and/or WHAT(2) to a negative number with absolute value larger than beam energy. In this case no MCS is performed but tracking and maximum energy loss per step are controlled anyway by the most sophisticated transport algorithm available (see FLUKAFIX, p. 136 and STEPSIZE, p. 245).

Complete suppression of multiple scattering can be useful in some particular cases, for instance when replacing a gas of extremely low density by a gas of the same composition but of much larger density in order to increase the frequency of inelastic interactions (of course, the results must then be scaled by the density ratio). In such cases, one should also select the biased density so that no re-interaction of secondaries can take place.

An alternative way to switch off completely multiple Coulomb scattering of hadrons and muons is to use MULSOPT (p. 180) with WHAT(2) ≥ 3.0 (MULSOPT, however, can deal also with electrons and positrons, while MCSTHRES can’t; on the other hand, MULSOPT does not allow to distinguish between primary and secondary particles).
4. In order to get the most accurate treatment of Multiple Coulomb Scattering, a step optimisation and higher order corrections can be requested by option MULSOPT (but with an important increase in CPU time).

5. In pure electromagnetic or low-energy neutron problems, option MCSTHRES does not need to be given and has no effect.

6. Here are the MCS settings corresponding to available DEFAULTS options:

- CALORIMETRY, HADROTHERAPY, ICARUS, PRECISION: Multiple scattering threshold at minimum allowed energy both for primary and secondary charged particles
- EET/TRANSmutation: MCS threshold = 10 MeV for primaries and 20 MeV for secondaries
- NEW-DEFAULTS (or DEFAULTS missing), SHIELDING: 20 MeV threshold for both primaries and secondaries

Any other SDUM value: 20 MeV for primaries and 1 GeV for secondaries

Example (the comment lines shown are allowed input lines):

```
* In this example, the primary beam consists of 120 GeV/c pi+
* mesons which are transported by simulating accurately multiple
* Coulomb scattering at all energies. For the secondary hadrons
* generated, MCS is performed instead only until they reach 10 MeV.
```
7.46 MGNFIELD

Sets the tracking conditions for transport in magnetic fields and also may define an homogeneous magnetic field.

See also ASSIGNMA\textit{t}, STEPSIZE

WHAT(1) = largest angle in degrees that a charged particle is allowed to travel in a single step
Default = 57.0 deg (but a maximum of 30.0 deg is recommended!)

WHAT(2) = upper limit to error of the boundary iteration in cm (minimum accuracy accepted in determining a boundary intersection). It also sets the minimum radius of curvature for stepping according to WHAT(1)
Default = 0.05 cm.

WHAT(3) = minimum step length if the step is forced to be smaller because the angle is larger than WHAT(1)
Default = 0.1 cm.

WHAT(4) – WHAT(6): = \(B_x, B_y, B_z \) components of magnetic field on the coordinate axes (in tesla).
Default (\(B_x = B_y = B_z = 0.0 \)): a user-supplied subroutine \textit{MAGFLD} (p. 373) is assumed to provide the actual values (see Notes 2 and 3 below)

\textbf{SDUM} : not used

Default (option MGNFIELD not given): the defaults indicated for WHAT(1–6) apply if a magnetic field exists in the current region because of an ASSIGNMA\textit{t} command (p. 68).

\textbf{Notes}

1. If \(B_x = B_y = B_z = 0.0 \), the user-written subroutine \textit{MAGFLD} is called at each step to get the direction cosines and the module (in tesla) of the magnetic field as a function of region or of coordinates. A sample subroutine is provided with the FLUKA code; instructions on how to write user-supplied routines can be found in Chap. 13.

2. Note that the argument list of subroutine \textit{MAGFLD} is \((X,Y,Z,BTX,BTY,BTZ,B,NREG,DISC)\), where \(BTX, BTY, BTZ \) are the \textit{direction cosines} of the magnetic field at point \(X,Y,Z \) (\textit{not the components} of the field! The field magnitude is given by \(B \)). For this reason, it is imperative that \textit{MAGFLD} return normalised values of \(BTX, BTY \) and \(BTZ \) such that the sum of their squares be \(= 1.0 \) \textit{in double precision}.

\(\text{Three zero values are not accepted: if the field is zero at the point concerned, you must return for instance} \\
\text{\(0.0, 0.0, 1.0 \) and} \ B = 0.0 \).

\text{On the contrary, note that} \(B_x, B_y, B_z \) \text{in the MGNFIELD option (p. 178), given by WHAT(4)…WHAT(6) as described above, are the field components and not the cosines.}

3. Magnetic field tracking is performed only in regions defined as magnetic field regions by command ASSIGNMA\textit{t} (p. 68). It is strongly recommended to define as such only regions where a non-zero magnetic field effectively exists, due to the less efficient and accurate tracking algorithm used in magnetic fields.

\text{To define a region as having a magnetic field and to return systematically} \ B = 0.0 \text{in that region via subroutine MAGFLD, is not allowed.}

4. The maximum error on the boundary iteration, WHAT(2), must be compatible with the minimum linear dimension of any region.

5. It is recommended to activate also option STEPSIZE (p. 245) inside and close to regions where a magnetic field is present. That option can be used to set a minimum and a maximum step size (in cm) for every region.

6. In case of conflict, WHAT(3) overrides the step size requested by option STEPSIZE. Therefore, it is suggested to set it not larger than the latter. The purpose of this constraint is to avoid tracking in detail low-energy particles along a helix of very small radius, by forcing several turns into a single step (all the energy will be deposited at the same point).

\textbf{indexASSIGNMA\textit{t}@ASSIGNMA\textit{t} input command}
Example (number based):

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
ASSIGNMAT  2.0  15.0  30.0  5.0  1.0  0.0  0.0
* A magnetic field is present in vacuum regions 15, 20, 25 and 30.
MGNFIELD   20.0  0.2  0.10  0.0  0.0  0.0
STEPSIZE   -0.05  0.0  20.0  25.0  0.0  0.0
STEPSIZE    0.3  0.0  15.0  0.0  0.0  0.0

* The maximum deviation angle due to magnetic field in any step is set
* = 20 degrees, and boundary crossings must be identified with an error
* not larger than 2 mm. If the max. angle constraint forces the step to
* be shorter than 10 cm, the step will be set = 10 cm in region 20, 25, 30,
* but will be set = 3 mm in region 15 (WHAT(1) of STEPSIZE overrides the
* general setting due to WHAT(3) of MGNFIELD). Whatever the size of the
* step, however, the accuracy of the boundary crossing position must be
* equal or better than 0.5 mm in regions 20 and 25 (probably contiguous,
* since the same accuracy must be set for regions on either side of a
* boundary). The value of the magnetic field will be provided at each
* step by the user routine MAGFLD.
```

The same example, name based:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
ASSIGNMAT VACUUM Reg15th Reg30th  5.0  1.0  0.0
MGNFIELD   20.0  0.2  0.10  0.0  0.0  0.0
STEPSIZE   -0.05  0.0  Reg20th Reg25th  0.0  0.0
STEPSIZE    0.3  0.0  Reg15th  0.0  0.0  0.0
```
7.47 MULSOPT

Sets the tracking conditions for multiple Coulomb scattering (MCS), for both hadrons/muons and e\(^+\)e\(^-\). Can also be used to activate single scattering.

See also EMFFIX, FLUKAFIX, MCSTHRES, STEPSIZE

For SDUM ≠ GLOBAL, GLOBEMF, GLOBHAD:

WHAT(1) : controls the step optimisation for multiple Coulomb scattering (see Note 1) and the number of single scatterings on a material by material basis

\[\leq -1.0: \] a possible previous request of optimisation is cancelled and the number of single scatterings in the materials indicated by WHAT(4)–WHAT(6) is reset to the default value (i.e., 0. or the global default possibly set previously by the MULSOPT option with SDUM = GLOBAL/GLOBHAD/GLOBEMF)

\[= 0.0: \] ignored

\[= i_0 + i_1 \times 10 + i_2 \times 100000, \] with \(0 \leq i_0 \leq 1, \) \(0 \leq i_1 \leq 10000, \) \(0 \leq i_2 \leq 10000: \)

\(i_0 \geq 1: \) the optimisation is activated

\(i_1 - 1 = \) number of single scattering steps for hadrons and muons in the materials indicated by WHAT(4)–WHAT(6)

\(i_1 = 0: \) ignored

\(i_2 - 1 = \) number of single scattering steps for electrons and positrons in the materials indicated by WHAT(4)–WHAT(6)

\(i_2 = 0: \) ignored

Default = -1.0 (no multiple scattering optimisation and no single scattering)

| WHAT(2) | 1.0: | spin-relativistic corrections are activated for charged hadrons and muons at the 1\(^{st}\) Born approximation level |
| WHAT(2) | 2.0: | spin-relativistic corrections are activated for hadrons and muons at the 2\(^{nd}\) Born approximation level |

WHAT(2) < 0.0: nuclear finite size effects (form factors) are activated (see Note 2).

\(\geq -3.0: \) nuclear finite size effects are considered but not the spin-relativistic effects

\(\geq 3.0: \) multiple scattering for hadrons and muons is completely suppressed (see Note 3).

Default = 0.0 (no corrections)

| WHAT(3) | 1.0: | spin-relativistic corrections activated for e\(^\pm\) in the 1\(^{st}\) Born approximation |
| WHAT(3) | 2.0: | spin-relativistic corrections activated for e\(^\pm\) in the 2\(^{nd}\) Born approximation |

WHAT(3) < 0.0: nuclear finite size effects are activated

\(\geq 3.0: \) multiple scattering for e\(^+\) and e\(^-\) is completely suppressed

Default = 0.0 (no corrections)

WHAT(4) = lower bound of the indices of the materials, or corresponding name, in which the corrections are activated

("From material WHAT(4)...")

Default = 3.0

WHAT(5) = upper bound of the indices of the materials, or corresponding name, in which the corrections are activated

("...to material WHAT(5)...")

Default = WHAT(4)
WHAT(6) = step length in assigning indices.

(“... in steps of WHAT(6)”)

Default = 1.0

SDUM = FANO–ON : Fano correction for inelastic interactions of charged hadrons and muons on atomic electrons [64] is switched on

= FANO–OFF : Fano correction for inelastic interactions of charged hadrons and muons on atomic electrons is switched off

= MLSH–ON : Original Molière screening angle on for hadrons and muons

= MLSH–OFF : Molière screening angle for hadrons and muons as modified by Berger & Seltzer for e⁺e⁻ (not recommended)

Default : Fano correction on, original Molière screening angle for hadrons on

Default (option MULSOPT not given): no MCS optimisation

For SDUM = GLOBAL, GLOBEMF, GLOBHAD:

(GLOBEMF restricts the input value to e⁺e⁻, GLOBHAD to charged hadrons and muons)

WHAT(1) : controls the minimum MCS step size used by the boundary approach algorithm for e⁺e⁻ and charged heavy particles

≥ 0.0 and < 0.2: ignored

≥ 0.2: the minimum step size is set equal to the size corresponding to B = 5 in Molière theory, multiplied by WHAT(1)

< 0.0: the minimum step size is reset to default

Default = 1.0 (maximum accuracy)

WHAT(2) : index of step stretching factor tabulation to be used by the electron/positron transport algorithm when approaching a boundary.

Only for experts! Not for the normal user

The values of the index implemented for the moment are 1, 2, 3, 4.

Values 11, 12, 13, 14 cause the sensing algorithm to multiply the range/MCS step rather than the current step.

Values 101, 111, 102, 112, 103, 113, 104, 114 have the additional effect of making the algorithm resample as unphysical any step cut at a boundary and “reflected” from the boundary.

= 0.0: ignored

< 0.0: the tabulation index is reset to default

Default = 1.0 (maximum accuracy)

WHAT(3) : controls the optimal step to be used by the optimisation option (and to some extent by the hadron/muon boundary approach algorithm).

Only for experts! Not for the normal user

≥ 0.0 and < 0.2: ignored

≥ 0.2: the minimum step size is set equal to the size corresponding to B = 5 in Molière theory [30, 136–138], multiplied by WHAT(3)

< 0.0: the minimum step size is reset to its default value

Default : minimum step size equal to that corresponding to B = 5, multiplied by 20.0

WHAT(4) > 0.0: single scattering option activated at boundaries or for too short steps

< 0.0: resets to default

= 0.0: ignored
Default: single scattering is not activated

WHAT(5) (meaningful only if single scattering is activated at boundaries and when the step is too short: see WHAT(4) above)
> 0.0: single scattering option activated for energies too small for Molière theory to apply
< 0.0: single scattering is not activated
= 0.0: ignored

Default: single scattering is not activated

WHAT(6) (meaningful only if single scattering is activated at boundaries and when step is too short: see WHAT(4) above)
> 0.0: number of single scatterings to be performed when crossing a boundary. To replace multiple scattering with single scattering everywhere, see Note 5.
= 0.0: ignored
< 0.0: resets the default

Default = 1.0

Notes

1. When optimisation is requested, the program always makes the minimum step for which the Molière theory of multiple scattering is applicable. Optimisation via MULSOPT is available only for charged hadrons and muons. For electrons and positrons, option EMFFIX is recommended (p. 121).

2. The correction for the nuclear finite size has been implemented using simple Thomas-Fermi form factors according to Tsai [201]. The user can provide more sophisticated values by supplying a function FORMFU which must return the square of the nuclear form factor. See 13.2.7.

3. Complete suppression of multiple scattering can be useful in some particular cases, for instance when replacing a gas of extremely low density by a gas of the same composition but of much larger density in order to increase the frequency of inelastic interactions or bremsstrahlung reactions (of course, the results must then be scaled by the density ratio). In such cases, one should also select the biased density so that no re-interaction of secondaries can take place.

4. Runs in which the nuclear form factor is taken into account and/or the 2nd Born approximation is requested are very CPU-time consuming at low energy (but not at high energy).

5. Setting WHAT(6) > 1000.0 with SDUM = GLOBAL, GLOBHAD or GLOBEMF, replaces systematically multiple scattering with single scattering everywhere. This choice is generally extremely demanding in CPU time, except for particles of very low energy (a few keV), which have a very short history anyway. In such cases, the single scattering option is even recommended [75].

Example 1 (number based):
- Activate spin-relativistic corrections and nuclear finite size effects
- for heavy charged particles in the first Born approximation.
- Activate spin-relativistic corrections but not nuclear size effects
- for electrons and positrons in materials 5, 10 and 15

```
MULSOPT 1.0 -1.0 2.0 5.0 15.0 5.0
```

Example 2:
- Maximum accuracy requested for the electron step size used in the boundary approach and in the optimisation algorithm. Single scattering activated for electrons at boundary crossing and when the step is too short for Molière

```
MULSOPT 1.0 -1.0 2.0 BERYLLIU GOLD 5.0
```
* (but not when the energy is too low for Moliere). Boundaries will be crossed with 2 single scatterings.

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+

MULSOPT 1.0 1.0 1.0 1.0 0.0 2. GLOBEMF

Example 3:

* Single scattering activated everywhere for all charged particles

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+

MULSOPT 0.0 0.0 0.0 1.0 1.0 99999999.GLOBAL
7.48 MUPHOTON

Controls muon photonuclear interactions

See also PAIRBREM, PHOTONUC

WHAT(1) : flag to switch on muon nuclear interactions:
\[\begin{align*}
&= -1.0: \text{no muon photonuclear interaction} \\
&= 0.0: \text{ignored} \\
&= 1.0: \text{full simulation of muon nuclear interactions and production of secondary hadrons} \\
&= 2.0: \text{muon nuclear interactions are simulated but no secondary hadron is produced; the energy lost by the muon is deposited at the point of interaction} \\
\text{Default} &= 1.0 \text{ if no DEFAULTS card is present, or if it is present with SDUM = CALORIMEtry, NEW-DEFAults, ICARUS or PRECISION.} \\
&= -1.0 \text{ otherwise} \\
\end{align*}\]

WHAT(2) : reserved for code development

WHAT(3) : reserved for code development

WHAT(4) = lower bound of the indices of materials, or corresponding name, in which muon nuclear interactions must be simulated
("From material WHAT(4)...")
\text{Default} = 3.0

WHAT(5) = upper bound of the indices of materials, or corresponding name, in which muon nuclear interactions must be simulated
("...to material WHAT(5)...")
\text{Default} = \text{WHAT(4)}

WHAT(6) = step length in assigning indices
("...in steps of WHAT(6)"")
\text{Default} = 1.0

SDUM : not used

Notes

1. Other high-energy interactions of muons with nuclei (pair production, bremsstrahlung) are controlled by option PAIRBREM (p. 200), which applies also to charged hadrons.

2. Use of WHAT(1) = 2.0 (interaction without transport of the secondaries) gives the correct muon straggling but simulates only in an approximate way the energy deposition distribution. A similar approach is found in A. Van Ginneken's codes CASIM and MUSIM [203, 204].

Example:

* Explicit pair production and bremsstrahlung requested for heavy charged
* particles in materials 12 and 13, provided the energy of the secondary
* electrons and positrons is > 500 keV. No threshold is requested for photon
* production. For muons, explicit nuclear interactions are also requested.
* ...
PAIRBREM 3.0 0.0 0.0005 12.0 13.0
MUPHOTON 1.0 0.0 0.0 12.0 13.0

The same example, name based:
Input Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Material1</th>
<th>Material2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAIRBREM</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0005</td>
<td>COPPER</td>
<td>SILVER</td>
</tr>
<tr>
<td>MUPHOTON</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>COPPER</td>
<td>SILVER</td>
</tr>
</tbody>
</table>
7.49 MYRQMD

Not yet implemented. Prepared for new QMD generator
7.50 OPEN

Defines input/output files to be connected at run-time.

WHAT(1) > 0.0: logical unit number of a formatted file to be opened
< 0.0: logical unit number of an unformatted file to be opened
Default: no default (WHAT(1) must not be = 0.0)

WHAT(2)--WHAT(6): not used

SDUM = NEW: the file is opened with status NEW
= OLD: the file is opened with status OLD
= UNKNOWN: the file is opened with status UNKNOWN
= SCRATCH: the file is opened with status SCRATCH
Default = OLD if |WHAT(1)| = 9, 12, 13, 14, otherwise = NEW

Unless SDUM = SCRATCH, the name of the file to be opened must be given in the card which immediately follows.

Default (option OPEN not given): no file is opened at run time. On UNIX and Linux, the rfluka script provided with the FLUKA code creates the necessary symbolic links.

Notes

1. The input/output files used by FLUKA are of several kinds:
 - Standard input (logical unit 5) and standard output (logical unit 11) must be redirected via < and > (on UNIX and Linux), or pre-connected via FILEDEF, ASSIGN, etc. on other systems.
 - Cross section unformatted data files (logical unit numbers 9, 13 and 14) can be opened with the OPEN option (SDUM = OLD or READONLY), or can be pre-connected (on most UNIX systems, pre-connection is obtained by means of symbolic links). If OPEN is used, the full file name must be given in the card which follows.
 - The same is true for the initial seeds file for the random number generator, if used (logical unit number defined by card RANDOMIZE). However, while WHAT(1) must be negative for unformatted data files, it must be positive for the seeds data.
 - Scratch files (unit 8 for EMF auxiliary output and unit 16 for Combinatorial Geometry working space, see p. 328) can also be OPENed (with SDUM = SCRATCH) or (not on UNIX) pre-connected. No file name card must be given for scratch files.
 - The “next seeds” file from the random number generator (logical unit number 2, see p. 328) can be opened by any of the three ways described above (i.e., by OPEN, by pre-connection or automatically) on any of the supported systems.
 - Error message file (logical unit number 15, p. 328) and estimator output files (created by scoring options such as USRBIN, USRBIDX, DETECT etc., p. 329):
 - On UNIX systems, they can either be opened by the user (with option OPEN, SDUM = SCRATCH or UNKNOWN and file name given on the next card) or automatically by the program with a default name of the form fort.xxx or ftn.xxx, where xxx is the logical unit number.
 - Files created by user-written code (Chap. 13): all three possibilities are available. Of course, a Fortran statement OPEN can also be used in this case.

2. It is possible to pre-connect some of the files and to OPEN others.
Examples:

* ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+

* opening the file with the random number seeds for the next run

OPEN 2. NEW
newseed.random

* the working space for Combinatorial Geometry

OPEN 16. SCRATCH
7.51 **OPT–PROD**

Requests and controls production of Cherenkov, Transition and Scintillation Radiation in specified materials.

See also OPT–PROP, Chap. 12, and examples in 12.2

For SDUM = CERE–OFF: switches off Cherenkov production

WHAT(1) – WHAT(3): not used

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = CERE–OFF

For SDUM = TRD–OFF: switches off Transition Radiation production

WHAT(1) – WHAT(3): not used

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = TRD–OFF

For SDUM = SCIN–OFF: switches off Scintillation light production

WHAT(1) – WHAT(3): not used

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = SCIN–OFF

For SDUM = CERENKOV: switches on Cherenkov production and defines photon energy range

WHAT(1) = minimum Cherenkov photon emission energy in GeV

Default = 2.07×10^{-9} (2.07 eV, corresponding to 600 nm)

WHAT(2) = maximum Cherenkov photon emission energy in GeV

Default = 4.96×10^{-9} (4.96 eV, corresponding to 250 nm)

WHAT(3): not used

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = CERENKOV

For SDUM = CEREN–WV: switches on Cherenkov production and defines photon wavelength range

WHAT(1) = minimum Cherenkov photon emission wavelength in cm

Default = 2.50×10^{-5} (250 nm, or 1.2×10^{6} GHz)

WHAT(2) = maximum Cherenkov photon emission wavelength in cm
\(\text{Default} = 6.00 \times 10^{-5} \text{ (600 nm, or } 5 \times 10^5 \text{ GHz)} \)

WHAT(3) : not used

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = CEREN–WV

For SDUM = CEREN–OM: switches on Cherenkov production and defines photon angular frequency range

WHAT(1) = minimum Cherenkov photon angular frequency \(\omega = 2\pi \nu \) in rad/s (\(\nu = \text{frequency} \)) in rad/s

\(\text{Default} = 3.14 \times 10^{15} \text{ rad/s (corresponding to 600 nm)} \)

WHAT(2) = maximum Cherenkov photon emission angular frequency \(\omega = 2\pi \nu \) in rad/s

\(\text{Default} = 7.53 \times 10^{15} \text{ rad/s (corresponding to 250 nm)} \)

WHAT(3) : not used

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = CEREN–OM

For SDUM = TR–RADIA: switches on Transition Radiation production and defines its energy range \textbf{not yet implemented} !!!

WHAT(1) = minimum TRD photon emission energy

WHAT(2) = maximum TRD photon emission energy

WHAT(3) : not used

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = TR–RADIA

For SDUM = SCINTILL: switches on Scintillation Light production and defines photon energy

WHAT(1) = \(i_{th} \) scintillation photon emission energy in GeV (\(i_{max}=3 \), see Note 4)

WHAT(2) > 0: fraction of energy loss going into \(i_{th} \) scintillation photon emission
\(\leq -100: \) forces to use a user routine (\textbf{not yet implemented})
\(\geq -99.0 \text{ and } \leq 0.0: \) ignored

WHAT(3) : time constant of scintillation light in seconds

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = SCINTILL
For SDUM = SCINT–WV: switches on Scintillation Light production and defines photon wavelength

WHAT(1) = \(i_{th} \) scintillation photon emission wavelength in cm \((i_{max}=3, \text{ see Note 4}) \)
Default = \(2.50 \times 10^{-5} \) (250 nm, or \(1.2 \times 10^{9} \) GHz)

WHAT(2) > 0: fraction of energy loss going into \(i_{th} \) scintillation photon emission
\(\leq 100 \): forces to use a user routine (not yet implemented)
\(\geq -99.0 \) and \(\leq 0.0 \): ignored

WHAT(3) : time constant of scintillation light in seconds

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = SCINT–WV

For SDUM = SCINT–OM: switches on Scintillation Light production and defines photon angular frequency range

WHAT(1) = \(i_{th} \) scintillation photon emission angular frequency \(\omega = 2\pi \nu \) in rad/s, \(\nu = \) frequency.
\((i_{max}=3, \text{ see Note 4}) \)
Default = \(3.14 \times 10^{15} \) rad/s (corresponding to 600 nm)

WHAT(2) = fraction of energy loss going into \(i_{th} \) scintillation photon emission
\(\leq -100 \): forces to use a user routine (not yet implemented)
\(\geq -99.0 \) and \(\leq 0.0 \): ignored

WHAT(3) : time constant of scintillation light in seconds

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = SCINT–OM

For all previous SDUMs:

WHAT(4) = lower bound of the indices of materials in which the indicated Cherenkov, Scintillation or TRD photon emission range is defined
(“From material WHAT(4)...”)
Default = 3.0

WHAT(5) = upper bound of the indices of materials in which the indicated Cherenkov, Scintillation or TRD photon emission range is defined
(“... to material WHAT(5)...”)
Default = WHAT(4)

WHAT(6) = step length in assigning indices
(“... in steps of WHAT(6)”)
Default = 1.0

Default : (option OPT–PROD not given): no Cherenkov, scintillation or TRD photon production
Notes

1. Optical photons such as those produced by Cherenkov effect are distinguished by their FLUKA name (`OPTIPHOT`) and by their FLUKA id-number (`-1`), as shown in 5.1.

2. To transport optical photons, it is necessary to define the optical properties of the relevant materials by means of option `OPT–PROP` (p. 193). Users can also write their own routines `USRMED` (p. 390), which is called at every step and at boundary crossings when activated with `MAT–PROP` (p. 171), and `FRGHNS` (p. 371), which defines surface roughness.

3. The energy/wavelength/frequency range as defined by `OPT–PROD` for Cherenkov photon production is not necessarily the same as that defined for transport by means of `OPT–PROP`. The default values, however, are the same.

4. In case of scintillation light, only monochromatic photons are considered for the moment, with a maximum of $i = 3$ different lines. The lines can be defined repeating i times the `OPT–PROD` card with `SDUM = SCINTILL`. The energy lost by ionizing particles is partially spent to produce optical photons, according to the fraction entered in `what(2)`. The sum of `what(2)` for all `OPT-PROD` cards in a given material must be ≤1 (usually much less).

Example:

- Request production of Cherenkov photons with energies between 2 and 3 eV in
 - materials 16, 17, 19 and 20, with wavelengths between 300 and 600 nm in
 - materials 18, 20 and 22, and with frequencies between 0.5 and 1 million GHz
 - in material 21

 `OPT-PROD 2.E-9 3.E-9 0.0 16.0 17.0 0. CERENKOV`
 `OPT-PROD 2.E-9 3.E-9 0.0 19.0 20.0 0. CERENKOV`
 `OPT-PROD 3.E-5 6.E-5 0.0 18.0 22.0 2. CEREN-WV`
 `OPT-PROD 3.14E15 6.28E15 0.0 21.0 0.0 0. CEREN-OM`

- Optical photon transport requested between 300 and 500 nm for all materials
 - with number between 16 and 21

 `OPT-PROP 3.E-5 5.E-5 6.E-5 16.0 22.0 0. WV-LIMIT`

- User routine `USRMED` called when an optical photon is going to be transported
 - in materials 17 and 21

 `MAT–PROP 1.0 0.0 0.0 17. 21. 4. USERDIRE`

A more detailed example including scintillation light is reported in section 12.2.
OPT–PROP

Defines optical properties of specified materials.

See also OPT–PROD, Chap. 12, and examples in 12.2

For SDUM = WV–LIMIT: defines wavelength range for optical photon transport

WHAT(1) > 0.0: minimum wavelength (in cm) for optical photon transport
= 0.0: ignored
< 0.0: resets to default
Default = 2.5×10^{-5} (250 nm)

WHAT(2) > 0.0: central wavelength (in cm) for optical photon transport
= 0.0: ignored
< 0.0: resets to default
Default = 5.89×10^{-5} (589 nm, Na D line)

WHAT(3) > 0.0: maximum wavelength (in cm) for optical photon transport
= 0.0: ignored
< 0.0: resets to default
Default = 6.0×10^{-5} (600 nm)

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = WV–LIMIT

For SDUM = OM–LIMIT: defines angular frequency range for optical photon transport

WHAT(1) > 0.0: minimum angular frequency for optical photon transport $\omega = 2\pi\nu$ in rad/s (ν = frequency)
= 0.0: ignored
< 0.0: resets to default
Default = 3.14×10^{15} rad/s (corresponding to 600 nm)

WHAT(2) > 0.0: central angular frequency for optical photon transport $\omega = 2\pi\nu$ in rad/s
= 0.0: ignored
< 0.0: resets to default
Default = 3.20×10^{15} rad/s (corresponding to 589 nm, Na D line)

WHAT(3) > 0.0: maximum angular frequency for optical photon transport $\omega = 2\pi\nu$ in rad/s
= 0.0: ignored
< 0.0: resets to default
Default = 7.53×10^{15} rad/s (corresponding to 250 nm)

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = OM–LIMIT

For SDUM = RESET: all material optical properties are zeroed

WHAT(1) – WHAT(3): no meaning

WHAT(4) – WHAT(6): assignment to materials, see below
SDUM = RESET

For SDUM = METAL: flag the material as a metal

WHAT(1) = 1st optical property (not used at the moment)

WHAT(2) = 2nd optical property (not used at the moment)

WHAT(3) = 3rd optical property: $(1 - r)$, where r is the reflectivity index at the central wavelength (or at the central angular frequency, depending on which one of the two quantities has been defined). See also Note 2

Default = 0.0

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = METAL

For SDUM = blank:

WHAT(1) = 1st optical property: refraction index n_{ref} at the central wavelength (or at the central angular frequency, depending on which one of the two quantities has been defined)

< -99: forces to use user routine RFRNDX (see Note 1)

Default = 1.0

WHAT(2) = 2nd optical property: absorption coefficient μ_{ab} (in cm$^{-1}$) at the central wavelength (or at the central angular frequency, depending on which one of the two quantities has been defined)

< -99: forces to use a user routine ABSCFF (see Note 1)

Default = 0.0

WHAT(3) = 3rd optical property: diffusion coefficient μ_{df} (in cm$^{-1}$) at the central wavelength (or at the central angular frequency, depending on which one of the two quantities has been defined)

< -99: forces to use a user routine DFFCFF (see Note 1)

Default = 0.0

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = blank

For SDUM containing “&1” (resp. “&2”) (resp. “&3”):

WHAT(1) = 4th (resp. 7th) (resp. 10th) optical property of the material (derivatives of the refraction index, see Note 2)

Default = 0.0

WHAT(2) = 5th (resp. 8th) (resp. 11th) optical property of the material (derivatives of the absorption coefficient, see Note 2)

Default = 0.0

WHAT(3) = 6th (resp. 9th) (resp. 12th) optical property of the material (derivatives of the diffusion coefficient, see Note 2)

WHAT(4) – WHAT(6): assignment to materials, see below

SDUM = &1, &2 or &3 in any position in column 71 to 78 (or in the last field if free format is used)
For all previous SDUMs:

WHAT(4) = lower bound of the indices of materials to which the indicated optical properties refer
(“From material WHAT(4). . .”)
Default = 3.0

WHAT(5) = upper bound of the indices of materials to which the indicated optical properties refer
(“. . . to material WHAT(5). . .”)
Default = WHAT(4)

WHAT(6) = step length in assigning indices
(“. . . in steps of WHAT(6)”)
Default = 1.0

For SDUM = SENSITIV: sets up the optical photon detection sensitivity parameters

(See also SDUM = WV–SENSI, SDUM = OM–SENSI, Note 3 and the examples in 12.2)

WHAT(1) = 0th optical photon sensitivity parameter
<−99: forces to use user routine QUEFFC (see Note 1)

WHAT(2) = 1st optical photon sensitivity parameter

WHAT(3) = 2nd optical photon sensitivity parameter

WHAT(4) = 3rd optical photon sensitivity parameter

WHAT(5) = maximum optical photon sensitivity over the allowed range (must be consistent with the previous values). It can be overestimated.

Default = 1.0

WHAT(6) = not used

SDUM = SENSITIV

For SDUM = WV–SENSI: sets up the wavelength of the optical photon sensitivity

(See also SDUM = SENSITIV, SDUM = OM–SENSI and Note 3.)

WHAT(1) > 0.0: minimum wavelength (in cm) for optical photon sensitivity
= 0.0: ignored
< 0.0: resets to default

Default = 2.5×10^{-5} (250 nm)

WHAT(2) > 0.0: central wavelength (in cm) for optical photon sensitivity
= 0.0: ignored
< 0.0: resets to default

Default = 5.89×10^{-5} (589 nm, Na D line)

WHAT(3) > 0.0: maximum wavelength (in cm) for optical photon sensitivity
= 0.0: ignored
< 0.0: resets to default

Default = 6.0×10^{-5} (600 nm)

WHAT(4) – **WHAT(6)**: not used

SDUM = WV-SENSI

For SDUM = OM-SENSI: sets up the angular frequency of the optical photon sensitivity

(See also SDUM = SENSITIV, SDUM = WV-SENSI and Note 3.)

WHAT(1) > 0.0: minimum angular frequency for optical photon sensitivity $\omega = 2\pi\nu$ in rad/s

ν = frequency

= 0.0: ignored

< 0.0: resets to default

Default = 3.14×10^{15} rad/s (corresponding to 600 nm)

WHAT(2) > 0.0: central angular frequency for optical photon sensitivity $\omega = 2\pi\nu$ in rad/s

= 0.0: ignored

< 0.0: resets to default

Default = 3.20×10^{15} rad/s (corresponding to 589 nm, Na D line)

WHAT(3) > 0.0: maximum angular frequency for optical photon sensitivity $\omega = 2\pi\nu$ in rad/s

Default = 7.53×10^{15} rad/s (corresponding to 250 nm)

WHAT(4) – **WHAT(6)**: not used

SDUM = OM-SENSI

For SDUM = SPEC-BDX: flags special boundary crossings for optical photons

At the selected boundary crossings special user-defined properties are defined by means of the user routine OPHBDX (see Note 1).

A maximum of 40 boundaries can be flagged by issuing option OPT–PROP with SDUM = SPEC–BDX as many times as needed.

WHAT(1) ≥ 1.0: special boundary treatment activated for the $n_{th}+1$ boundary

= 0.0: ignored

≤ -1.0: special boundary treatment deactivated for the $n_{th}+1$ boundary

WHAT(2) = one of the two regions defining the $n_{th}+1$ boundary

WHAT(3) = the other region defining the $n_{th}+1$ boundary

WHAT(4) ≥ 1.0: special boundary treatment activated for the $n_{th}+2$ boundary

= 0.0: ignored
\(\leq -1.0 \): special boundary treatment deactivated for the \(n_{th} + 2 \) boundary

WHAT(5) = one of the two regions defining the \(n_{th} + 2 \) boundary

WHAT(6) = the other region defining the \(n_{th} + 2 \) boundary

SDUM = SPEC-BDX

Default: (option OPT-PROP not given): no optical photon transport

Notes

1. The optional user routines concerning optical photons are:

i. **RFRNDX**: to specify a refraction index as a function of wavelength, frequency or energy. Activated by setting **WHAT(1)** < -99 when **SDUM** = blank.

 ii. **ABSCFF**: to specify an absorption coefficient as a function of wavelength, frequency or energy. This is activated by setting **WHAT(2)** < -99 when **SDUM** = blank.

 iii. **DFFCFF**: to specify a diffusion coefficient as a function of wavelength, frequency or energy. Activated by setting **WHAT(3)** < -99 when **SDUM** = blank.

 iv. **RFLCTV**: to specify the reflectivity of a material. This can be activated with **SDUM** = METAL and **WHAT(3)** < -99

 v. **OPHBDX**: to set optical properties of a boundary surface. The call is activated with **SDUM** = SPEC-BDX

 vi. **FRGHNS**: to set a possible degree of surface roughness, in order to have both diffusive and specular reflectivity from a given material surface

 vii. **QUEFFC**: to introduce Quantum Efficiency. This is activated by setting the 0th photon sensitivity parameter to a value < -99 with **SDUM** = SENSITIV.

2. The 9 material properties input by the user with **SDUM** = &1, &2 and &3 are derivatives of order 1 to 3 of the three basic quantities which are input with **SDUM** = blank or **SDUM** = METAL. The three basic quantities and their derivatives are used to perform three series expansions centred on the selected central wavelength (if **SDUM** = WV–LIMIT has been used for the material concerned) or on the selected central angular frequency (if **SDUM** = OM–LIMIT has been used). The variable \(x \) used in the expansion is adimensional:

\[
 x = \frac{\lambda - \lambda_{central}}{\lambda_{central}} \quad \text{or} \quad x = \frac{\omega - \omega_{central}}{\omega_{central}}
\]

The three basic quantities are:

- **If SDUM = blank**:

 (a) refraction index \(n_{refr} \)

 (b) absorption coefficient \(\mu_{abs} \)

 (c) diffusion coefficient \(\mu_{diff} \)

- **If SDUM = METAL**:

 (a) (not implemented yet)

 (b) (not implemented yet)

 (c) \((1 - r) \) (\(r \) = reflectivity index)

The 4th, 5th, 6th material properties are:

\[
 \frac{d n_{refr}}{dx}, \quad \frac{d \mu_{abs}}{dx}, \quad \frac{d \mu_{diff}}{dx}
\]

the 7th, 8th, 9th material properties are:

\[
 \frac{d^2 n_{refr}}{dx^2}, \quad \frac{d^2 \mu_{abs}}{dx^2}, \quad \frac{d^2 \mu_{diff}}{dx^2}
\]

the 10th, 11th, 12th material properties are:

\[
 \frac{d^3 n_{refr}}{dx^3}, \quad \frac{d^3 \mu_{abs}}{dx^3}, \quad \frac{d^3 \mu_{diff}}{dx^3}
\]

3. **SDUM** = SENSITIV can be used to set the quantum efficiency as a function of photon energy overall through the problem and it is not material/region dependent. The reason is that it is applied “a priori” at photon generation time. If a quantum efficiency curve is to be introduced at detection, then a weighting user routine should be used, such as FLUSCW or COMSCW. It is advantageous to reduce computer time avoiding to generate and transport a photon which would have a significant probability to remain undetected.
The optical photon sensitivity parameters are: $\epsilon(0)$, $\frac{d \epsilon}{dx}$, $\frac{d^2 \epsilon}{dx^2}$, $\frac{d^3 \epsilon}{dx^3}$ where x is:

$$x = \frac{\lambda - \lambda_{central}}{\lambda_{central}} \quad \text{or} \quad x = \frac{\omega - \omega_{central}}{\omega_{central}}$$
Example 1:

* Optical photon transport requested between 3.E15 and 7.E15 rad/s
* (4.77E5 and 1.11E6 GHz, or 314 to 628 nm) for materials 6, 9, 12, 15 and 18
*...

* User routine USRMED called when an optical photon is going to be transported
* in materials 6, 12 and 18
MAT-PROP 1.0 0.0 0.0 6.0 18.0 6. USERDIRE

Example 2:

* Material 11 has a reflectivity index = 0.32

OPT-PROP 0.0 0.0 0.32 11.0 0.0 0. METAL

Example 3:

* Optical photon transport requested between 300 and 600 nm for water.
* (material 9). The optical properties are for the Na D line (589 nm)

MATERIAL 1.0 0.0 .0000899 3.0 0.0 1. HYDROGEN
MATERIAL 8.0 0.0 0.0143 5.0 0.0 0. OXYGEN
MATERIAL 0.0 0.0 1.0 21.0 0.0 0. WATER
COMPOUND 2.0 3.0 1.0 5.0 0.0 0. WATER
OPT-PROP 3.E-5 5.89E-5 6.E-5 21.0 0.0 0. WV-LIMIT
OPT-PROP 1.33299 0.0013 1.22E-5 21.0 0.0 0.
7.53 PAIRBREM

Controls simulation of pair production and bremsstrahlung by high-energy muons, charged hadrons and light ions (up to α’s)

See also MUPHOTON

WHAT(1) =
- 0.0: ignored
- 1.0: pair production by muons and charged hadrons is activated
- 2.0: bremsstrahlung by muons and charged hadrons is activated
- 3.0: pair production and bremsstrahlung are both activated
- -1.0: pair production is inhibited
- -2.0: bremsstrahlung is inhibited
- -3.0: pair production and bremsstrahlung are both inhibited (see Note 1).

Default = 3.0 (both pair production and bremsstrahlung are activated).

However, if option **DEFAULTS** is present with **SDUM** = EET/TRANsmut, EM–CASCade, NEUTRONs or SHIELDing, the default is = -3.0 (pair production and bremsstrahlung inhibited)

WHAT(2) ≥ 0.0: \(e^+, e^-\) kinetic energy threshold (in GeV) for explicit pair production. A value of 0.0 is meaningful (it does mean zero energy) and is even recommended (see Note 2).

< 0.0: no explicit pair production (overrides a possible non-negative value set in a previous **PAIRBREM** card), but the energy loss due to pair production is taken into account in a continuous approximation (see Note 3).

Default = -1.0 (no explicit pair production).

However, if **DEFAULTS** is not present, or is present with **SDUM** = CALORIMATEry, ICARUS, NEW–DEFAults or PRECISION, the default is = 0.0 (explicit pair production with zero threshold).

WHAT(3) > 0.0: photon energy threshold (GeV) for explicit bremsstrahlung production (see Note 2).

≤ 0.0: no explicit bremsstrahlung production is simulated (it overrides a possible positive value set in a previous **PAIRBREM** card), but the energy loss due to bremsstrahlung is taken into account in a continuous approximation (see Note 3).

Default = -1.0 (no explicit bremsstrahlung production)

However, if **DEFAULTS** is not present, or is present with **SDUM** = NEW–DEFAults, the default is = 0.001 (explicit bremsstrahlung production with threshold 1 MeV).

If **DEFAULTS** has **SDUM** = CALORIMATEry, ICARUS or PRECISION, the default is = 0.0003 (explicit bremsstrahlung production with threshold 300 keV).

WHAT(4) = lower bound of the indices of the materials to which the choices expressed by **WHAT(1)**...**WHAT(3)** apply

(“From material **WHAT(4)**...”)

Default = 3.0

WHAT(5) = upper bound of the indices of materials to which the choices expressed by **WHAT(1)**...**WHAT(3)** apply

(“...to material **WHAT(5)**...”)

Default = **WHAT(4)**

WHAT(6) = step length in assigning indices

(“...in steps of **WHAT(6)**”)

Default = 1.0

SDUM: reserved for program development

Default (option **PAIRBREM** not given): if option **DEFAULTS** is not present, or is present with **SDUM** = NEW–DEFAults, both pair production and bremsstrahlung are activated in all materials, with explicit generation of secondaries of energy \(\geq 0\) and \(\geq 1\) MeV, respectively.

If **DEFAULTS** is present with **SDUM** = CALORIMATEry, ICARUS or PRECISION, both pair production and bremsstrahlung are activated in all materials, with explicit generation of secondaries of energy \(\geq 0\) and \(\geq 300\) keV, respectively.

In any other case, both pair production and bremsstrahlung are activated in all materials, without explicit generation of secondaries (continuous loss approximation)
Notes

1. Initialisation of bremsstrahlung and pair production by muons, charged particles and light ions (up to α’s) is very demanding in computer time. On the other hand, these effects must be taken into account for a correct simulation at high energies. It is suggested to inhibit them in the phase of input preparation and debugging, but to activate them again in production runs (in long runs the time taken by initialisation is of course a smaller fraction of total time). In pure electron-photon problems and in low-energy hadron problems, the effects should be inhibited (WHAT(3) = -3.0).

2. When setting a threshold for pair and bremsstrahlung production by muons, charged hadrons and light ions (up to α’s), the following considerations should be taken into account:
 - photon production threshold (WHAT(3)) must of course not be lower than the photon transport cutoff as set by EMFCUT (p. 116) or by the chosen default. (In general it will be reasonable to set it equal to it)
 - on the contrary, the electron and positron production threshold (WHAT(2)) should in general be set = 0.0, whatever the electron transport cutoff, unless photon transport cutoff is set higher than 511 keV. In this way, if the positron is produced with an energy lower than electron transport cutoff it will be forced to annihilate at the point of production, but the two 511 keV annihilation photons will be generated correctly.

3. If option PAIRBREM is not activated, by default FLUKA treats both bremsstrahlung and pair production by muons and charged hadrons as continuous energy losses (i.e., without generating secondaries and depositing their energy at the point of production). This will reproduce correctly the average ranges but not the straggling and the dose distributions. A similar approach is found in A. Van Ginneken's code CASIM [148, 203, 204].

4. Virtual photonuclear interactions by high-energy muons are controlled by option MUPHOTON (p. 184).

5. Here are the settings for pair and bremsstrahlung production by high-energy muons and charged hadrons, corresponding to available DEFAULTS options:

 CALORIMEtry, ICARUS, PRECISION:
 - pair production is activated in all materials, with explicit generation of secondaries of any energy;
 - bremsstrahlung is also activated in all materials, with explicit generation of photons having energy ≥ 300 keV.

 NEW-DEFAULTs, or DEFAULTs missing:
 - pair production is activated in all materials, with explicit generation of secondaries of any energy;
 - bremsstrahlung is also activated in all materials, with explicit generation of photons having energy ≥ 1 MeV.

 Any other SDUM value:
 - both pair and bremsstrahlung production are activated in all materials, without explicit generation of secondaries (continuous loss approximation).

Example 1:

* Explicit pair production and bremsstrahlung requested for muons and charged
* hadrons in materials 4, 7 and 10, provided the energy of the secondary
* electrons and positrons is > 1.2 MeV. No threshold is requested for photon
* production. For muons, explicit nuclear interactions are also requested.

 `+......1......2......3......4......5......6......7......-
 PAIRBREM 3.0 0.0 0.0012 4.0 10.0 3.0
 MUPHOTON 1.0 0.0 0.0 4.0 10.0 3.0`

Example 2:

* Energy loss due pair production and bremsstrahlung by muons and charged
* hadrons accounted for in materials 6, and 7, without explicit generation
* of secondaries

 `+......1......2......3......4......5......6......7......-
 PAIRBREM 3.0 -1.0 -1.0 6.0 7.0`
7.54 PART–THRes

Sets different energy transport cutoffs for hadrons, muons and neutrinos.

See also EMFCUT, LOW–BIAS, THRESHOLD

The meaning of WHAT(1) depends also on the value of WHAT(5):

For \(\text{WHAT}(5) = 0.0 \):

\(\text{WHAT}(1) < 0.0 \): kinetic energy cutoff (GeV)
\(\text{WHAT}(1) > 0.0 \): momentum cutoff (GeV/c)

For \(\text{WHAT}(5) \geq 1.0 \):

\(\text{WHAT}(1) < 0.0 \): \(\gamma \) cutoff (Lorentz factor = \(E/mc^2 \))
\(\text{WHAT}(1) > 0.0 \): \(\eta \) cutoff (\(\eta = \beta \gamma = v/c \times E/mc^2 \))

Default ((\(\text{WHAT}(1) = 0.0 \)): the cutoff is 0 for neutrinos and \(10^{-14} \text{ GeV} \) for neutrons.

For any other hadrons, and for muons:
- if option DEFAULTS is missing, or is present with SDUM = NEW–DEFAults or SHIELDINg, the default cutoff kinetic energy is 0.01 GeV.
- if SDUM = HADROTHErapy, ICARUS or PRECISION, the default cutoff kinetic energy is 0.0001 GeV.
- If SDUM = CALORIMEtry, the default cutoff kinetic energy is 0.001 \(m/m_p \) GeV (\(m = \text{particle mass}, m_p = \text{proton mass} \)).
- In any other case, the default cutoff is 0.050 GeV (For \(e^+e^- \) and photons the threshold is set by EMFCUT, see Note 3 below).

\(\text{WHAT}(2) = \) lower bound of the particle id-numbers to which the cutoff applies
(“From particle \(\text{WHAT}(2) \)...”)
Default = 1.0

\(\text{WHAT}(3) = \) upper bound of the particle id-numbers to which the cutoff applies
(“...to particle \(\text{WHAT}(3) \)...”)
Default = \(\text{WHAT}(2) \)

\(\text{WHAT}(4) = \) step length in assigning numbers
(“...in steps of \(\text{WHAT}(4) \)”)
Default = 1.0

\(\text{WHAT}(5) \): depending on its value, cutoff values indicated by \(\text{WHAT}(1) \) are assigned to kinetic energy, momentum, \(\gamma \) or \(\eta \) (see \(\text{WHAT}(1) \))

\(\text{WHAT}(6) = 1.0 \): restricts the given cutoff to charged particles only
Default : the cutoff applies to all particles indicated by \(\text{WHAT}(2-4) \)

SDUM : not used

Default (option PART–THRes not given): thresholds as described above for \(\text{WHAT}(1) = 0.0 \).
Notes

1. If low-energy neutron transport is not requested (explicitly via LOW–NEUT or implicitly via DEFAULTS), the energy of neutrons below 20 MeV is deposited on the spot.

2. The total momentum cutoffs of heavy ions are derived from that of a 4He ion (4–HELIUM) by scaling the latter with the ratios of the atomic weights of the heavy ions and the 4He ion. The total momentum cutoffs for light ions (4–HELIUM, 3–HELIUM, TRITON and DEUTERON) can be defined by PART–THR. If this is not done, they are derived from that of a proton by scaling the latter with the ratios of the atomic weights of the light ions and a proton.

3. Option PART–THR acts on all particles except $e^+e^−$ and photons; when using the EMF option (p. 110) to transport electrons, positrons and photons, the transport cutoff energy is governed by EMFCUT (p. 116).

4. When the energy of a charged particle becomes lower than the cutoff defined by PART–THR, and if such cutoff is lower than 100 MeV, the particle is not stopped, but is ranged out to rest in an approximate way. Its kinetic energy is deposited uniformly over the residual range if the latter is contained within a single region; otherwise a new residual range is calculated at each boundary crossing and the residual kinetic energy is distributed accordingly. If applicable, such a particle eventually decays at rest or is captured. All other forms of transport are ignored except curved paths in magnetic fields (multiple scattering, delta ray production, inelastic or elastic collisions, and including decay in flight). Magnetic fields are taken into account but only very roughly, since the continuous slowing down of the particles is not simulated. Antiprotons and $π^−$ are always ranged out to rest (without allowance for decay) and forced to annihilate on a nucleus.

5. If the cutoff is higher than 100 MeV, however, the particles are stopped in place without any further treatment. If this happens at a boundary crossing where the material of the region entered is vacuum, a printed message warns the user that energy is being deposited in vacuum.

6. By default the neutron threshold is set at 10^{-14} GeV (10$^{-5}$ eV, the lowest boundary of the group structure). So, normally it is not necessary to issue a PART–THR command at all for neutrons. A note of caution: if a PART–THR has been issued spanning all particles, it is generally necessary to override it with another one resetting the threshold for neutrons to 10^{-14} GeV. As a general rule however, if a neutron transport threshold is set < 20 MeV, it is rounded to the closest lower group boundary.

Example:

* A threshold of 2 MeV (kinetic energy) is requested for heavy charged
 * particles with id-numbers between 1 and 11 (protons, antiprotons and
 * muons). A threshold of Gamma (= E/m) = 2 will apply for pions and kaons
 * (numbers from 13 to 16). For all other particles, the defaults will apply.

PART-THR -0.002 1.0 11.0 0.0 0.0 1.0
PART-THR -2.0 13.0 16.0 1.0 1.0 0.0
7.55 PHOTONUC

Activates gamma, electron and positron interactions with nuclei.

See also LAM–BIAS, MUPHOTON

WHAT(1) : flag to switch on nuclear interactions of photons:
\[\begin{align*}
& \leq -1.0: \text{resets to default (no photonuclear interactions)} \\
& = 0.0: \text{ignored} \\
& = 1.0: \text{photonuclear interactions are activated at all energies} \\
& = 2.0: \text{photonuclear interactions are activated only in the high energy range (} > 0.7 \text{ GeV)} \\
& = 3.0: \text{photonuclear interactions are activated only in the energy region of the } \Delta \text{ Resonance} \\
& = 4.0: \text{only Quasi-Deuteron interactions are activated} \\
& = 5.0: \text{only Giant Dipole Resonance interactions are activated} \\
& \geq 10.0: \text{interpreted as } ih + id*10 + iq*100 + ig*1000
\end{align*} \]

where
\[\begin{align*}
ih &= 1 \text{ to activate High-energy interactions} \\
id &= 1 \text{ to activate } \Delta \text{ Resonance} \\
ig &= 1 \text{ to activate Giant Dipole Resonance} \\
\end{align*} \]

and each is \(= 0.0 \) otherwise

Default = 0.0 (no photonuclear interaction)

WHAT(2), WHAT(3): not used

WHAT(4) = lower index bound (or corresponding name) of materials where the indicated photonuclear interactions are activated
\(\text{("From material WHAT(4)")} \)

Default = 3.0

WHAT(5) = upper index bound (or corresponding name) of materials where the indicated photonuclear interactions are activated
\(\text{("...to particle WHAT(5)")} \)

Default = WHAT(4)

WHAT(6) = step length in assigning indices
\(\text{("...in steps of WHAT(6)")} \)

Default = 1.0

SDUM : blank

For SDUM = ELECTNUC:

WHAT(1) : flag to switch on electronuclear interactions:
\[\begin{align*}
& \leq -1.0: \text{resets to default (no electronuclear interactions)} \\
& = 0.0: \text{ignored} \\
& = 1.0: \text{electronuclear interactions are activated at all energies} \\
& = 2.0: \text{electronuclear interactions are activated only in the high energy range (} > 0.7 \text{ GeV)} \\
& = 3.0: \text{electronuclear interactions are activated only in the } \Delta \text{ Resonance energy region} \\
& = 4.0: \text{electronuclear interactions are activated only in the Quasi-Deuteron energy region} \\
& = 5.0: \text{electronuclear interactions are activated only in the Giant Dipole Resonance energy region} \\
& \geq 10.0: \text{interpreted as } ih + id*10 + iq*100 + ig*1000
\end{align*} \]
where \(i_{\text{h}} = 1 \) to activate High-energy interactions
\(i_{\text{d}} = 1 \) to activate \(\Delta \) Resonance
\(i_{\text{q}} = 1 \) to activate Quasi-Deuteron
\(i_{\text{g}} = 1 \) to activate Giant Dipole Resonance

and each is \(= 0.0 \) otherwise

Default \(= 0.0 \) (no electronuclear interaction)

WHAT(2), WHAT(3): not used

WHAT(4) = lower index bound of materials (or corresponding name) where the indicated electronuclear interactions are activated

("From material WHAT(4)...")

Default \(= 3.0 \)

WHAT(5) = upper index bound of materials (or corresponding name) where the indicated electronuclear interactions are activated

("... to particle WHAT(5)...")

Default \(= \) WHAT(4)

WHAT(6) = step length in assigning indices

("... in steps of WHAT(6)"")

Default \(= 1.0 \)

SDUM = ELECTNUC

For SDUM = MUMUPAIR/MUMUPRIM:

WHAT(1) : flag to switch on muon pair production by photons:

\(= -1 \) : resets to default (no muon pair production)
\(= 0 \) : ignored
\(> 0 \) : interpreted as \(i_{\text{ch}} + i_{\text{qe}} \times 10 + i_{\text{in}} \times 100 + i_{\text{ds}} \times 1000 \)

where \(i_{\text{ch}} = 1 \) to activate muon pair coherent production
\(i_{\text{qe}} = 1 \) to activate muon pair incoherent quasielastic production
\(i_{\text{in}} = 1 \) to activate muon pair incoherent inelastic production
\(i_{\text{ds}} = 1 \) to activate muon pair deep inelastic production

and each is \(= 0.0 \) otherwise

Default \(= 0.0 \) (no muon pair production by photons)

WHAT(2) : interaction length biasing factor

\(= 0.0 \) : ignored

\(0 < |\text{WHAT(2)}| < 1 \): the interaction length of the photon is reduced by a multiplying factor \(|\text{WHAT(2)}|\)

\(1 \leq |\text{WHAT(2)}| \): a possible previous biasing factor is reset to the default value (no biasing)

\(0 < \text{WHAT(2)} < 1 \): the primary particle always survives with reduced weight

\(-1 < \text{WHAT(2)} < 0 \): Russian Roulette is played to decide if the primary particle will be killed, or survive with its original weight

Default : no biasing

WHAT(3) : not used

WHAT(4) = lower bound of the indices of materials where the indicated photonmuon production mechanisms are activated

("From material WHAT(4)...")
Default = 3.0

WHAT(5) = upper bound of the indices of materials where the indicated photomuon production mechanisms are activated
("... to particle WHAT(5)...")
Default = WHAT(4)

WHAT(6) = step length in assigning indices
("... in steps of WHAT(6)"")
Default = 1.0

SDUM = MUMUPAIR : photomuon production biasing applied to all photons
MUMUPRIM : photomuon production biasing applied to primaries only

Default (option PHOTONUC not given): photon or electron interactions with nuclei as well as photomuon production are not simulated

Notes
1. Muon photonuclear interactions (via virtual photons) are not handled by PHOTONUC but by MUPHOTON (p. 184).
2. Because photonuclear and electronuclear cross sections are much smaller than photon cross sections for electromagnetic interactions with atoms and electrons, analogue simulations of photonuclear and electronuclear interactions are very inefficient. Generally, it is recommended to use PHOTONUC in combination with LAM–BIAS (p. 155) to increase artificially the frequency of photonuclear and electronuclear interactions. See Notes 9 and 10 to option LAM–BIAS for more details.
3. Also photomuon production cross sections are much smaller than photon cross sections for electromagnetic interactions with atoms and electrons, as discussed in Note 2. But in this case, the artificial increase of interactions can be performed directly with the PHOTONUC command (see WHAT(2) with SDUM = MUMUPAIR or MUMUPRIM)
Example 1:
* Giant Resonance and Quasi-Deuteron photonuclear interactions are requested
* in material 18. The photon hadronic interaction length is artificially
 shortened by a factor 0.02 in order to improve statistics
*...
PHOTONUC 1100.0 0.0 0.0 18.0 0.0 0.0
LAM-BIAS 0.0 0.02 18.0 7.0 0.0 0.0

Example 2:
* Photonuclear interactions are requested at all energies in materials
 3, 7, 11 and 15. The photon hadronic interaction length is shortened
 by a factor 0.025
*...
PHOTONUC 1.0 0.0 0.0 3.0 15.0 4.0
LAM-BIAS 0.0 0.025 0.0 7.0 0.0 0.0
7.56 PHYSICS

Allows to override the standard FLUKA defaults for physics processes.

See also EMFCUT, IONTRANS, POLARIZATION, THRESHOLD

This command concerns the following physics processes:

1. **SDUM = CHARMDECay**: flag for charmed hadron and tau transport
 WHAT(1): flag for charmed hadron and tau decays
 ≤ -1.0: resets to default
 = 0.0: ignored
 = 1.0: charmed hadrons and tau leptons are transported

2. **SDUM = COALESCEnce**: flag to activate the coalescence mechanism
 WHAT(1): coalescence flag
 ≤ 0.0: false (no coalescence, default)
 = 0.0: ignored
 > 0.0: true, coalescence is activated

3. **SDUM = DECAYS**: decays of \(\pi^\pm \), \(\mu^\pm \), \(K^\pm \) (\(\nu_e \), \(\nu_\mu \), \(K_{\mu3}^\pm \) and \(K_{e3}^\pm \) channels) and \(K_{\text{long}} \) (\(K_0^0 \) and \(K_0^0 \) channels)

4. **SDUM = DPMTHRESHold**: lower energy threshold(s) for DPMJET

5. **SDUM = EM–DISSOciation**: ion electromagnetic dissociation

6. **SDUM = EVAPORATION**: evaporation

7. **SDUM = IONBRPAIR**: activates or deactivates heavy ion direct pair production and nuclear form factors in delta ray production

8. **SDUM = IONSPLiTTing**: activates the superposition model, i.e., ion splitting into nucleons

9. **SDUM = LIMITS**: sets the maximum (pp) CMS momentum (used for initialization of high energy models, typically DPMJET)

10. **SDUM = NEUTRINO**: selects which neutrino interactions are activated

11. **SDUM = PEATHRESHold**: set the upper thresholds for the PEANUT model

12. **SDUM = QMDTHRESHold**: lower energy thresholds for RQMD, MYRQMD, BME and complete fusion

For **SDUM = CHARMDECay**:

WHAT(1) : flag for charmed hadron and tau decays
 ≤ -1.0: resets to default
 = 0.0: ignored
 = 1.0: charmed hadrons and tau leptons are transported

WHAT(2) – WHAT(6): not used
Default : decay at production, no transport

For **SDUM = COALESCEnce**:

WHAT(1) : coalescence flag
 ≤ 0.0: false (no coalescence, default)
 = 0.0: ignored
 > 0.0: true, coalescence is activated

WHAT(2) – WHAT(6): reserved to developers’ use
Default : no coalescence

For **SDUM = DECAYS**:
WHAT(1) : flag for particle decay
\[
\begin{align*}
\leq -1.0 & : \text{resets to default} \\
= 0.0 & : \text{ignored} \\
= 1.0 & : \text{maximum accuracy, polarisation accounted for in } \pi/K \rightarrow \mu-\nu_{\mu}(e-\nu_{e}) \text{ decays and following } \mu \text{ decays} \\
= 2.0 & : \text{maximum accuracy, polarisation not accounted for} \\
= 3.0 & : \text{phase space-like decays}
\end{align*}
\]
100.0 \leq \text{WHAT(1)} < 200.0: leptonic decays only are allowed (implemented only for } \tau \text{'s).
\text{WHAT(1)-100 has the same meaning as above.}
200.0 \leq \text{WHAT(1)} < 300.0: hadronic decays only are allowed (implemented only for } \tau \text{'s).
\text{WHAT(1)-200 has the same meaning as above.}
\text{Default} = 1.0 \ (\text{maximum accuracy and polarisation for both hadronic and leptonic decays})

WHAT(2), WHAT(3): not used

WHAT(4) = lower bound of the particle id-numbers (or corresponding names) to which the decay flag chosen by WHAT(1) applies
(“From particle WHAT(4). . .”)
\text{Default} = 1.0

WHAT(5) = upper bound of the particle id-numbers (or corresponding names) to which the decay flag chosen by WHAT(1) applies
(“. . . to particle WHAT(5). . .”)
\text{Default} = \text{WHAT(4)}

WHAT(6) = step length in assigning numbers
(“. . . in steps of WHAT(6)”)
\text{Default} = 1.0

\begin{center}
\text{For SDUM = DPMTHRESHold:}
\end{center}

WHAT(1) = minimum DPMJET kinetic energy for hadrons (GeV)
\[
\leq 0.0 : \text{ignored}
\]
\text{Default} = 20 \text{TeV}

WHAT(2) = minimum DPMJET kinetic energy for ions (GeV/n)
\[
\leq 0.0 : \text{ignored}
\]
\text{Default} = 5 \text{GeV/n}

WHAT(3) = minimum RQMD kinetic energy for ions (GeV/n)
\[
< 0.05 \text{ GeV/n: forced to be } = 0.05 \text{ GeV/n}
\]
\text{Default} = 0.125 \text{GeV/n}

WHAT(4) = smearing (\pm \Delta E, GeV/n) for the RQMD-DPMJET switch energy
\[
< 0.0 : \text{resets to 0}
\]
\text{Default} = 2 \text{GeV/n}

WHAT(5) = smearing (\pm \Delta E, GeV/n) for the FLUKA-DPMJET switch energy for h-A interactions
\[
< 0.0 : \text{resets to 0}
\]
\text{Default} = 10 \text{TeV}
WHAT(6) = flag for restricting DPMJET h–A interactions to primary particles only
- \(\leq -1.0 \): resets to default (false)
- \(= 0.0 \): ignored
- \(> 0.0 \): sets to true

Default = -1.0 (no restriction to primary particles only)

Default (no PHYSICS option with SDUM = DPMTHRESHold): DPMJET is called for h–A interactions above 20 TeV and for A–A interactions down to 5 GeV/n. RQMD is called between 5 and 0.125 GeV/n.

Warning: to activate ion interactions refer to the IONTRANS card.

Warning: The FLUKA executable must be built with the DPMJET and RQMD libraries to perform A–A interactions above 125 MeV/n (see the ldpmqmd script in `$FLUPRO/flutil`). DPMJET must also be linked for h–A interactions above 20 TeV.

For SDUM = EM–DISSOciation:

WHAT(1) : flag for activating ion electromagnetic dissociation
- \(\leq -1.0 \): resets to default (no em-dissociation)
- \(= 0.0 \): ignored
- \(= 1.0 \): no em-dissociation
- \(= 2.0 \): projectile and target em-dissociation activated
- \(= 3.0 \): projectile only em-dissociation activated
- \(= 4.0 \): target only em-dissociation activated

Default = 1.0 (no em-dissociation)

WHAT(2) : flag for \(\mu^\pm \) electromagnetic dissociation
- \(\leq -1.0 \): resets to default (\(\mu^\pm \) em-dissociation activated)
- \(= 0.0 \): ignored
- \(= 1.0 \): \(\mu^\pm \) em-dissociation activated
- \(= 2.0 \): \(\mu^\pm \) em-dissociation off

Default = 1.0 (\(\mu^\pm \) em-dissociation activated)

WHAT(3) : flag for deuteron electromagnetic dissociation
- \(\leq -1.0 \): resets to default (deuteron projectile em-dissociation activated)
- \(= 0.0 \): ignored
- \(= 1.0 \): deuteron projectile em-dissociation activated, deuteron target em-dissociation on/off according to **WHAT(1)**
- \(= 2.0 \): deuteron em-dissociation off

Default = 1.0 (deuteron projectile em-dissociation activated)

WHAT(4) – WHAT(6): not used

For SDUM = EVAPORATion:
WHAT(1): flag for FLUKA evaporation model $= i_0 + Z_{\text{max}} \times 100 + A_{\text{max}} \times 10000$, where:

- $i_0 \leq -1.0$: resets to default (new model, no heavy fragment evaporation)
- $= 0.0$: ignored
- $= 1.0$: old evaporation model *(OBSOLETE: kept for developers’ use only)*
- $= 2.0$: new evaporation model, no heavy fragment evaporation
- $= 3.0$: new evaporation model, with heavy fragment evaporation *(CPU expensive: see Note 1 below)*

Z_{max}: (optional, default maximum possible Z) maximum Z of the emitted fragments *(meaningful only for $i_0 = 3$)*

A_{max}: (optional, default maximum possible A) maximum A of the emitted fragments *(meaningful only for $i_0 = 3$)*

Default $= 2.0$ (new evaporation model, no heavy fragment evaporation)

WHAT(2) – WHAT(6): not used

For SDUM = IONBRPAIr:

WHAT(1): flag for (de)activating heavy ion direct pair production

- ≤ 0.0: heavy ion direct pair production is deactivated
- $= 0.0$: ignored
- ≥ 0.0: activated (it still requires heavy pair production activated via PAIRBREM for the required materials)

Default $= 1.0$ (heavy ion direct pair production is activated in the materials defined by PAIRBREM)

WHAT(2): flag for (de)activating heavy ion bremsstrahlung (not yet implemented)

WHAT(3): flag for (de)activating nuclear form factor effects in heavy ion delta ray production

- ≤ 0.0: nuclear form factor effects are deactivated
- $= 0.0$: ignored
- ≥ 0.0: nuclear form factor effects are activated (it still needs delta ray production activated via DELTARAY for the required materials)

Default $= 1.0$ (nuclear form factor effects in heavy ion delta ray production are activated in the materials defined by DELTARAY)

WHAT(4) – WHAT(6): not used

For SDUM = IONSPLITting:

WHAT(1): flag for activating ion splitting into nucleons

- ≤ -1.0: false, no ion splitting
- $= 0.0$: ignored
≥ 1.0: true, ion splitting is activated

Default = -1.0 (no ion splitting)

WHAT(2) = minimum energy for ions (GeV/n) above which splitting into nucleons will be performed

≤ 0.0: ignored

Default = 0.1 GeV/n

WHAT(3) = maximum energy for ions (GeV/n) below which splitting into nucleons will be performed

≤ 0.0: ignored

Default = 5 GeV/n

WHAT(4) = minimum A for which ion splitting into nucleons will be performed

≤ 0.0: ignored

Default = 2

WHAT(5) = maximum A for which ion splitting into nucleons will be performed

≤ 0.0: ignored

Default = 500

WHAT(6): flag for the ion splitting minimum threshold

= 0.0: sharp threshold at energy per nucleon equal to **WHAT(2)**

= 1.0: probability according to $1 - \exp \left(\frac{E_k}{E_{min}} \right)$ where $E_{min} = \text{WHAT}(2)$ and E_k/n is the kinetic energy per nucleon of the current ion

= 2.0: splitting at the first nonelastic interaction if no model is available. It requires full transport selected for all ions concerned. **WHAT(2)**, **WHAT(3)** are still honored in the same way as for for 0.0, however the minimum energy should be set compatible with the ion cross section thresholds rather than not

< -1.0: resets to default

Default = 0.0 (sharp threshold)

For SDUM = LIMITS:

WHAT(1): set the maximum (pp) CMS momentum (used for initialization of high energy models, typically DPMJET)

≤ 0.0: reset to default

= 0.0: ignored

≥ 0.0: maximum (pp) CMS momentum (GeV/c)

Default: determined by the *BEAM* card
WHAT(2) – WHAT(6): not used

For SDUM = NEUTRINO:

WHAT(1): flag for activating quasielastic (QE) neutrino interactions
- 1.0: QE neutral current (NC) activated
- 2.0: QE charged current (CC) activated
- 3.0: QE NC and CC activated
- < 0.0: no QE interactions
- 0.0: ignored
Default = 3.0 (QE NC and CC activated)

WHAT(2): flag for activating resonant (RES) neutrino interactions
- 1.0: RES neutral current (NC) activated
- 2.0: RES charged current (CC) activated
- 3.0: RES NC and CC activated
- < 0.0: no RES interactions
- 0.0: ignored
Default = 3.0 (RES NC and CC activated)

WHAT(3): flag for activating deep inelastic (DIS) neutrino interactions
- 1.0: DIS neutral current (NC) activated
- 2.0: DIS charged current (CC) activated
- 3.0: DIS NC and CC activated
- < 0.0: no DIS interactions
- 0.0: ignored
Default = 3.0 (DIS NC and CC activated)

WHAT(4): flag for activating charm production (CHA) in DIS neutrino interactions
- 1.0: CHA neutral current (NC) activated (not yet implemented)
- 2.0: CHA charged current (CC) activated
- 3.0: CHA NC and CC activated (NC not yet implemented)
- < 0.0: no CHA interactions
- 0.0: ignored
Default = 3.0 (CHA CC activated, but NC not yet implemented)

WHAT(5): not used

WHAT(6): flag for performing (forced) interactions when there is a(n) (anti)neutrino beam particle
- ≥ 1.0: forced interactions for (anti)neutrino beam particles are performed
- $= 0.0$: ignored
- ≤ -1.0: forced interactions for (anti)neutrino beam particles not performed (hence no neutrino interactions, propagation only)
Default = 1.0 (forced interactions performed for (anti)neutrino beams)

For SDUM = PEATHRESHold:

WHAT(1): maximum PEANUT kinetic energy for nucleons (GeV)
- ≤ 0.0: ignored
WHAT(2): maximum PEANUT kinetic energy for pions (GeV)
\[\leq 0.0: \text{ignored} \]

WHAT(3) = maximum **PEANUT kinetic energy for kaons (GeV)**

\[\leq 0.0: \text{ignored} \]

WHAT(4) = maximum **PEANUT kinetic energy for }{\bar{K}}s (GeV)**

\[\leq 0.0: \text{ignored} \]

WHAT(5) = maximum **PEANUT kinetic energy for antinucleons (GeV)**

\[\leq 0.0: \text{ignored} \]

WHAT(6) = maximum **PEANUT kinetic energy for (anti)hyperons (GeV)**

\[\leq 0.0: \text{ignored} \]

Default (no **PEATHRESHold** option): **PEANUT** is called up to 100 TeV kinetic energy, or the DPMJET threshold energy if linked, for all hadrons

For SDUM = **QMDTHRESHold**:

WHAT(2) : minimum **Bme kinetic energy for ions (GeV/n)**

\[\leq 0.0: \text{ignored} \]

WHAT(5) : maximum kinetic energy for ion complete fusion (GeV/n)

WHAT(6) : smearing \((\pm \Delta E, \text{GeV/n})\) for the **Bme-RQMD switch energy**

\[< 0.0: \text{set } = 0.0 \]

Default = 0.025 GeV/n

Default (option **PHYSICS** not given): standard **FLUKA** treatment of physics processes

Note

1. In order to achieve accurate results for residual nuclei production or fragment production with ion beams the evaporation of heavy fragments must be activated. This, however, is not the default since it can bring a significant CPU burden, and is not needed for most applications. The CPU burden is maximal for problems with heavy targets, high energy beams, and no electro-magnetic particle transport. It is often negligible for problems with electro-magnetic transport activated down to low thresholds.

Example:

* Only hadronic decays are allowed for tau+ and tau- (id-number 41 and 42)

\[
* \ldots+\ldots1\ldots+\ldots2\ldots+\ldots3\ldots+\ldots4\ldots+\ldots5\ldots+\ldots6\ldots+\ldots7\ldots+\ldots
\]

PHYSICS 201.0 0.0 0.0 41.0 42.0 0. DECAYS

* Maximum accuracy requested for decay of pi+ and pi- (id-number 13 and 14),
* but without accounting for polarisation

PHYSICS 2.0 0.0 0.0 13.0 14.0 0. DECAYS

* New evaporation model requested

PHYSICS 2.0 0.0 0.0 0.0 0.0 0. EVAPORAT
7.57 PLOTGEOM

Calls the PLOTGEOM geometry plotting package [112], to scan slices of the problem geometry and to produce auxiliary files for plotting them, possibly with a magnetic field superimposed

See also GEOBEGIN, GEOEND

WHAT(1) = 0.0: axes are plotted
\(\neq 0.0\): no axes

WHAT(2) = 0.0: all region boundaries are plotted
\(\neq 0.0\): only boundaries between different materials are plotted

WHAT(3) = 0.0: no numbering of regions or boundaries
\(\neq 0.0\): boundaries and regions are numbered (not yet implemented)

WHAT(4) > 0.0: maximum length of each worm (see Note 1)
< 0.0: worm compression is performed
Default = 2000.0

WHAT(5) = 0.0: no diagnostic printing
\(\neq 0.0\): write the scan history to logical output unit WHAT(5) (the filename will be PLOTGEOM.OUT)

WHAT(6) = number of the logical unit for PLOTGEOM input. If different from 0.0, the PLOTGEOM input must be provided in a file PLG.GFXINDAT. PLOTGEOM input, which is not in standard FLUKA format, is described in Note 4.
Default: PLOTGEOM input immediately follows

SDUM = FORMAT: the PLOTGEOM store file will be a formatted one
\(=\) anything else: unformatted store file

Default (option PLOTGEOM not given): no plotting

Notes

1. The PLOTGEOM codeword links to FLUKA the PLOTGEOM program, which was written by R. Jaarsma and H. Rief of the Ispra Joint Nuclear Research Centre, and was adapted as a stand-alone program for the FLUKA Combinatorial Geometry by G.R. Stevenson of CERN. The present version, integrated with the dynamically allocated storage of the FLUKA code as an input option, has been improved from several points of view, mainly higher flexibility and smaller space requirements.

The following documentation is extracted with some modifications from the original EURATOM report of Jaarsma and Rief [112].

PLOTGEOM is a program for checking the geometry input data of Monte Carlo particle transport codes. From the points of intersection between the geometrical structure and a mesh of lines of flight, PLOTGEOM generates a picture, representing a cross section of the geometry.

The user specifies a two-dimensional cross section of the geometry by giving its orientation with respect to the geometry coordinate axes and the desired coordinates of the corners of the picture (note that the x-y coordinate system of the “picture” is usually different from the one to which the geometry description refers).

The program generates a horizontal grid of lines (parallel to the x-axis of the picture), covering the area of the desired picture. The constant distance between adjacent lines is 0.07 cm in the picture. The points of intersection with the medium boundaries are recorded. After having scanned one line, each intersection point P2, found is compared with each similar point P1, found on the line immediately preceding. If the distance
between a couple of points P_1k, P_2j is ≤ 0.035 cm, then the linepiece P_1k–P_2j is called a segment. If more than one of the points P_2 on the current line satisfies the quoted condition for a given P_1, then only the nearest one to that P_1 is taken.

Now we define a “worm body” as being one segment or a string of segments, so that the endpoint of one segment is the begin point of the next segment.

If a worm body with a last point P_1j already exists, the segment P_1j–P_2k is connected to this worm body and the last point of that worm body becomes P_2k. Otherwise, the segment P_1j–P_2k is the first one of a new worm body and the program looks for a “worm head” to be connected to P_1j. This “head” has to be in the neighbourhood of P_1j between the two last scanned lines and is found by the subroutine HEADTL (PGMSCN in the FLUKA version), which applies the same principle for finding segments, but on a refined and variable grid.

If there is a worm body with a last point P_1j and if on examining all P_2 points no segment P_1j–P_2k is found, then this body should be given a “tail”. This tail is determined by the subroutine HEADTL (PGMSCN) in the same way as a head.

The “worms” (head, body, tail) thus created are stored on disk.

If the horizontal scanning has been finished the same procedure is repeated in the vertical direction (parallel to the y-axis of the picture).

Finally the worms are concatenated as far as possible: head to tail, head to head, tail to tail. The strings of worms formed in this way are plotted by means of any available graphics program (e.g., Paw).

2. A PLOTGEOM card can be issued only after the combinatorial geometry input has been read (either from an external file or from standard input). In other words, PLOTGEOM cannot be input before the GEOEND card. In addition, if WHAT(2) is different from 0.0, PLOTGEOM can be invoked only after materials have already been assigned.

3. Since PLOTGEOM now makes use of the same dynamically allocated blank common storage of FLUKA it is convenient to issue the PLOTGEOM card just after geometry and material definitions, but before biasing and any other option which makes use of permanent and/or temporary storage in blank common. The purpose is twofold:

 (a) this maximises the storage available for PLOTGEOM for a given blank common dimension, and hence minimises the chances of having a too small storage

 (b) since PLOTGEOM frees again all the used storage after completion, the total memory required for the blank common is minimised.

On the other hand, if the LATTICE geometry option is used, the PLOTGEOM command must be issued only after all the transformations have been defined (i.e., after all ROT-DEFIni commands).

4. The input data required by PLOTGEOM to perform a slice scan must be given on the unit specified by WHAT(6) as follows:

First line (format A80) : scan title

Second line (format 6E10.5): X0, Y0, Z0, X1, Y1, Z1

Third line (format 6E10.5): TYX, TYY, TYZ, TXX, TXY, TXZ

Fourth line (format 4E10.5): EXPANY, EXPANX, PFIMXX, PFIMXY

The meaning of the variables is:

- $X0$, $Y0$, $Z0$ = real coordinates of the bottom left-hand corner of the picture
- $X1$, $Y1$, $Z1$ = real coordinates of the top right-hand corner of the picture
- TYX, TYY, TYZ = direction cosines of the y-axis of the plot
- TXX, TXY, TXZ = direction cosines of the x-axis of the plot
- EXPANY, EXPANX = expansion factors ≥ 0.1 for the y-axis, resp. the x-axis
- PFIMXX, PFIMXY: if > 0, number of intervals along the x- and y-axis for plotting strength and direction of a magnetic field returned by the user routine MAGFLD

There is some redundancy in the position and direction input: indeed once $X0$, $Y0$, $Z0$, $X1$, $Y1$, $Z1$ are given, only one of the axes is actually required. Therefore the three cosines of one of the two axes can be left $= 0.0$.

If < 0.1, EXPANX, EXPANY are reset to the default $= 1.0$. Only their relative value matters.

5. The scan output file is written (formatted or not according to the value of SDUM) on unit LUNPGS ($= 4$) with the default name of PLOTGEOM.STORE.

The formatted version is self explanatory, while the unformatted one is organised as follows:

1st record: one CHARACTER*80 variable (title of the scan)

2nd record: 14 REAL*4 variables: $X0, Y0, Z0, X1, Y1, Z1, TYX, TYY, TYZ, TXX, TXY, TXZ, XAXLEN, YAXLEN$
where:

\[\begin{align*}
X_0, Y_0, Z_0 & \quad \text{coordinates of the bottom and top corners (from 2nd input line above)} \\
TYX, TYY, TYZ & \quad \text{and} \\
TXX, TXY, TXZ & \quad \text{direction cosines of the axes (from 3rd input line above)} \\
XAXLEN & \quad \text{and} \\
YAXLEN & \quad \text{lengths of x and y axes}
\end{align*} \]

Then, repeated \(M \) times (\(M \geq 2 \), typically \(M = 2 \)):

M1 record: two I*4 variables, representing:

(a) the number of worms \(NWORMS \)
(b) a dummy variable

Then, repeated \(I = 1, NWORMS \) times:

M11 record: three I*4 variables \(I, IDUM, LENGTH \)

where the first one is the worm index, the second is dummy, the third is the worm \(LENGTH \), namely the number of points in the worm

M12 record: \((X(J), Y(J), J=1,LENGTH) \)

where \(X \) and \(Y \) are the abscissae and ordinates of a vector of \(LENGTH \) points to be joined with a line (= a "worm") in the plane where the origin \((0,0)\) corresponds to \((X_0,Y_0,Z_0)\) and the x and y axis to \(TXX, TXY, TXZ \) and \(TYY, TYZ \)

In a compressed file there is just an extra record at the very beginning of the file: it contains a CHARACTER*80 string equal to '***COMPRESSED***COMPRESSED***'

Example:

* Plot a vertical section of a geometry where x-axis points up, y-axis points to the right, and z-axis into the page. The PLOTGEOM file will be formatted.

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
PLOTGEOM 1.0 1.0 0.0 0.0 0.0 0.0 0.0FORMAT
Vertical section of the tunnel geometry at z = 35 m
-120.0 -180.0 3500.0 120.0 180.0 3500.0
1.0 0.0 0.0 0.0 1.0 0.0
1.0 1.0 0.0
```
7.58 POLARIZAti

|WHAT(1)| ≤ 1.0: x-axis cosine of the beam polarisation vector (electric vector in case of photons)
| | > 1.0: resets the default (no polarisation)
| | | This value can be overridden in user routine SOURCE (p. 380) by assigning a value to variable UBMPOL
| | Default = -2.0 (no polarisation)

WHAT(2) = y-axis cosine of the beam polarisation vector
This value can be overridden in user routine SOURCE (p. 380) by assigning a value to variable VBMPOL
Default = 0.0

WHAT(3) = z-axis cosine of the beam polarisation vector
This value can be overridden in user routine SOURCE (p. 380) by assigning a value to variable WBMPOL
Default = 0.0

WHAT(4): flag for relative direction of beam and polarisation
≥ 1.0: the polarisation is orthogonal to the direction of the primary photons
< 1.0: resets the default (the polarisation is not orthogonal to the direction of the primaries)
This value can be overridden in user routine SOURCE (p. 380) by assigning a value to the logical variable LPPERP
Default = 0.0 (the polarisation is not orthogonal to direction of the primaries)

WHAT(5) = polarisation fraction (see explanation in WHAT(6) below)
< 0.0: resets to default = 1.0
> 1.0: resets to default = 1.0
This value can be overridden in user routine SOURCE (p. 380) by assigning a value to variable POLFRA
Default = 1.0 (fully polarised in the direction described by WHAT(1)–WHAT(3))

WHAT(6): flag for interpreting WHAT(5):
≤ 0.0: a fraction WHAT(5) of beam particles are linearly polarised in the direction described by WHAT(1)–(3) and the remaining fraction (1.0 – WHAT(5)) are not polarised
≥ 1.0: a fraction WHAT(5) of beam particles are linearly polarised in the direction described by WHAT(1)–(3) and the remaining fraction (1.0 – WHAT(5)) are polarised in the direction orthogonal to both the beam and that described by WHAT(1)–(3)
This value can be overridden in user routine SOURCE (p. 380) by assigning a value to the logical variable LPFRAC
Default = 0.0 (only a fraction WHAT(5) of the photons is polarised as indicated by WHAT(1)–WHAT(3), and the remaining fraction is not polarised)

SDUM: not used
Default (option POLARIZAti not given): photons are not assumed to be polarised

Notes
1. Polarisation direction defined by option POLARIZAti is meaningful only if the beam direction is along the positive z-axis, unless a command BEAMAXES is issued to establish a beam reference frame different from the geometry frame (see p. 7.5).
2. The program takes care of properly normalising the cosines unless they are badly unnormalised (in the latter case the code would reset to no polarisation). If WHAT(4) ≥ 1.0, the code makes sure that the two vectors are orthogonal within the minimum possible rounding errors.
3. What polarisation means is dependent on the physics implemented in the code: for the moment the only polarisation dependent effects are Compton, Rayleigh and photoelectric effect for photons, where of course the polarisation vector represents the electric field direction and must be normal to the beam direction.

Example:

* Synchrotron radiation beam with m_e/E mrad x,y divergence (produced by a 3 GeV electron beam). The actual spectrum is provided by a user-written source
* ($E_{max} = 500$ keV). Photons are fully polarised in the horizontal (y) direction
* and the polarisation is orthogonal to the direction of the primary photons

```
DEFAULTS EM-CASCA
BEAM   -500.E-6  0.0  1.7033E-4  0.0  0.0  1.0PHOTON
SOURCE  0.0  0.0  0.0  0.0  0.0  0.0
POLARIZA  0.0  1.0  0.0  1.0  1.0  0.0
```
7.59 RAD-BIOL

Allows to input the name of a radiobiological data file

See also TPSSCORE

The only parameter relevant for this card is SDUM which can be up to 10 characters long.

WHAT(1) – WHAT(6): not used

SDUM = any character string identifying the radiobiological data file which must be named <SDUM>.dat (max. 10 characters)
7.60 RADDECAY

requests simulation of radioactive decays and sets the corresponding biasing and transport conditions

See also DCYTIMES, DCYSCORE, IRRPROFle, RESNUCLEi

WHAT(1) : flag for activating radioactive decays
= 1.0: radioactive decays activated for requested cooling times
= 2.0: radioactive decays activated in semi-analogue mode
= 0.0: ignored
= -1.0: reset to default
Default : no radioactive decays

WHAT(2) : flag for “patching” isomer production, while waiting for a better production model
= 1.0: isomer production “patching” activated
= -1.0: isomer production “patching” disabled
= 0.0: ignored
Default : activated if non-analogue radioactive decays are requested, disabled otherwise

WHAT(3) : number of “replicas” of the decay of each individual residual
= 0.0: ignored
< 0.0: reset to default
Default = 1.0 for analogue decays, 3.0 otherwise

WHAT(4) : switch for applying various biasing features only to prompt particles, or only to particles originated in radioactive decays, or to both.
> 0.0: a 9-digit number abcdefghi, where each a–i digit is interpreted as follows (but see Note 4 below):
 0.0 = ignored
 1.0 = the corresponding biasing is applied to prompt radiation only
 2.0 = applied to decay radiation only
 3.0 = applied to both prompt and decay radiation

and the digit position is interpreted as follows:

a = hadron/muon interaction length or decay biasing, as defined by command LAM–BIAS
b = hadron/muon leading particle biasing (not defined at the moment)
c = hadron/muon importance and weight window biasing, as defined by commands BIASING and WW–FACTOr
d = e^\pm/γ interaction length biasing, as defined by command EMF–BIAS
e = e^\pm/γ leading particle biasing, as defined by command EMF–BIAS
f = e^\pm/γ importance and Weight Window biasing, as defined by commands BIASING and WW–FACTOr
g = low-energy neutron biased downscattering, as defined by command LOW–DOWN, and non-analogue absorption, as defined by LOW–BIAS
h = no meaning for the time being
i = low-energy neutron importance and Weight Window biasing, as defined by commands BIASING, WW–FACTOr and WW–PROFle

= 0.0: ignored
< 0.0: reset to default
Default : all biasing is applied to prompt showers only (equivalent to 111111111.)
WHAT(5) : multiplication factors to be applied to e^\pm/γ transport energy cutoffs, respectively for prompt and decay radiation

$> \, 0.0$: a 10-digit number $xxxxxyyyyy$, where the first and the last 5 digits are interpreted as follows (see Note 5 below):

$xxxx \times 0.1 =$ transport energy cutoff multiplication factor for β^\pm and γ decay radiation

$yyyy \times 0.1 =$ transport energy cutoff multiplication factor for prompt e^\pm and γ radiation

$= \, 0.0$: ignored

$< \, 0.0$: reset to default

Default : e^\pm and γ transport energy cutoffs are unchanged: the multiplication factors are set $= 1.0$ for both prompt and decay radiation (equivalent to 0001000010.)

WHAT(6) flag for generating β^+/β^- spectra with Coulomb and screening corrections

$> \, 0.0$: Coulomb and screening corrections are activated

$= \, 0.0$: ignored

$< \, 0.0$: Coulomb and screening corrections are ignored

Default $= 1.0$ Coulomb and screening corrections are activated

SDUM: not used

Default (option RADDECAY not given): no radioactive decay is activated, and no multiplication factors are applied to transport energy cutoffs

Notes

1. FLUKA allows for two different ways of simulating radioactive decay. In the semi-analogue mode, (WHAT(1) > 1) each single radioactive nucleus is treated in a Monte Carlo way like all other unstable particles: a random decay time, random daughters, random radiation are selected and tracked. This allows for event-by-event analysis, with the time structure recorded in the particles age variable. It is called semi-analogue because the radiation spectra are inclusive (i.e., no correlated γ cascade is reproduced, etc.). In the “activation study” mode (WHAT(1) $= 1$) the time evolution is calculated analytically and all daughter nuclei and all associated radiation are considered, but at fixed times. (See Note 6 below).

2. In the analytical evolution, each radioactive nucleus can be “decayed” several times, in order to improve statistics on, for instance, energy deposition, as set by WHAT(3).

3. Although FLUKA allows to simulate in a same run the transport of cascade particles and that of particles generated by decay of the produced residual nuclei, transport and biasing need in general to be set at very different levels. For instance, in a study of induced activity due to photonuclear reactions, it is recommended to set the photon transport threshold not lower than the photonuclear reaction threshold. However, gammas produced in the decay of those residual nuclei have in general lower energies and need to be transported with much lower energy cutoffs (see Note 5 below).

4. Biasing can be applied to radiation products. At present, for the biasing switch represented by WHAT(4), only the d, e and f choices are relevant since only β^\pm and γ decays are considered for the time being.

5. Both multiplication factors imbedded in WHAT(5) must be ≥ 1.0. If any of the multiplication factors is set to a value larger than 9999.0, it is effectively considered as ∞, i.e., WHAT(5) $= 0000099999.$ will kill the electromagnetic cascade in the prompt part, while leaving it untouched in the decay part.

$WHAT(5) = 9999900000.$ will do the opposite.

6. It is possible to perform on-line time evolution of decay radiation, and to score all standard quantities (energy deposition, residuals,...) according to a user-defined irradiation profile (IRRPROFILE command, see p. 153) and one or more user-defined decay times (DCYTIMES command, p. 93). Radiation transport will be performed only once, and the evolution will be applied as a weight depending on the setting of the estimator, to be defined with the DCYSCORE command (p. 91).

7. If decays are simulated in semi-analogue mode, detector results are expressed per unit primary weight (possibly scoring together prompt and decay particles, if requested by DCYSCORE with WHAT(1) $= –1.0$). If decays are instead calculated for requested cooling times, the results are expressed per unit time (pSv/s, cm$^{-2}$/s, Bq, etc.)

8. When the source is a radioactive isotope (defined by command BEAM with SDUM = ISOPO Te and by command HI–PROPErt), RADDECAY must be used in semi-analogue mode (WHAT(1) > 1). The detector results
are then expressed per isotope decay. Note that command **DCYSORE** must be issued with **WHAT(1) = -1**, and must be applying to all relevant estimators and detectors. Without **DCYSORE**, no scoring will occur (see Note 8 to command **BEAM**).

9. Different transport cutoffs for prompt and decay $e^+/e^-/\gamma$ can be set also differently for each region by command **EMFCUT** with **SDUM = PROMPT** or **DELAYED**. With **WHAT(5) of RADDECAY** it is possible only to define a ratio, identical for all regions.

Example:

* In this example, radioactive decays are activated for requested cooling
* times, with an approximated isomer production. Each radioactive nucleus
* produced will be duplicated.
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....
 RADDECAY 1.0 1.0 2.0 111000. 200.
* Any biasing of electrons, positrons and photons is applied only to
* prompt particles in the electromagnetic shower, and not to beta and
* gamma particles from radioactive decay.
* The transport energy cutoffs set by **EMFCUT** (or by **DEFAULTS**) are
* applied as such to decay betas and gammas, but are multiplied by a
* factor 20 when applied to prompt particles.
7.61 RANDOMIZE

Sets the seeds for the double-precision random number generator RM64

WHAT(1) : logical file unit from which to read the seeds.
Default = 1.0 (reads the random number seeds from unit 1)

WHAT(2) = any number \(<\ 2 \cdot 10^9\) (see Note 5).
Default = 1234598765

WHAT(3) – WHAT(6), SDUM: not used

Default (option RANDOMIZE not given): standard seeds are used as implemented

Notes

1. The random number generator can be now initialised in one way only, namely to read from an external file (generated in a previous run) a vector of 97 seeds (the file contains also some auxiliary information). If that file is missing or empty or anyway invalid, the code will initialise the random number generator in its default state.

2. While the number of calls to the random number generator are printed on the standard output at the end of each primary history (or group of histories — see WHAT(5) of option START, p. 244), the 97 seeds are printed at the same time on a separate file. Skipping calls is therefore unnecessary in order to re-start a run at a particular point (e.g., where it stopped because of a crash). However, it still possible to skip a given number of calls by running the random number generator stand-alone.

3. It is mandatory to use only seeds output information as written by the program in earlier runs on the same computer platform. Otherwise the randomness of the number sequence would not be guaranteed.

4. Flrn64 is a portable random number generator in double precision, written in Fortran by P. Sala. It is based on an a new algorithm by Marsaglia and Tsang [125]. It gives random floating point numbers in the interval \([0,1)\), with 53 significant bits of mantissa.

5. Different numbers input as WHAT(2) will initialise different and independent random number sequences, allowing the user to run several jobs in parallel for the same problem.

The default is 1234598765.

Example 1:

* The seeds for the random number generator will be read from the file connected
* with logical unit 1

```
...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
RANDOMIZE 1.0 0.0 0.0 0.0 0.0 0.0 0.0
```

Example 2:

* This run will be completely independent statistically from the previous one

```
...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
RANDOMIZE 1.0 4042731. 0.0 0.0 0.0 0.0 0.0
```
Input Commands

7.62 RESNUCLEi

Scores stopping nuclei on a region basis.

See also DCYS_SCORE, DCY_TIMES, IRR_PROFILE, RAD_DECAY

WHAT(1): type of products to be scored
- 1.0: spallation products (all inelastic interactions except those induced by neutrons below the threshold for multigroup treatment)
- 2.0: low-energy neutron products, i.e., those produced by neutrons below the threshold for multigroup treatment (provided the information is available, see Note 1).
- 3.0: all residual nuclei are scored (if available, see above)
- 0.0: resets the default (= 1.0)
Default = 1.0 (only spallation products are scored)

WHAT(2) = logical output unit
- > 0.0: formatted data are written on the WHAT(2) unit
- < 0.0: unformatted data are written on the |WHAT(2)| unit
 - Values of |WHAT(2)| < 21.0 should be avoided
 - (with the exception of WHAT(2) = +11.0 = standard output).
- 0.0: resets the default (= 11.0)
Default = 11.0 (standard output unit)

WHAT(3) = maximum atomic number Z of the residual nuclei distribution
Default : according to the Z of the element(s) of the material assigned to the scoring region

WHAT(4) = maximum $M = N - Z - (NMZ)_{\text{min}}$ of the residual nuclei distribution (see Notes 2 and 3)
Default : according to the mass and atomic number A, Z of the element(s) of the material assigned to the scoring region

WHAT(5) = scoring region number or name
- = -1.0: all regions (see Note 9)
Default = 1.0

WHAT(6) = volume of the region in cm3 (or, more in general, a normalization factor by which the scoring shall be divided)
Default = 1.0

SDUM = any character string identifying the detector (max. 10 characters)

Notes

1. Elements or isotopes for which the FLUKA low-energy neutron cross sections contain information on the production of residual nuclei are indicated by “Yes” in column 5 (“Residual nuclei”) of Table 10.3 (p. 342) where the components of the neutron cross section library are listed.

 The same information can be obtained by setting the printing flag in the LOW–NEUT option (WHAT(4) > 0.0). If such data are available for a given nuclide, the following message is printed on standard output:

 -(RESIDUAL NUCLEI INFORMATIONS AVAILABLE)

2. To minimise storage, nuclei are indexed by Z (with $Z_{\text{min}} = 1$) and $NMZ = N - Z$ (with $(NMZ)_{\text{min}} = -5$). The parameter M is defined as $M = NMZ - (NMZ)_{\text{min}}$; therefore $M_{\text{min}} = 1$. The following relations can also be useful:

 $N - Z = M + (NMZ)_{\text{min}}$
 $M = M + Z + (NMZ)_{\text{min}}$

3. In the case of heavy ion projectiles the default NMZ, based on the region material, is not necessarily sufficient to score all the residual nuclei, which could include possible ion fragments.

4. In order to achieve reasonable results for residual nuclei production the new evaporation module must be activated (it is currently the default) and heavy fragment evaporation should also be activated (it is not the default because of the related large CPU penalty). Coalescence should also be activated (see option PHYSICS, p. 208 for all these settings). The old evaporation is still available, mostly because of historical reasons, but
it does not produce meaningful results for residuals. The new evaporation, available since 1997, is far more sophisticated in this respect, while differences in emitted particle spectra and multiplicities are weak.

5. Starting with Fluka2006.3 protons are scored together with 2H, 3H, 3He, 4He, at the end of their path, if transported (see option IONTRANS, p. 152). This is a change with respect to previous versions where protons were not scored.

6. All residual nuclei are scored when they have been fully de-excited down to their ground or isomeric state.

7. Radioactive decay of residual nuclei can be performed by FLUKA in the same run: see commands DCYTIMES (p. 93), DCYSQORE (p. 91), IRRPROFIle (p. 153) and RADDECAY (p. 221), or can be done off-line by a user-written code (see for instance the program USRSUDEV available with the normal FLUKA distribution). If command IRRPROFI has been issued, RESNUCLEi results provided by detectors associated to a cooling time index via DCYSCORE will be expressed in Bq.

8. An example on how to read RESNUCLEi unformatted output is shown below. An explanation of the meaning of the different variables is given in the comments at the beginning of the program. The program lists the Z and A of the produced nuclei, followed by the corresponding amount per unit volume. A more complex program USRSUW, which allows to compute also standard deviations over several runs, is available with the normal FLUKA code distribution in directory $FLUPRO/flutil.

A special version of the same program, USRSUDEV, provides in addition a calculation of induced activity and of its evolution in time.

9. Setting WHAT(5) = -1 will provide the sum of the residual nuclei in all regions, divided by the value set by the user for WHAT(6).

PROGRAM RDRESN

* Up to MXRSNC user-defined track or coll are allowed *
* izrhgh = maximum Z of the scoring (minimum Z: 1) *
* im rhgh = maximum M=N-Z-NMZ min of the scoring *
* (minimum M: 1). Note: *
* N-Z = M + NMZ_min, N = M + Z + NMZ min *
* itursn = type of binning: 1 = spallation products, *
* 2 = low-energy neutrons products, *
* 3 = all products *
* nrursn = region *
* vursnc = volume (cm**3) of the detector *
* tiursn = scoring name *

PARAMETER (MXRSNC = 400)
CHARACTER*10 TIURSN
CHARACTER RUNTIT*80, RUNTIM*32, FILNAM*80
DIMENSION TIURSN(MXRSNC), ITURSN(MXRSNC), NRURSN(MXRSNC),
& VURSNC(MXRSNC), IMRHGH(MXRSNC), IZRHIGH(MXRSNC)
DIMENSION RNDATA(MXRSNC,100,260)
WRITE(*,*)' Type the name of the input file:'
READ (*,') FILNAM
LQ = INDEX(FILNAM,' ') - 1
OPEN (UNIT=1, FILE=FILNAM, STATUS='OLD', FORM='UNFORMATTED')
OPEN (UNIT=2, FILE=FILNAM(1:LQ)//'.txt', STATUS='UNKNOWN')
*----------- read and write 1st record --------------------------------
READ (1) RUNTIT, RUNTIM, WEIPR, NCASE
WRITE(2,100) RUNTIT, RUNTIM, NCASE, WEIPR
*------- loop on residual nuclei detector data in the present file -----
Input Commands

& VURSNC(NRN), IZRHGH(NRN), IMRHGH(NRN) + K, K + 1
ELSE
WRITE (2,400) NRN, TIURSN(NRN), NRURSN(NRN),
& VURSNC(NRN), IZRHGH(NRN), IMRHGH(NRN) + K, K + 1
END IF
WRITE(2,'(/,A)') ' Z A Residual nuclei'
WRITE(2,'(A,/)') ' per cm**3 per primary'
READ (1) ((RNDATA(NRN,I,J), I=1,IZRHGH(NRN)), J=1,IMRHGH(NRN))
DO 2 I = 1, IZRHGH(NRN)
DO 3 J = 1, IMRHGH(NRN)
& WRITE(2,'(2I4,1P, G15.6)') I, J+K+2*I, RNDATA(NRN,I,J)
3 CONTINUE
2 CONTINUE
1 CONTINUE
1000 CONTINUE
100 FORMAT(/,1X,'*****',2X,A80,2X,'*****',/,,
& 'total weight of ',1P,E15.8,/)
200 FORMAT (/,3X,'Res. nuclei n. ',I3, '"',A10,
& '"', "high" energy products, region n. ',I5,
& '/6X,'detector volume: ',1P,E11.4,' cm**3',/
300 FORMAT (/,3X,'Res. nuclei n. ',I3, '"',A10,
& '"', "low" energy products, region n. ',I5,
& '/6X,'detector volume: ',1P,E11.4,' cm**3',/
400 FORMAT (/,3X,'Res. nuclei n. ',I3, '"',A10,
& '"', all products, region n. ',I5,
& '/6X,'detector volume: ',1P,E11.4,' cm**3',/
END

Example:

* Calculate residual nuclei produced in an iron slab (region 6) and in a zinc
* vessel (region 10). Heavy recoils are transported (option IONTRANS) and scored
* at the point where they stop. The new evaporation model is activated to ensure
* a better quality of the results. For iron, all residual nuclei are scored. For
* zinc, no data are available for low-energy neutrons, so only nuclei produced
* by spallation/evaporation are scored. Results are written (formatted) on
* logical unit 22 and 23, respectively.

MATERIAL 26.0 0.0 7.87 11.0 0.0 0. IRON
MATERIAL 30.0 0.0 7.133 12.0 0.0 0. ZINC
ASSIGNMAT 11.0 6.0 9.0 0.0 ! Four Fe slabs
ASSIGNMAT 12.0 10.0 0.0 0.0 ! Zn vessel
IONTRANS -2.0
PHYSICS 2.0 0.0 0.0 0.0 0.0 0. EVAPORAT
RESNUCLEI 3.0 22.0 0.0 0.0 6.0 0. FirstFe
RESNUCLEI 1.0 23.0 0.0 0.0 10.0 0. Znvessel
7.63 ROT–DEFIni

Defines rotations and translations to be applied to binnings.

See also EVENTBIN, ROTPRBIN, USRBIN, and LATTICE (in Chap. 8, p. 314)

WHAT(1) : assigns a transformation index and the corresponding rotation axis
≤ 0.0: the card is ignored if SDUM is empty, otherwise SDUM is kept as the rotation name,
and the first free rotation number is used
> 1000.0: interpreted as j+i*1000
> 100.0 and < 1000.0: interpreted as i+j*100
(Note the inversion of i and j!)
> 0.0 and ≤ 100.0: interpreted as i, and j assumed to be = 0

where i = index of the rotation
j = 1 rotation with respect to x axis
= 2 rotation with respect to y axis
= 3 or 0 rotation with respect to z axis

(see Note 4)

Default = 0.0 (no transformation defined)

WHAT(2) = polar angle of the rotation (θ = 0 . . . 180 degrees)
Default : no default

WHAT(3) = azimuthal angle of the rotation (φ = -180 . . . 180 degrees)
Default : no default

WHAT(4) = X offset for the translation
Default : no default

WHAT(5) = Y offset for the translation
Default : no default

WHAT(6) = Z offset for the translation
Default : no default

SDUM : name of the transformation
Default : a name will provided by the program

Default (option ROT–DEFIni not given): no transformation is defined

Notes

1. FLUKA binnings (spatial meshes independent of the problem geometry, designed to score average or event-by-event quantities) are generally defined as Cartesian structures parallel to the coordinate axes, or as cylindrical structures parallel to the z-axis. However, it is possible to define binnings with any arbitrary position and direction in space, by means of transformations described by commands ROT–DEFIni and ROTPRBIN.

Command ROT–DEFIni defines rotations/translations to be applied to binnings (requested by the user by means of EVENTBIN (p. 127) or USRBIN) (p. 263). Each transformation defined by ROT–DEFIni is assigned a number WHAT(1) which can be applied to one or more binnings. The correspondence between transformation index and binning number is assigned via option ROTPRBIN (p. 231).

2. Command ROT–DEFIni can be used also to define roto-translations to be applied to lattice cells. Command LATTICE (see description in 8.2.10) sets the correspondence between transformation index and lattice cell.
3. Command {\sf ROT-DEFIni} can be used also to define roto-translations to be applied to bodies in the geometry, as requested by the \texttt{\$Start_transform\ldots\$End_transform} directive (see 8.2.5.3).

4. The transformation matrices are:

\begin{eqnarray*}
&j = 1:& X_{\text{new}} = \cos \theta & \sin \theta & 0 & 1 & 0 & 0 & X_{\text{old}} + X_{\text{offset}} \\
& & Y_{\text{new}} = -\sin \theta & \cos \theta & 0 & 0 & \cos \phi & \sin \phi & Y_{\text{old}} + Y_{\text{offset}} \\
& & Z_{\text{new}} = 0 & 0 & 1 & 0 & -\sin \phi & \cos \phi & Z_{\text{old}} + Z_{\text{offset}} \\
&j = 2:& X_{\text{new}} = 0 & 0 & 0 & \cos \phi & 0 & -\sin \phi & X_{\text{old}} + X_{\text{offset}} \\
& & Y_{\text{new}} = \cos \theta & \sin \theta & 0 & 1 & 0 & \sin \phi & \cos \phi & Y_{\text{old}} + Y_{\text{offset}} \\
& & Z_{\text{new}} = 0 & -\sin \theta & \cos \theta & 0 & -\sin \phi & \cos \phi & Z_{\text{old}} + Z_{\text{offset}} \\
&j = 3:& X_{\text{new}} = \cos \theta & 0 & -\sin \phi & \sin \phi & \sin \phi & 0 & X_{\text{old}} + X_{\text{offset}} \\
& & Y_{\text{new}} = 0 & 1 & 0 & -\sin \phi & \sin \phi & \cos \phi & Y_{\text{old}} + Y_{\text{offset}} \\
& & Z_{\text{new}} = \sin \theta & 0 & \cos \phi & 0 & 1 & \cos \phi & Z_{\text{old}} + Z_{\text{offset}} \\

R_{ij} = T_{ik}P_{kj}:

\begin{eqnarray*}
&j = 1:& X_{\text{old}} = \cos \phi \times \cos \theta & \sin \phi \times \cos \theta & -\sin \theta & X_{\text{new}} + X_{\text{offset}} \\
& & Y_{\text{old}} = -\sin \phi & \cos \phi & 0 & Y_{\text{old}} + Y_{\text{offset}} \\
& & Z_{\text{old}} = \cos \phi \times \sin \theta & \sin \phi \times \sin \theta & \cos \theta & Z_{\text{old}} + Z_{\text{offset}} \\

\text{and the inverse } R_{ij}^{-1} = P_{kj}^{-1}T_{kj}^{-1}:

\begin{eqnarray*}
&j = 1:& X_{\text{old}} = \cos \phi & -\sin \phi & 0 & \cos \theta & 0 & \sin \theta & X_{\text{new}} - X_{\text{offset}} \\
& & Y_{\text{old}} = \sin \phi & \cos \phi & 0 & 0 & 1 & 0 & Y_{\text{old}} - Y_{\text{offset}} \\
& & Z_{\text{old}} = 0 & 0 & 1 & \sin \theta & 0 & \cos \theta & Z_{\text{old}} - Z_{\text{offset}} \\

5. For example (assume zero offset and \([x, y, z] = \text{old frame}, [x', y', z'] = \text{new frame}):

\begin{eqnarray*}
&\theta = \pi/2, \phi = 0:&&
&j = 1:&& x' = y \\
& \quad && y' = -z \\
& & j = 2:&& x' = x \\
& & j = 3:&& y' = y \\
& & && z' = x \\

&\theta = 0, \phi = \pi/2:&&
&j = 1:&& x' = x \\
& \quad && y' = z \\
& & j = 2:&& x' = -z \\
& & j = 3:&& y' = -x \\
& & && z' = z \\

That is, the vector which has position angles \(\theta\) and \(\phi\) with respect to the \(j_{th}\) axis in the original system, will become the \(j_{th}\) axis in the rotated system. For the special case \(\theta = 0\) this implies a rotation of \(-\phi\) in the original frame. In practice it is more convenient to think about the inverse rotation, the one which takes the \(j_{th}\) versor into the versor with \(\theta\) and \(\phi\).

6. Note that a transformation can be defined recursively, for example with two cards pointing to the same transformation. If \(P_{ij}\) is the rotation corresponding to the first card and \(T_{ij}\) the one corresponding to the second card, the overall rotation will be \(R_{ij} = T_{ik}P_{kj}\)

Example (number based):

\begin{verbatim}
*...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...
ROT-DEFI 201.0 0.0 90.0 -100.0 80.0 -500.0
USRBIN 11.0 201.0 70.0 30.0 0.0 1000.0tot-dose
USRBIN 0.0 0.0 0.0 10.0 1.0 6.0k
\end{verbatim}
ROT-PRBIN

Here the transformation is applied to a cylindrical binning.
Track-lengths are scored in the binning with its axis:
parallel to the x-axis of the coordinate frame:
Xmin = 100.0, Xmax = 1100.0
Rmin = 0.0, Rmax = 30.0
(Y, Z) coordinate of the binning axis = (-80.0, 500.0)

The same example, name based:

+...1...+...2...+...3...+...4...+...5...+...6...+...7...+

ROT-DEFI 201.0 0.0 90.0 -100.0 80.0 -500. FromZtoX
USRBIN 11.0 201.0 70.0 30.0 0.0 1000.0 tot-dose
USRBIN 0.0 0.0 0.0 10.0 1.0 6.0 &

ROT-PRBIN -1.0 FromZtoX 0.0 tot-dose 0.0 0.0

7.64 ROTPRBIN

Sets the amount of storage and the storage precision for binnings (single or double). Sets also the correspondence between rotations/translations and binnings (USRBIN or EVENTBIN), as well as density-correction factors for user binnings (see CORRFACT).

See also USRBIN, EVENTBIN, ROT-DEFini, CORRFACT.

For SDUM = RHO-FACT:

WHAT(1) : Sets density-correction-factor options:
= 0 : ignored.
< -1 : reset the density to be used to default (that is density correction factors for all user binnings apart 252 (DOSE-H2O), 253 (ALPHA-D), and 254 (SQBETA-D), where dE/dx correction factors are the default).
= 1 : use density correction factors.
= 2 : use dE/dx correction factors.

WHAT(2) : not used
WHAT(3) : not used

For all other SDUM:

WHAT(1) : sets the run-time storage precision of binnings:
= 0 : ignored.
≤ -1.0 : resets the storage precision to default (double). All bins printed always.
= xxz01 : sets the storage precision to single (see Note 2).
= xxz0y : sets the storage to only a fraction of the required memory, that is only xx.z percent of the required memory for this binning is actually allocated (see Note 3).
= uxxz0y: u> 0 makes the binning info printed only if non zero bins exist.
Default : double precision storage and full memory allocation

WHAT(2) : index (or name) of the rotation/translation matrix (defined by a ROT-DEFini card) which is associated to the binning(s) indicated by WHAT(4)…WHAT(6) (see Note 4)
= 0.0 : ignored
> 100000: (in absolute value), resets the associated rotation/translation to identity (transformation index = 0).

WHAT(3) : define number of events after which to print EVENTBIN results
= 0.0 : ignored.
≤ -1.0: reset the number of events after which EVENTBIN results must be printed to the default (= 1).
≥ 1.0 : number of events after which EVENTBIN results must be printed for the binnings given by WHAT(4–6).
Default = 1.0

SDUM : possible index or name of a 2nd transformation associated with these binnings. Exceptionally, here SDUM can contain an integer number, in free format, following any of the strings “ROT#”, “Rot#”, “RO#”, “ro#”, “ro#”. If any one of such strings is present, an integer identifying the associated roto-translation is read in the following characters. Otherwise if a name is present, it is supposed to be the (character) name (with sign) of the associated roto-translation. The roto-translation order is such that the one associated with WHAT(2) is the innermost (first applied) one.
WHAT(4) = lower index bound of binnings in which the requested storage precision and/or transformation must be applied
(“From binning WHAT(4)...”)
Default = 1.0

WHAT(5) = upper index bound of binnings in which the requested storage precision and/or transformation must be applied
(“...to binning WHAT(5)...”)
Default = WHAT(4)

WHAT(6) = step length in assigning indices.
(“...in steps of WHAT(6)”)
Default = 1.0

Default (option ROTPRBIN not given): binning data are stored in double precision, and no rotation/translation is applied

Notes

1. Command ROTPRBIN can be used for three different tasks, all related to binnings requested by the user by means of EVENTBIN (p. 127) or USRBIN (p. 263):
 (a) to define the precision used at run-time to store the accumulated scores of selected binnings
 (b) to allocate a reduced amount of memory as a storage for selected binnings
 (c) to set the correspondence between the index of a transformation (rotation/translation as defined by command ROT–DEFIni, see p. 231) and the index of selected binnings.

2. The USRBIN/EVENTBIN output values are always in single precision, regardless of the run-time storage precision used. Run-time storage precision, which is double by default, should never be changed for binnings defined by USRBIN to prevent severe loss of data (adding small amounts in the rounding can result in values no longer increasing with the number of primary particles). However, this is unlikely to happen with EVENTBIN binnings, which are reset at the end of each history.

3. In many cases, binnings defined by EVENTBIN result in a number of sparse “hit” cells, while all other bins are empty (scoring zero). In such cases, it is convenient to allocate less storage than required by the whole binning structure. See also Note 2 to option EVENTBIN, p. 127.

4. Binning space transformations (rotations and translations) are those defined by a ROT–DEFIni card. That is, the variables used for scoring are the primed one (x', y', z') (see Notes 4 and 5 to option ROT–DEFIni).

Example 1:
```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
ROTPRBIN 85500. 0.0 0.0 2.0 6.0 2.0
* Allocate only 85.5% of the memory normally required for binnings 2, 4 and 6
```

Example 2:
```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
ROTPRBIN 10001. 0.0 0.0 3.0 5.0 0.0
* Set single storage precision for binnings 3, 4 and 5
```

Example 3:
```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
ROTPRBIN myMatrix energyA EHeadrA
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
ROT–DEFIni 44. 0. 0. 0. 0. -16000.myMatrix
ROT–DEFIni 244. 0. 10. 0. 0. 0.myMatrix
```
Input Commands

```
ROT-DEFIni 44. 0. 0. 0. 10000. 10000.myMatrix
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
USRBIN 11. ENERGY -21. 1. 5. 50. energyA
USRBIN -1. -1. -5. 10. 10. 50. &
USRBIN 11. DOSE -21. 1. 5. 50. doseA
USRBIN -1. -1. -5. 10. 10. 50. &
USRBIN 11. HADGT2OM -21. 1. 5. 50. HEhadrA
USRBIN -1. -1. -5. 10. 10. 50. &
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
* Associate the “myMatrix” ROT-DEFIni to the “energyA”, “doseA” and “HEhadrA”
* USRBINS
```
7.65 **SCORE**

Defines the (generalised) particles producing the stars to be scored in each region.

Requests scoring of energy deposition in each region.

See also **EVENTDAT, THRESHOLd, USRBIN**

WHAT(1) ... WHAT(4): id-numbers of particles or generalised particles (see 5.1).

Depending on the (generalised) particle type, different quantities are scored *in each region*:

- For hadrons, photons, muons: stars (see Notes 3, 4a)
- For generalised particles 208.0 and 211.0: energy deposition (Notes 4b, 4c).
- For generalised particles 219.0, 220.0 and 221.0: fissions (Note 4d).
- For generalised particle 222.0, neutron balance (Note 4e).
- For generalised particles 229.0 and 230.0: unbiased energy deposition (Note 4f).

\[\text{Default } = 0.0: \text{ no scoring per region of any of the quantities listed above} \]

WHAT(5), WHAT(6), SDUM: not used

Default (option **SCORE** not given): no scoring by region

Notes

1. The possible particle numbers are those listed in 5.1, i.e., \(-6.0\) to \(62.0\) and \(201.0\) to \(244.0\). However, not all particles will give meaningful results: for instance particles 3.0 and 4.0 (electrons and positrons) cannot produce stars, fissions, etc.

 Selecting generalised particles 208.0 (energy) or 211.0 ("electromagnetic" energy, i.e., energy of \(e^+e^-\) and \(\gamma\)), one can score deposited energy (proportional to dose).

2. **SCORE** is one of the oldest FLUKA commands, which has been kept unchanged because of its simplicity and easiness of use. On the other hand, because it lacks the flexible memory allocation of all other scoring options, there is presently room for only 4 types of particles. Therefore, only the 4 first valid **WHAT**-parameters are retained.

3. A star is a hadronic inelastic interaction occurring at an energy higher than a threshold defined via the option **THRESHOLd** (or by default higher than the transport threshold of the interacting particle). Star scoring, traditionally used in most high-energy shielding codes, can therefore be considered as a form of crude collision estimator: multiplication of star density by the asymptotic value of the inelastic nuclear interaction length gives the fluence of hadrons having energy higher than the current threshold. However, this is meaningful only if the interaction length doesn’t vary appreciably with energy; therefore it is recommended to set a scoring threshold = 50 MeV (using option **THRESHOLd**), since interaction lengths are practically constant above this energy.

 Besides, star densities calculated with a 50 MeV threshold are the basis of some established radiation protection techniques such as the \(\omega\)-factors for estimating material activation (see [200], p. 106), and the prediction of single isotope yields from the ratio of partial to inelastic cross section. Note that such techniques can still be used, although they have been made obsolete by more accurate modern FLUKA capabilities (commands **DCYSCORE, DCYTIMES, IRRPROFI, RADDECAY, RESNUCLEi**).
4. The **SCORE** card defines the following scoring:

(a) scoring by region the density of stars produced by the selected particles (if applicable, i.e., if the particles are hadrons — but not low-energy neutrons — photons or muons, or families of them). Stars produced by primary particles can be scored with id-number 210.0 (**BEAMPART**), all stars with 201.0 (**ALL–PART**). Results will be in stars/cm3 per primary particle if region volumes have been input by setting **IVOPT** = 3 in the geometry title card (see §8.2.2), otherwise in stars per region per primary.

(b) scoring by region the total energy density, if generalised particle 208.0 (**ENERGY**) has been selected. Results will be in GeV/cm3 per primary if volumes have been input, otherwise in GeV per region per primary. To obtain dose in Gy, multiply GeV/cm3 by $1.602176462 \times 10^{-7}/\rho$ (ρ = density in g/cm3).

(c) scoring by region the energy density deposited by electrons, positrons and photons, if generalised particle 211.0 (**EM–ENRGY**) has been selected. Results will be in GeV/cm3 per primary if volumes have been input, otherwise in number of fissions per primary.

(d) scoring by region of fissions (or fission density), if generalised particles 219.0 (**FISSIONS**), 220.0 (**HE–FISS**), or 221.0 (**LE–FISS**) have been selected. These generalised particles refer to all fissions, high-energy fissions and low-energy neutron fissions respectively. Results are in fissions/cm3 per primary if volumes are input, otherwise in number of fissions per primary.

(e) scoring by region of the neutron balance (outgoing minus incoming neutrons), if generalised particle 222.0 (**NEU–BALA**) has been selected. Results are in net number of neutrons per cm3 per primary if volumes are input, otherwise in number of neutrons per primary.

(f) generalised particles 229.0 (**UNB–ENER**) and 230.0 (**UNB–EMEN**) are similar respectively to 208.0 (**ENERGY**) and 211.0 (**EM–ENRGY**), with the difference that the energy deposited is scored with weight 1, independent of the actual weight of the particle. Of course, the results will have no physical meaning, but in some circumstances they will provide useful information about the run itself (for instance in order to optimise biasing).

(g) scoring as in all cases above but separately for each primary event, if the **EVENTDAT** option is used (see p. 129).

5. A more flexible way to score by region stars, deposited energy etc. is “region binning” by means of option **USRBIN** (7.83, Note 15). However, note that in that case the results are not normalised per unit volume.

6. In **FLUKA**, stars do not include spallations due to annihilating particles.

7. **SCORE** does not define scoring done via **USRBDX**, **USRBIN**, **USRCOLL** and **USRTRACK**.

Example 1:

```
* Score stars produced in each region by protons, high-energy neutrons and pions.
* Score also total energy deposition in each region.
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
SCORE  1.0   8.0  209.0  208.0
```

Example 2:

```
* Score stars produced by primary particles (i.e., first interactions) in each
* region. Score also in each region stars produced by photons (photonic
* reactions) and energy deposited by electromagnetic showers.
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
SCORE  210.0   7.0  211.0
```

Example 3:

```
* Score fissions produced in each region by high- and low-energy particles.
* Score also the net neutron production in each region, and the kaon stars.
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
SCORE  220.0  221.0  222.0  215.0
```
7.66 SOURCE

Invokes the use of a user-defined source routine SOURCE to sample the primary particles.

See also BEAM, BEAMPOS, POLARIZAti, SPECSOUR, USRICALL, USRGCALL

This option allows to input up to 18 double precision parameters and one character string chosen by the user, to be passed to the user routine SOURCE. To pass more than 6 parameters, two successive SOURCE cards are required.

First card:
WHAT(1) . . . WHAT(6): user parameters to be passed to the SOURCE routine as a double precision subarray WHASOU(1) . . . WHASOU(6) (via COMMON SOURCM).

SDUM = any user dependent character string (not containing “&”), to be passed to the SOURCE routine as a character variable SDUSOU (via COMMON CHEPSR).

Continuation card (if present):
WHAT(1) . . . WHAT(6): user parameters to be passed to the SOURCE routine as a double precision subarray WHASOU(7) . . . WHASOU(12).

SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)

Default (option SOURCE not given): subroutine SOURCE is not called

Notes

1. In many simple cases, the primary particle properties can be defined by just two input cards: BEAM (p. 73) and BEAMPOS (p. 78). The two options define the type of the particle, its energy/momentum (monoenergetic or simply distributed) and its starting position and direction (also sampled from a few simple distributions centred around the z-axis). A third option, POLARIZAti (p. 218), can be used to complete the description of the primaries in case they are totally or partially polarised.

However, there are more complex situations where the type of primary particles and their phase space coordinates must be sampled from different types of distributions, read from files, or generated by a rule decided by the user. To handle these cases, it is possible to call a user routine SOURCE which can override totally or in part the definitions given in input. The call is activated by option SOURCE. A default version of the routine, which leaves any other input definition unchanged, is present in the FLUKA library. Instructions on how to write, compile and link SOURCE are given in 13.2.19.

2. Even when overridden by SOURCE, the momentum or kinetic energy defined by WHAT(1) of option BEAM is meaningful, since it is taken as maximum energy for several scoring facilities and for cross section tabulations. Therefore, it is recommended to input in any case a BEAM card with the maximum energy expected in the current run.

3. The user has the possibility to write a flexible SOURCE routine which can handle different cases without being recompiled and linked. The 12 WHASOU optional double precision parameters and the SDUSOU character string can be combined to provide a multitude of possible options.

4. Initialisations (for instance reading data from files, or spectrum normalisation needed for sampling) can be done in SOURCE itself, as explained in 13.2.19, or in two other user routines USRINI and USRGL0. USRINI is called every time a card USRICALL (p. 275) is found in input (see 13.2.27), while USRGL0 is called before any other initialisation made by FLUKA. Note that more than one primary particle can be sampled in a same call to SOURCE and loaded into stack for later transport. A further user routine, USREIN (see 13.2.24), which is called just after SOURCE and before the sampled primary (or primaries) are transported, allows the user to do an initialisation at the beginning of each event. An event is defined as all the histories of primaries sampled in a
single call to SOURCE and of their descendants. Routine USREOU is called instead at the end of each event (see 13.2.25).

5. In old versions of FLUKA, the call to SOURCE was requested by means of a flag in card START. This feature has been discontinued.

Example 1:

* A user-written SOURCE routine is called without passing any parameter.
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
 SOURCE

Example 2:

* Here the user passes to the SOURCE routine 7 numerical values and one character string. These can be used as free parameters inside the routine, or as flags/switches to select between different options
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
 SOURCE 12.58 1.0 -14.0.987651100.365.FLAG18
 SOURCE 999.2 &
7.67 SPECSOUR

defines one of the following special sources:
- two colliding beams
- Galactic Cosmic Rays
- Solar Particle Event
- synchrotron radiation
- USRBIN as source
- multiple beams

See also BEAM, BEAMAXES, BEAMPOSit, GCR–SPE, HI–PROPErt, POLARIZAti, SOURCE, USRICALL, USRGCALL, SPOTBEAM, SPOTPOS, SPOTDIR

This option allows to input up to 18 double precision parameters, depending on the option specified by SDUM. A first continuation card, if required, is marked by a "&" in any position in column 71 to 78, or in the last field if free format is used. A possible second continuation card is similarly marked by "&&"

For SDUM = PPSOURCE or ppsource, or CROSSASY or CROSSSYM, the source is produced by two colliding beams. The description of these options is presented separately in Chapter 15.

Cosmic ray sources are requested by one of the following SDUM values:
- Galactic Cosmic Rays: GCR–IONF, GCR–SPEC, GCR–ALLF
The description of these options is presented separately in Chapter 16.

For SDUM = SYNC-RAD or SYNC-RDN, the source consists in synchrotron radiation photons produced by a charged particle travelling in a magnetic field. A description of this option is presented separately in Chapter 17.

For SDUM = BEAMSPOT, the source consists of multiple beam spots. The user defines through the cards SPOTBEAM, SPOTPOS and SPOTDIR the locations, directions and beam characteristics of those sources. In this case, the card needs as WHAT(1) the number of beam spots that are used. The user can define up to 15000 beam spots

WHAT(1) > 0.0: Number of beam spots in the simulation
≤ 0.0: The code stops
Default no default

WHAT(2) ≥ 0.0: The beam spots are sampled randomly, according to their weights
= 1.0: The beam spots are sampled sequentially, each with a number of primaries proportional to its weight
= 2.0: The beam spots are sampled sequentially, all with the same number of primaries, ignoring their weights
Default 0.0

If SDUM = BIN-SOUR, a USRBIN detector is used to define the spatial distribution of the primaries. The primary type is still defined through the BEAM card. Nota Bene:

- The type of particles scored in the USRBIN is irrelevant to the primaries being launched through BIN-SOUR.
- This option can only be used with a cartesian USRBIN.
WHAT(1) logical unit in which to read the **USRBIN** file
Default no default

WHAT(2) detector index in the specified **USRBIN** file
Default no default

WHAT(3) Rotation translation matrix to be applied before sampling
Default no default

WHAT(4) Rotation translation matrix to be applied after sampling
Default no default
7.68 SPOTBEAM

The SPOTBEAM card is used in conjunction with SPOTDIR, SPOTPOS and SPOTTRAN to define multiple beam spots. A new primary is created randomly in any of the listed beam spots according to their respective weight or in sequential order. See SPECSOUR 7.67.

Warning: These four cards are activated by indicating SDUM = BEAMSPOT in the SPECSOUR card. Barring this, the spot cards will be discarded.

See also SPOTDIR, SPOTPOS, SPOTTRAN

WHAT(1) \neq 0.0: \text{particle id (Pprop)} \text{ or } A + 1000Z + 100000m \text{ for heavy ion beams}
= 0.0: \text{particle id as per BEAM card}
-99999: \text{special code for printout (see —WHAT(6)—)}
Default = 0.0 (particle id as per BEAM card)

WHAT(2) > 0.0: \text{beam laboratory momentum (GeV/c)}
< 0.0: —WHAT(2)— \text{beam laboratory kinetic energy/n (GeV/n)}
= 0.0: \text{beam momentum as per BEAM card}
Default = 0.0 (beam momentum as per BEAM card)

WHAT(3) \geq 0.0: \text{beam spot weight (number of particles)}
< 0.0: \text{stops the code}
Default \text{ no default}

WHAT(4) > 0.0: \text{rectangular momentum spread (GeV/c)}
< 0.0: \text{Gaussian momentum spread. —WHAT(4)— is the FWHM (GeV/c)}
= 0.0: \text{no momentum spread}
Default = 0.0

WHAT(5) > 0.0: \text{rectangular angular X divergence of the beam (mrad)}
< 0.0: \text{Gaussian angular X divergence of the beam. —WHAT(5)— is the FWHM (mrad)}
= 0.0: \text{the beam has no angular X divergence}
Default = 0.0

WHAT(6) > 0.0: \text{rectangular angular Y divergence of the beam (mrad)}
< 0.0: \text{Gaussian angular Y divergence of the beam. —WHAT(6)— is the FWHM (mrad)}
= 0.0: \text{the beam has no Y angular divergence}
Default = WHAT(5)

SDUM \text{ beam spot number (free format)}
Default \text{ } n + 1 \text{ where } n \text{ is the number of last previously defined spot}
In the special case WHAT(1)=-99999, WHAT(2-5) are ignored and:

- **WHAT(6)** > 0.0: (all) beam spot infos are printed on the output
- < 0.0: resets to default (no printout)
- = 0.0: ignored
- **Default** = -1.0: no printout
7.69 **SPOTDIR**

The **SPOTDIR** card is used in conjunction with **SPOTBEAM**, **SPOTPOS** and **SPOTTRAN** to define multiple beam spots. A new primary is created randomly in any of the listed beam spots according to their respective weight or in sequential order. See **SPECSOUR** 7.67.

Warning: These four cards are activated by indicating **SDUM = BEAMSPOT** in the **SPECSOUR** card. Barring this, the spot cards will be discarded.

See also **SPOTBEAM**, **SPOTPOS**

WHAT(1)
Default see below
x-cosine of the beam spot

WHAT(2)
Default see below
y-cosine of the beam spot

WHAT(3)
Default see below
z-cosine of the beam spot

WHAT(4)
Default see below
x-cosine of the beam "x-axis"

WHAT(5)
Default see below
y-cosine of the beam "x-axis"

WHAT(6)
Default see below
z-cosine of the beam "x-axis"

SDUM
Default n, the number of the last defined spot
beam spot number (free format)

Notes

1. If **WHAT(1)=WHAT(2)=WHAT(3)= 0**, the beam direction as defined by **BEAMPOS** is used.

2. If **WHAT(4)=WHAT(5)=WHAT(6)= 0**, the beam x-axis direction as defined by **BEAMPOS/BEAMAXES** is used, if the beam x-axis is indeed defined, the beam z-axis is the beam direction and the y-axis is computed accordingly.

3. If no **SPOTDIR** card is issued for an otherwise (via **SPOTBEAM**) defined beam spot, the spot direction and axes are taken from the **BEAMPOS** and **BEAMAXES** cards, assuming the beam along the z-axis of the beam reference frame.
7.70 SPOTPOS

The SPOTPOS card is used in conjunction with SPOTBEAM, SPOTDIR and SPOTTRAN to define multiple beam spots. A new primary is created randomly in any of the listed beam spots according to their respective weight or in sequential order. See SPECSOUR 7.67.

Warning: These four cards are activated by indicating SDUM = BEAMSPOT in the SPECSOUR card. Barring this, the spot cards will be discarded.

See also SPOTBEAM, SPOTDIR

WHAT(1) x-position of the beam spot
 Default no default
WHAT(2) y-position of the beam spot
 Default no default
WHAT(3) z-position of the beam spot
 Default no default
WHAT(4) > 0.0: rectangular beam width in x-direction (cm) or maximum beam radius (cm) depending on WHAT(6)
 < 0.0: Gaussian beam profile in the x-direction. —WHAT(4)— is the FWHM in cm
 = 0.0: pencil beam along x
 Default 0.0
WHAT(5) > 0.0: rectangular beam width in y-direction (cm) or minimum beam radius (cm) depending on WHAT(6)
 < 0.0: Gaussian beam profile in the y-direction. —WHAT(5)— is the FWHM in cm
 = 0.0: resets to default if no annular beam spot requested (see WHAT(6)), ignored otherwise
 Default same as x-width if no annular beam spot requested (see WHAT(6)), no y-width otherwise
WHAT(6) > 0.0: flag for a rectangular beam spot
 < 0.0: flag for an annular beam spot
 = 0.0: ignored
 Default 0.0
SDUM beam spot number (free format)
 Default n, the number of last defined spot

Notes

1. If no SPOTPOS card is issued for an otherwise (via SPOTBEAM) defined beam spot, the spot position and position spread are taken from the BEAM and BEAMPOS cards
7.71 START

Defines the termination conditions, gets a primary from a beam or from a source and starts the transport.

See also RANDOMIZE, STOP

WHAT(1) = maximum number of primary histories simulated in the run
\ Default = 5000.0

WHAT(2) : not used

WHAT(3) = time left for termination and printout (in seconds)
\ Default = 80.0

WHAT(4) = 1.0: a core dump is triggered when the built-in abort routine, FLABRT, is called

WHAT(5) = 0.0: a line reporting the number of calls to the random number generator (in hexadecimal form) is printed at the beginning of each history only for the first ones, and then with decreasing frequency
> 0.0: the number of calls is printed at the beginning of each history.

WHAT(6) = time reserved for an interactive run (in seconds)
\ Default = 100.0

SDUM : not used

\ Default (option START not given): the other input cards are read and an echo is printed on the standard output, but no actual simulation is performed. However two input cards, both related to geometry, have an effect even if no START card is present: GEOEND (p. 143) (with SDUM = DEBUG) and PLOTGEOM (p. 215). In all cases in which particles are transported, START must always be present.

Notes

1. The interactive time limit indicated by WHAT(6) can be used only on some systems which can provide a signal when the time limit is approaching. On personal workstations, generally no time limit is enforced.

2. It is also possible to terminate a FLUKA run before the pre-set time has expired or the total number of histories has been completed. To this effect, the user may create a “stopping file” (its content is irrelevant, since only its existence is checked by the program). When the program detects the existence of such a file, the time left is set to zero, the run is terminated at the end of the current history, and the stopping file itself is erased.

The name of the stopping file is fluka.stop or rfluka.stop on UNIX. While the presence of fluka.stop terminates only the current job, rfluka.stop also skips the successive jobs requested via the rfluka script.

Example:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
START 70000.0
* Request a run of 70000 primary particles
7.72 STEPSIZE

Sets the minimum and maximum step size on a region-by-region basis for transport of all charged particles (hadrons, muons and electrons)

See also EMFFIX, FLUKAFIX, MULSOPT, MGNFIELD

WHAT(1) ≥ 0.0: minimum step size in cm (overrides, if larger, region by region the overall minimum step set by WHAT(2) of MGNFIELD
< 0.0: whatever happens, the location of boundary intersections will be found with an uncertainty ≤ |WHAT(1)|. Of course, for a given boundary, this value should be applied to both regions defining the boundary.
Default : no default

WHAT(2) = maximum step size in cm
Default = 100000.0 cm for a region without magnetic field
= 10.0 cm for a region with magnetic field

WHAT(3) = lower bound of the region indices in which the indicated step size is to be applied
("From region WHAT(3). . .")
Default = 2.0

WHAT(4) = upper bound of the region indices in which the indicated step size is to be applied
(". . . to region WHAT(4). . .")
Default = WHAT(3)

WHAT(5) = step length in assigning indices
(". . . in steps of WHAT(5)")
Default = 1.0

WHAT(6) and SDUM: not used

Default (option STEPSIZE not given): the above defaults apply in all regions (10 cm with magnetic field, 10^5 cm without)

Notes

1. This option differs from EMFFIX (p. 121) and FLUKAFIX (p. 136) for the following main reasons:
 (a) it is given by region rather than by material
 (b) therefore, it is effective also in vacuum regions
 (c) the maximum step is determined in an absolute way (i.e., in cm) rather than in terms of maximum energy loss
 (d) it allows to set not only a maximum but also a minimum step length. This may be necessary in order to avoid the forcing of extremely small steps when a low-energy charged particle spirals in a magnetic field
 Option MGNFIELD (p. 178, Note 6) offers a similar possibility, but not tuned by region.

2. Option STEPSIZE may be essential in and around regions of very small dimensions or in regions where a magnetic field is present (and is rarely required otherwise).

3. The maximum step size for a given region can be decided from the following considerations:
 – in a region with magnetic field it should not be larger than the minimum dimension of the region itself and of its neighbour regions. Obviously, it should also be larger than the minimum step possibly imposed by MGNFIELD or by STEPSIZE itself.
 – in a non-vacuum region, it should not be larger than about one-third of its minimum dimension, in order to allow the multiple scattering algorithm to work in optimal conditions.
Example (number based):

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
ASSIGNMAT  2.0  15.0  30.0  5.0  1.0  0.0  0.0

* A magnetic field is present in vacuum regions 15, 20, 25 and 30.
MGNFIELD   20.0  0.2  0.10  0.0  0.0  0.0  0.0
STEPSIZE   -0.05  0.0  20.0  25.0  0.0  0.0  0.0
STEPSIZE    0.3  0.0  15.0  0.0  0.0  0.0  0.0

* The maximum deviation angle due to magnetic field in any step is set
* = 20 degrees, and boundary crossings must be identified with an error
* not larger than 2 mm. If the max. angle constraint forces the step to
* be shorter than 10 cm, the step will be set = 10 cm in region 20, 25, 30,
* but will be set = 3 mm in region 15 (WHAT(1) of STEPSIZE overrides the
* general setting due to WHAT(3) of MGNFIELD). Whatever the size of the
* step, however, the accuracy of the boundary crossing position must be
* equal or better than 0.5 mm in regions 20 and 25 (probably contiguous,
* since the same accuracy must be set for regions on either side of a
* boundary). The value of the magnetic field will be provided at each
* step by the user routine MAGFLD.

The same example, name based:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
ASSIGNMAT VACUUM FIRSTREG FOURTREG 5.0 1.0 0.0
MGNFIELD 20.0 0.2 0.10 0.0 0.0 0.0 0.0
STEPSIZE -0.05 0.0 SECONREG THIROREG 0.0 0.0
STEPSIZE 0.3 0.0 FIRSTREG 0.0 0.0 0.0
7.73 STERNHEIme

Allows to input Sternheimer density effect parameters

See also MAT–PROP

WHAT(1) = Sternheimer $-C (\bar{C})$ parameter
WHAT(2) = Sternheimer $X_0 (X_0)$ parameter
WHAT(3) = Sternheimer $X_1 (X_1)$ parameter
WHAT(4) = Sternheimer $AFACT (a)$ parameter
WHAT(5) = Sternheimer $SK (m)$ parameter
WHAT(6) = Sternheimer $DELTA0 (\delta_0)$ parameter (only for single elements)

SDUM = index of the material to which the above Sternheimer parameters apply. Exceptionally, here SDUM must be an integer number, in free format, rather than a character string.

Default (option STERNHEIme not given): density effect parameters are computed according to the Sternheimer-Peierls general formula.

Notes

1. For gases the parameters are supposed to be given at 1.0 atm (NTP); the code takes care to scale them to the actual pressure as given by the MAT–PROP card (p. 171).
2. MAT–PROP can be used also to override the value of the average ionisation potential used by the program. Recommended Sternheimer parameters and ionisation potentials are automatically provided by the program for elemental materials. For compounds and mixtures, see [195].
3. STERNHEIme is one of the two Fluka options where SDUM is used to input numerical data. (Actually, the material number is first read as a string and then an internal reading is performed on the string to get the number).

Example:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
MATERIAL 29. 0.0 8.96 12. 0.0 0. COPPER
STERNHEIme 4.4190 -0.0254 3.2792 0.14339 2.9044 0.08 12
* Use the copper Sternheimer parameters published in At. Data Nucl. Data
```
7.74 STOP

Stops the execution of the program

See also START

WHAT(1) – WHAT(6) and SDUM: not used

Default (option STOP not given): no effect (the program stops at the end of the run when the conditions set in the START command (p. 244) are satisfied).

Notes

1. Inserted at any point in a FLUKA input sequence before the START command, a card STOP interrupts input reading and de-activates all the following cards. It can thus help in debugging input. After START, its presence is optional and has no effect.

2. When running the geometry debugger or plotting a slice of the geometry, it is often convenient to place a STOP command just after the GEOEND cards or after the PLOTGEOM (p. 215) input. Otherwise, once the debugging or plotting has been completed, FLUKA would continue reading input cards and eventually would start particle transport as soon as a card START is found.

Example:

*...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...8
GEOEND 150. 75. 220. 30. 0. -220.DEBUG
GEOEND 120. 1. 110. 0. 0. 0. &
STOP
* Debugs the geometry and stops without starting a simulation
7.75 TCQUENCH

Sets time cutoffs and/or quenching factors when scoring using the USRBIN or the EVENTBIN options.

See also TIME–CUT

WHAT(1) > 0.0: time cutoff for scoring (seconds)
< 0.0: resets any previously requested time cutoff to default (∞)
= 0.0: ignored

WHAT(2) > 0.0: first Birks law coefficient in g/(MeV·cm²)
= 0.0: ignored
< 0.0: resets both Birks law coefficients to default = 0.0

WHAT(3) > 0.0: second Birks law coefficient in g²/(MeV²·cm⁴)
 Default = 0.0

WHAT(4) = lower index bound of binnings (or corresponding name) in which the requested scoring time cutoff and/or Birks law coefficients must be applied
(“From binning WHAT(4) . .”)
 Default = 1.0

WHAT(5) = upper index bound of binnings (or corresponding name) in which the requested scoring time cutoff and/or Birks law coefficients must be applied
(“. . to binning WHAT(5) . .”)
 Default = WHAT(4)

WHAT(6) = step length in assigning indices.
(“. . in steps of WHAT(6)”)
 Default = 1.0

SDUM : not used

Default (option TCQUENCH not given): no time cutoff for scoring and no quenching of dose binning

Notes

1. Binnings are numbered sequentially in the order they are input via the USRBIN or EVENTBIN options. Of course, for quenching to be applied the quantity binned must be energy (generalised particle 208 or 211). The energy deposited in a charged particle step is “quenched” according to Birks law, i.e., it is weighted with a factor dependent on stopping power $S = \frac{dE}{dx}$:

$$dE' = \frac{dE}{1 + BS + CS^2}$$

with $B =$ first Birks parameter and $C =$ Chou or second Birks parameter [40].

2. The time cutoff is useful in order to score only within a time gate between $t = 0$ and $t = t_{\text{cutoff}}$

3. The scoring time cutoff should not be confused with the time cutoff for transport (see TIME–CUT, p. 252). Particles outside the time gate defined by TCQUENCH are still transported and can contribute to scoring in regions and binnings having a different time scoring cutoff.

4. If the source has been defined as a radioactive isotope (command BEAM with SDUM = ISOTOPE), transport of each isotope decay secondary starts with an age equal to the time of decay.

Example:
*...+...1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
TCQUENCH 20.0 7.35E-3 1.45E-5 4.0 10.0 3.0
* Set a 20 sec time scoring cutoff for binnings 4, 7 and 10, and apply to
* them the NE213 scintillator Birks parameters published by Craun and
* Smith, Nucl. Instr. Meth. 80, 239 (1970)
7.76 THRESHOLDd

<table>
<thead>
<tr>
<th>WHAT(3)</th>
<th>threshold kinetic energy for hadron elastic scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>same as for particle transport (set by option PART-THR or by default (i.e., the minimum one for which the present FLUKA physics can work, typically 0.02/0.05 GeV depending on the hadron)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHAT(4)</th>
<th>threshold kinetic energy for hadron inelastic reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>same as for particle transport, as defined by option PART-THR or by default. The default thresholds are: 0.0 for protons and pions, 0.02 GeV for high energy neutrons, 0.0 for particles which annihilate at rest — but the latter will not undergo any inelastic interaction between the interaction threshold (in the range 0.0 and 0.050 GeV depending on the hadron) and 0.0 — and between 0.0 and 0.050 GeV for all other hadrons.</td>
</tr>
</tbody>
</table>

| **WHAT(5)** | not used |

<table>
<thead>
<tr>
<th>WHAT(6)</th>
<th>threshold kinetic energy for star scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>the same values as set for inelastic reactions (see WHAT(4) above)</td>
</tr>
</tbody>
</table>

| **SDUM** | not used |

Default (option THRESHOLDd not given): the threshold for star scoring is set at 20 MeV for protons and neutrons, and at 50 MeV for all other hadrons

Notes

1. The possibility to change the threshold for elastic scattering or inelastic collisions (WHAT(3) and WHAT(4)) is not to be used in normal transport problems, but is made available to investigate the relative importance of different processes on the studied problem.

2. For reasons explained in Note 3 to command SCORE (7.65), it is recommended to set the threshold for star scoring (WHAT(6)) equal to 0.050 GeV overriding the default of 0.020 GeV. A 0.050 GeV cutoff was used in the past to establish so-called ω-factors which are still currently used to estimate induced activity (see [107, 108, 153]). Stars defined in this way do not include those produced by annihilating particles.

3. The threshold for star scoring requested by option THRESHOLDd applies only to the output related to options SCORE and USRBIN (7.83). The number of stars reported in the summary statistics at the end of the standard output is always based on the actual energy thresholds for nonelastic interactions (except for neutrons for which stars are reported above 20 MeV).

Example 1:
```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
THRESHOLDd 0.0 0.0 2.0 0.0 0.0 0.0
* Switch off elastic scattering of hadrons below 2 GeV
```

Example 2:
```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
THRESHOLDd 0.0 0.0 0.0 0.0 0.0 0.05
* Score stars only above 50 MeV
```
7.77 TIME–CUT

Sets transport time cutoffs for different particles

See also TCQUENCH

WHAT(1) = transport time cutoff (ns)
Default: no cut off

WHAT(2) : not used
WHAT(3) : not used
WHAT(4) = lower bound of the particle numbers (or corresponding name) for which the transport time
cutoff and/or the start signal is to be applied
("From particle WHAT(4)...")
Default = 1.0

WHAT(5) = upper bound of the particle numbers (or corresponding name) for which the transport time
cutoff and/or the start signal is to be applied
("...to particle WHAT(5)...")
Default = WHAT(4) if WHAT(4) < 0.0, all particles otherwise

WHAT(6) = step length in assigning particle numbers
("...in steps of WHAT(6)"")
Default = 1.0

SDUM : not used
Default : (option TIME–CUT not given): no time cutoff for particle transport

Notes

1. The transport time cutoff defined by TIME–CUT should not be confused with the time cutoff for scoring defined by TCQUENCH (see Note 3 to option TCQUENCH, p. 249).
2. Particles outside the time gate defined by TIME–CUT are discarded (a summary is printed at the end of the standard output).
3. If the source has been defined as a radioactive isotope (command BEAM with SDUM = ISOTOPE), transport of each isotope decay secondary starts with an age equal to the time of decay.

Example:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
TIME–CUT 3000.0 0.0 0.0 8.0 0.0 0.0 0.0
* Stop transporting neutrons after 3000 nsec
7.78 TITLE

| Defines the title of the run |

WHAT(1) – WHAT(6) and SDUM are not used.

Default : (option TITLE not given): the title is left blank

Notes

1. The title of the run must be given on the following card. Only one title may exist: if more than one is given, only the last one is retained. The title is printed at the top of the standard output and of each estimator output.

2. Giving a title is not mandatory, but it is recommended in order to identify the current run. The title is printed on all estimator files.

Example:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
TITLE
Neutron background: 5 GeV electrons on a Cu slab 10 cm thick, first test
7.79 TPSSCORE

This card controls some scoring parameters relevant for TPS-like calculations

For SDUM=BIOTOBIN:

WHAT(1) => 0 alpha-beta cellular line index to be associated to the usrbin defined by WHAT(4)-WHAT(6)
< 0 resets to default (=0) = 0 ignored
WHAT(2) = not used
WHAT(3) = not used
WHAT(4) = from binning "WHAT(4)" (def. 1)
WHAT(5) = to binning "WHAT(5)" (def. WHAT(4)
WHAT(6) = in step of "WHAT(6)" (def. 1)

For all other SDUM’s:

WHAT(1) >= 0 - 10 (default) type of binning, same meaning as WHAT(1) of usrbin. Note that only cartesian binnings (0 or 10) make sense, in order to select "0" input a negative value
WHAT(2) = generalized particle type to be scored (def. = 208), same as WHAT(2) of usrbin
WHAT(3) = output logical unit, same as WHAT(3) of usrbin
WHAT(4) = Region-Of-Interest number for which the binning is requested, if 0 the whole voxel region is kept
WHAT(5) = > 0 alpha-beta cellular line index to be associated
WHAT(6) = not used

SDUM = binning name

Notes
7.80 USERDUMP

Defines a collision “tape” (or better a collision file, or a phase space file) to be written.

This command activates calls to the user routine MGDRAW and to its entries BXDRAW, EEDRAW, ENDRAW, SODRAW, USDRAW (see description in 13.2.13).

The default version of the routine writes a complete dump (unformatted) of one or more of the following:

- all source particles
- all trajectories
- all local (pointlike) energy deposition events
- all continuous energy deposition events
- user-defined events

Users can modify the routine by removing the existing lines of code and by writing their own code under one or more of the entries.

For SDUM ≠ UDQUENCH:

WHAT(1) \(\geq 100.0\) : calls to MGDRAW and/or its entries are activated as directed by the values of WHAT(3) and WHAT(4)

\[
\begin{align*}
0.0 & : \text{ignored} \\
< 0.0 & : \text{the default is reset, i.e., no dump is written} \\
> 0.0 & : \text{not allowed! Originally used to request another form of collision tape. Presently only the “new” form of collision tape is possible (the old one being incompatible with the present version of FLUKA)}
\end{align*}
\]

WHAT(2) : if the default version of MGDRAW is used, number of the unformatted output unit. Values of WHAT(2) < 21.0 must be avoided because of possible conflicts with FLUKA pre-defined units.

If a user version is used, the output file can be defined as formatted or unformatted, and the unit number can be defined by an explicit Fortran OPEN statement in MGDRAW.

Default : 49.0

WHAT(3) :

if the default version of MGDRAW is used:

\[
\begin{align*}
\leq 0.0 & : \text{source particles, trajectories, continuous and local energy losses are all dumped} \\
= 1.0 & : \text{only source particles are dumped} \\
= 2.0 & : \text{only trajectories and continuous energy losses are dumped} \\
= 3.0 & : \text{only local energy losses are dumped (e.g., heavy recoil kerma, cutoff energy). Proton recoils are not included (since recoil protons are transported by FLUKA)} \\
= 4.0 & : \text{source particles, trajectories and continuous energy losses are dumped} \\
= 5.0 & : \text{source particles and local energy losses are dumped} \\
= 6.0 & : \text{trajectories and all energy losses (continuous and local) are dumped} \\
\geq 7.0 & : \text{source particles, trajectories, continuous and local energy losses are not dumped (but user-defined dumps required by WHAT(4) are unaffected)}
\end{align*}
\]

if a user version is used:

\[
\begin{align*}
\leq 0.0 & : \text{call to MGDRAW at each particle step and at each occurrence of a continuous energy loss, to ENDRaw at each local energy loss, to SODRAW every time a source particle is started, to BXDRAW at each boundary crossing, and to EEDRAW at each end of event.} \\
= 1.0 & : \text{calls to SODRAW and EEDRAW}
\end{align*}
\]
\[\text{USERDUMP} \]

\[
\begin{align*}
\text{\texttt{USERDUMP}} &= 2.0: \text{ calls to } \texttt{MG\text{\char105}DRAW}, \texttt{EED\text{\char105}DRAW} \text{ and } \texttt{BX\text{\char105}DRAW} \\
\text{\texttt{USERDUMP}} &= 3.0: \text{ calls to } \texttt{END\text{\char105}DRAW}, \texttt{EED\text{\char105}DRAW} \text{ and } \texttt{BX\text{\char105}DRAW} \\
\text{\texttt{USERDUMP}} &= 4.0: \text{ calls to } \texttt{SOD\text{\char105}DRAW}, \texttt{MG\text{\char105}DRAW}, \texttt{EED\text{\char105}DRAW} \text{ and } \texttt{BX\text{\char105}DRAW} \\
\text{\texttt{USERDUMP}} &= 5.0: \text{ calls to } \texttt{SOD\text{\char105}DRAW}, \texttt{END\text{\char105}DRAW}, \texttt{EED\text{\char105}DRAW} \text{ and } \texttt{BX\text{\char105}DRAW} \\
\text{\texttt{USERDUMP}} &= 6.0: \text{ calls to } \texttt{MG\text{\char105}DRAW}, \texttt{END\text{\char105}DRAW}, \texttt{EED\text{\char105}DRAW} \text{ and } \texttt{BX\text{\char105}DRAW} \\
\geq 7.0: & \text{ no calls to } \texttt{MG\text{\char105}DRAW}, \texttt{SOD\text{\char105}DRAW}, \texttt{END\text{\char105}DRAW}, \texttt{EED\text{\char105}DRAW}, \texttt{BX\text{\char105}DRAW} \text{ (but calls to } \texttt{USD\text{\char105}DRAW} \text{ and } \texttt{EED\text{\char105}DRAW} \text{ requested by } \texttt{WHAT}(4) \text{ are unaffected)} \\
\text{Default} &= 0.0 \text{ (calls are made to } \texttt{MG\text{\char105}DRAW}, \texttt{END\text{\char105}DRAW}, \texttt{SOD\text{\char105}DRAW}, \texttt{BX\text{\char105}DRAW} \text{ and } \texttt{EED\text{\char105}DRAW}, \text{ provided } \texttt{WHAT}(1) \geq 100.0) \\
\text{\texttt{WHAT}(4)} \geq 1.0: & \text{ user-defined dumps after collisions are activated (calls to } \texttt{USD\text{\char105}DRAW} \text{ and } \texttt{EED\text{\char105}DRAW)} \\
\text{\texttt{WHAT}(4)} \equiv 0.0: & \text{ ignored} \\
\text{\texttt{WHAT}(4)} < 0.0: & \text{ resets to default (user dependent dumps after collisions are de-activated)} \\
\text{\texttt{WHAT}(5)} - \text{\texttt{WHAT}(6)}: & \text{ not used} \\
\text{SDUM} &= \text{name of the output file (max. 10 characters). The user can define a longer name by an explicit Fortran OPEN statement in } \texttt{MG\text{\char105}DRAW}. \\
\end{align*}
\]

\[
\text{For SDUM} = \texttt{UDQUENCH:} \\
\text{\texttt{WHAT}(1)} : \text{ BRKMG1}(1), \text{ First Birks parameter for quenching, to be used in } \texttt{MG\text{\char105}DRAW} \text{ for a first material, in } \text{g}/(\text{MeV}\cdot\text{cm}^2) \\
\text{\texttt{WHAT}(2)} : \text{ BRKMG2}(1), \text{ Second Birks parameter for quenching, to be used in } \texttt{MG\text{\char105}DRAW} \text{ for the first material, in } \text{g}^2/(\text{MeV}^2\cdot\text{cm}^4) \\
\text{\texttt{WHAT}(3)} : \text{ BRKMG1}(2), \text{ First Birks parameter for quenching, to be used in } \texttt{MG\text{\char105}DRAW} \text{ for a second material, in } \text{g}/(\text{MeV}\cdot\text{cm}^2) \\
\text{\texttt{WHAT}(4)} : \text{ BRKMG2}(2), \text{ Second Birks parameter for quenching, to be used in } \texttt{MG\text{\char105}DRAW} \text{ for the second material, in } \text{g}^2/(\text{MeV}^2\cdot\text{cm}^4) \\
\text{\texttt{WHAT}(5)} : \text{ BRKMG1}(3), \text{ First Birks parameter for quenching, to be used in } \texttt{MG\text{\char105}DRAW} \text{ for a third material, in } \text{g}/(\text{MeV}\cdot\text{cm}^2) \\
\text{\texttt{WHAT}(6)} : \text{ BRKMG2}(3), \text{ Second Birks parameter for quenching, to be used in } \texttt{MG\text{\char105}DRAW} \text{ for the third material, in } \text{g}^2/(\text{MeV}^2\cdot\text{cm}^4) \\
\text{SDUM} = \texttt{UDQUENCH} \\
\text{ Default (option USERDUMP not given): no dump will be written} \\
\text{Note} \\
1. The format of the default binary collision tape, the code number of the events and the variables written for the different type of events, are described in Chap. 11. Be careful, if the default version of \texttt{MG\text{\char105}DRAW} is used, the amount of output can be enormous. \\
2. The default options described above can be changed by modifying the user routine \texttt{MG\text{\char105}DRAW} (see description in 13.2.13) \\
3. Quenching, as requested with SDUM = UDQUENCH, can be applied to energy deposition (local at \texttt{END\text{\char105}DRAW} calls or continuous at \texttt{MG\text{\char105}DRAW} calls). Some information about Birks law can be found in Note 1 to option TCQUENCH
Example:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

USERDUMP 200. 37.0 2.0 TRAKFILE

* It is requested to write a binary file TRAKFILE, containing all trajectories and
* continuous energy losses, and pre-connected to the logical output unit 37.
7.81 USERWEIG

Defines the extra weighting applied to yields scored via the USRYIELD option, energy and star densities obtained via USRBIN, energy deposition and and star production obtained via EVENTBIN, production of residual nuclei obtained via RESNUCLEi, currents calculated by means of USRBDX, and fluences calculated by means of USRBDX, USRTRACK, USRCOLL and USRBIN.

WHAT(1) and WHAT(2): not used

WHAT(3) > 0.0: yields obtained via USRYIELD and fluences or currents calculated with USRBDX, USRTRACK, USRCOLL, USRBIN are multiplied by a user-supplied function FLUSCW at scoring time (see p. 369).

1.0 ≤ WHAT(3) ≤ 2.0: FLUSCW is called before any check on the current detector (see Note 5)

> 2.0: FLUSCW is called only after checking that the current detector applies (see Note 5)

= 2.0 or 4.0: The routine FLDSCP is also called, applying a shift to the current binned track

< 0.0: resets the default: no weighting

= 0.0: ignored

Default = -1.0 (no weighting)

WHAT(4) : not used

WHAT(5) > 0.0: the USRRNC user subroutine is called every time a residual nucleus is generated

WHAT(6) > 0.0: energy and star densities obtained via SCORE (p. 234) and USRBDIN (p. 263), as well as energy deposition and star production obtained via EVENTBIN (p. 127) are multiplied by a user-supplied function COMSCW at scoring time (see p. 367).

1.0 ≤ WHAT(6) ≤ 2.0: COMSCW is called before any check on the current detector (see Note 5)

> 2.0: COMSCW is called only after checking that the current detector applies (see Note 5)

= 2.0 or 4.0: The routine ENDSCP is also called, applying a shift to the current binned energy loss

< 0.0: resets the default: no weighting

= 0.0: ignored

Default = -1.0 (no weighting)

SDUM not used

Default (option USERWEIG not given): no extra weighting is applied to any scored quantity
Notes

1. These weights are really extra, i.e., the results are multiplied by these weights at scoring time, but printed titles, headings and normalisations are not necessarily valid. It is the user's responsibility to interpret correctly the output. Actually, it is recommended to insert into standard output a user-written notice informing about the extra weighting.

2. Setting the incident particle weight to a value different from 1.0 (in the BEAM card, p. 73) will not affect the results, since the latter are always normalised to unit primary weight.

3. Note that USRBIN (p. 263) can be used to calculate star or energy density, and in this case function COMSCW has to be used. But when using USRBIN to calculate track-length fluences, the function to be used is FLUSCW.

4. Note that functions FLUSCW, and COMSCW can contain user-written logic to tune the multiplication factor (which can have even a value = 0.0 or 1.0!) according to position in space, direction, energy, material, type of particle, time, binning number etc. This allows to score only under certain conditions, or in any case to extend considerably the capability of the code. Similar possibilities exist for the offset provided by routines FLDSCP and ENDSCL.

5. For some applications, a call to the user routines FLUSCW or COMSCW is desired independently of whether the current detector applies. But in general this is not the case and it is convenient to check first that a score actually is taking place, saving a large number of function calls. Different values of WHAT(3) and WHAT(6) allow the user to choose one of the two possibilities.

6. User-written functions FLUSCW, COMSCW, FLDSCP, ENDSCL and USRRNC are described in Chap. 13.

Examples:

```plaintext
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
USERWEIG 0. 0. 0. 0. 0. 1.
* Dose and star densities will be multiplied by a value returned by
* function COMSCW according to the logic written by the user.
* No check on the detector is done before calling the function.

USERWEIG 0. 0. 4. 0. 0. 0.
* Fluences and currents will be multiplied by a value returned by
* function FLUSCW according to the logic written by the user.
* The function will be called only for detectors to which the present
* score applies.

USERWEIG 0. 0. 0. 0. 1. 0.
* Residual nuclei scores will be accomplished by subroutine USRRNC according to
* the logic written by the user.
```
Defines a detector for a boundary crossing fluence or current estimator

See also USRBIN, USRCOLL, USRTRACK, USRYIELD

The full definition of the detector may require two successive cards (the second card, identified by the character “&” in any column from 71 to 78, or in the last field in case of free format input, must be given unless the corresponding defaults are acceptable to the user)

First card:

WHAT(1) = $i_1 + i_2 \times 10 + i_3 \times 100$, where i_1, i_2, i_3 have the following meaning:

- $i_1 = +1.0$: linear binning in energy and solid angle
- $i_1 = -1.0$: logarithmic binning in energy, linear in solid angle
- $i_1 = +2.0$: logarithmic binning in solid angle, linear in energy
- $i_1 = -2.0$: logarithmic binning in energy and solid angle

- $i_2 = 0.0$: one way scoring
- $i_2 = +1.0$: two-way scoring

- $i_3 = 0.0$: current scoring
- $i_3 = +1.0$: fluence scoring (inverse cosine-weighted)

Default = 1.0 (one-way current, linear in energy and solid angle)

WHAT(2) = (generalised) particle type to be scored
Default = 201.0 (all particles)

WHAT(3) = logical output unit
- > 0.0: formatted data are written on the WHAT(3) unit
- < 0.0: unformatted data are written on the WHAT(3) unit

Values of WHAT(3) < 21.0 should be avoided (with the exception of +11 = standard output unit).

Default = 11.0 (standard output unit)

WHAT(4) = first region defining the boundary (in case of one-way scoring this is the upstream region)
Default = 1.0

WHAT(5) = second region defining the boundary (in case of one-way scoring this is the downstream region)
Default = 2.0

WHAT(6) = area of the detector in cm2
Default = 1.0 (fluence or current gets integrated over the boundary area)

SDUM = any character string (not containing “&”) identifying the detector (max. 10 characters)

Continuation card:

WHAT(1) = maximum kinetic energy for scoring (GeV)
Default = beam momentum value according to the BEAM option (if no BEAM card is given, 200 GeV)

WHAT(2) = minimum kinetic energy for scoring (GeV). Note that the lowest energy limit of the last neutron group is 1.14×10^{-14} GeV (1.5×10^{-5} eV) for the 260 data set.
Default = 0.0 if linear energy binning, 0.001 GeV otherwise
WHAT(3) = number of energy intervals for scoring
 Default = 10.0

WHAT(4) = maximum solid angle for scoring in sr
 Default = 2π for one-way estimators, 4π for two-way

WHAT(5) : If linear angular binning: minimum solid angle for scoring (sr)
 Default = 0.0
 If logarithmic angular binning: solid angle of the first bin (sr)
 Default = 0.001

WHAT(6) = number of angular bins
 Default = 1.0 for linear angular binning, 3.0 otherwise

SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)
 Default (option USRBDX not given): no boundary crossing estimator detector

Notes

1. The results of a USRBDX boundary crossing estimator are given as double differential distributions of fluence or current in energy and solid angle, in units of cm$^{-2}$ GeV$^{-1}$ sr$^{-1}$ per incident primary, even when only 1 interval (bin) has been requested, which is often the case for angular distributions. Thus, for example, when requesting a fluence or current energy spectrum, with no angular distribution, to obtain integral binned results (fluence or current in cm$^{-2}$ per energy bin per primary) one must multiply the value of each energy bin by the width of the bin (even for logarithmic binning), and by 2π or 4π (depending on whether one-way or two-way scoring has been requested). This is done automatically by the dedicated post-processing utility program USXSUW (see Note 8).

2. Angular distributions must be intended as distributions in solid angle $2\pi(1 - \cos \theta)$, where θ is the angle between the particle trajectory and the normal to the boundary at the point of crossing. When logarithmic scoring is requested for angular distributions, all intervals have the same logarithmic width (equal ratio between upper and lower limit of the interval), except the first one. The limits of the first angular interval are zero (i.e., $\theta = 0$) and the solid angle value indicated by the user with WHAT(5) in the continuation card.

3. If the generalised particle is 208.0 (ENERGY) or 211.0 (EM–ENRGY), the quantity scored is differential energy fluence (if cosine-weighted) or differential energy current (energy crossing the surface). In both cases the quantity will be expressed in GeV per cm$^{-2}$ per energy unit per steradian per primary. That can sometimes lead to confusion since GeV cm$^{-2}$ GeV$^{-1}$ sr$^{-1}$ = cm$^{-2}$ sr$^{-1}$, where energy does not appear. Note that integrating over energy and solid angle one gets GeV/cm2.

4. The maximum number of boundary crossing detectors that the user can define is 1100.

5. The logical output unit for the estimator results (WHAT(3) of the first USRBDX card) can be any one of the following:
 - the standard output unit 11: estimator results will be written on the same file as the standard FLUKA output.
 - a pre-connected unit (via a symbolic link on most UNIX systems, ASSIGN under VMS, or equivalent commands on other systems)
 - a file opened with the FLUKA command OPEN
 - a file opened with a Fortran OPEN statement in a user-written initialisation routine such as USRINI, USRGLO or SOURCE (see 13.2.27, 13.2.26, 13.2.19)
 - a dynamically opened file, with a default name assigned by the Fortran compiler (typically fort.xx or ftn.xx, with xx equal to the chosen logical output unit number).

The results of several USRBDX detectors in a same FLUKA run can be written on the same file, but of course only if they are all in the same mode (all formatted, or all unformatted).

It is also possible in principle to write on the same file the results of different kinds of estimators (USRTRACK, USRBN, etc.) but this is not recommended, especially in the case of an unformatted file, because it would make very difficult any reading and analysis.
6. When scoring neutron fluence or current, and the requested energy interval overlaps with the structure of the low energy neutron groups, one gets two separate tables. In the lower one, interval boundaries are forced to coincide with group boundaries. For the upper one, the program uses the input energy limits and number of intervals to estimate the desired interval width. The number of intervals above the upper limit of the first low-energy neutron group is recalculated according to such width, which is readjusted to match the number of intervals with the least greater integer. Note that the lowest energy limit of the last neutron group is 10^{-14} GeV (10^{-5} eV) for the 260-group data set. All group energy boundaries are listed in Table 10.1 on p. 340.

7. If the scored fluence or current is that of a generalised particle which includes neutrons (e.g., ALL-PART, ALL-NEUT, NUCLEONS, NUC&PI++, HAD-NEUT, and even ENERGY), the spectrum is presented in two separate tables. One table refers to all non-neutron particles and to neutrons with energies above the upper limit of the first low-energy neutron group (20 MeV). In case an interval crosses 20 MeV, it will include the contribution of neutrons with energy >20 MeV and not that of neutrons with energy <20 MeV. The second table refers only to low-energy neutrons and its interval structure is that of the neutron energy groups.

8. A program USXSUW is available with the normal FLUKA code distribution in directory $FLUPRO/flutil$. USXSUW reads USRBDX results in binary form from several runs and allows to compute standard deviations. It returns double differential and cumulative fluence or current, with the corresponding percent errors, in a file (sum.lis), and in another file (tab.lis) formatted for easy plotting. It also returns a binary file that can be read out in turn by USXSUW. The content of this file is statistically equivalent to that of the sum of the files used to obtain it, and it can replace them to be combined with further output files if desired (the USXSUW program takes care of giving it the appropriate weight).

For each detector, the sum.lis file starts with a header summarizing the detector characteristics. It then gives the differential and cumulative fluxes as a function of energy, integrated over solid angle (single differential). Below, the angular binning is detailed, and the results of the double differential fluxes are given (angular distributions per each energy bin). The tab.lis file presents the same data (except for the cumulative values), stripped down to only keep easily plottable distributions. When using Flair and choosing a detector in the drop-down list, the user has the option to select the single differential data, or the double differential one from any one of the angular bins. In order to obtain an integrated value inside a specific solid angle bin, the data of the bin must then be multiplied by its width.

Example:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
USRBDX 101.0 ANEUTRON 21.0 3.0 4.0 400.0 AntiNeu
USRBDX  5.0  0.0 200.0  0.0  0.0     0.0 &
```

* Calculate fluence spectrum from 0 to 5 GeV, in 200 linear energy intervals,
* of antineutrons passing from region 3 to region 4 (and not from 4 to 3).
* Write formatted results on unit 21. The area of the boundary is 400 cm2.
* A single angular interval is requested (from 0 to 2pi)
Scores distributions of several quantities in a regular spatial structure (binning detector) independent from the geometry. As an extension of the meaning, “region binnings” and “special user-defined binnings” are also defined, where the term indicates a detector structure not necessarily regular or independent from the geometry.

See also SCORE (scoring by region), EVENTBIN (event-by-event scoring) and USRBIN, USRCOLL, USRTRACK, USRYIELD (fluence estimators)

The full definition of the detector may require two successive cards. The second card, identified by the character “&” in any column from 71 to 78 (or in the last field in case of free format input), must be given unless the corresponding defaults are acceptable to the user.

First card:

WHAT(1) : code indicating the type of binning selected. Each type is characterised by a number of properties:

- structure of the mesh (spatial: R–Z, R–Φ–Z, Cartesian, or special — by region, or user-defined)
- quantity scored:
 - density of energy deposited (total or electromagnetic only)
 - dose (total or electromagnetic only)
 - star density
 - fission density (total, high energy or low energy)
 - neutron balance
 - activity
 - specific activity
 - displacements per atom
 - density of non ionising energy losses (restricted or unrestricted)
 - dose equivalent: convoluting fluence with conversion coefficients or multiplying dose by a LET-dependent quality factor
 - density of momentum transfer
 - density of net charge
 - fluence (track-length density)
 - silicon 1 MeV-neutron equivalent fluence
 - high energy hadron equivalent fluence
 - thermal neutron equivalent fluence
- method used for scoring (old crude algorithm where the energy lost in a step by a charged particle is deposited in the middle of the step, or accurate algorithm where the energy lost is apportioned among different bins according to the relevant step fraction - see more in Note 14)
- mesh symmetry (no symmetry, or specular symmetry around one of the coordinate planes, or around the origin point)
0.0 \leq \text{WHAT}(1) \leq 8.0: \text{ Quantities scored at a point. In the case of various types of energy deposition, quantities calculated using the old algorithm where the energy lost in a step by a charged particle is deposited at the step midpoint (see Note 14).} Quantity scored:
- if \text{WHAT}(2) = 208 (\text{ENERGY}), 211 (\text{EM–ENRGY}), 228 (\text{DOSE}), 229 (\text{UNB–ENER}), 230 (\text{UNB–EMEN}), 238 (\text{NIEL–DEP}), 239 (\text{DPA–SCO}), 241 (\text{DOSE–EM}), 243 (\text{DOSEQLET}) or 244 (\text{RES–NIEL}): energy or non ionising energy density or displacements per atom or dose equivalent calculated with a Quality Factor
- if \text{WHAT}(2) = 219 (\text{FISSIONS}), 220 (\text{HE–FISS}) or 221 (\text{LE–FISS}): fission density
- if \text{WHAT}(2) = 222 (\text{NEU–BALA}): neutron balance density
- if \text{WHAT}(2) = 231 (\text{X–MOMENT}), 232 (\text{Y–MOMENT}) or 233 (\text{Z–MOMENT}): momentum transfer density
- if \text{WHAT}(2) = 234 (\text{ACTIVITY}) or 235 (\text{ACTOMASS}): activity or specific activity
- if \text{WHAT}(2) = 242 (\text{NET–CHRG}): net charge density
- otherwise, density of stars produced by particles (or families of particles) with particle code or name \text{WHAT}(2)

Not allowed:
- \text{WHAT}(2) = 236 (\text{SI1MEVNE}), 237 (\text{HADGT20M}), 240 (\text{DOSE–EQ}), 249 (\text{HEHAD–EQ}), 250 (\text{THNEU–EQ})

\begin{align*}
= 0.0: \text{ Mesh: Cartesian, no symmetry} \\
= 1.0: \text{ Mesh: R–Z or R–Φ–Z, no symmetry. Φ is the azimuthal angle around the Z axis, measured from } -\pi \text{ to } +\pi \text{ relative to the X axis.} \\
= 2.0: \text{ Mesh: by region (1 bin corresponds to } n \text{ regions, with } n = 1 \text{ to } 3) \\
= 3.0: \text{ Mesh: Cartesian, with symmetry } \pm X \text{ (i.e., } |x| \text{ is used for scoring)} \\
= 4.0: \text{ Mesh: Cartesian, with symmetry } \pm Y \text{ (i.e., } |y| \text{ is used for scoring)} \\
= 5.0: \text{ Mesh: Cartesian, with symmetry } \pm Z \text{ (i.e., } |z| \text{ is used for scoring)} \\
= 6.0: \text{ Mesh: Cartesian, with symmetry around the origin (i.e., } |x|, |y| \text{ and } |z| \text{ are used for scoring)} \\
= 7.0: \text{ Mesh: R–Z or R–Φ–Z, with symmetry } \pm Z \text{ (i.e., } |z| \text{ is used for scoring)} \\
= 8.0: \text{ Special user-defined 3-D binning. Two variables are discontinuous (e.g. region number), the third one is continuous, e.g. a user-defined function of the space coordinates or of some energy or angular quantity. See 13.2.9.}
\end{align*}
10.0 ≤ WHAT(1) ≤ 18.0: Quantities scored along a step, apportioned among different bins according to the relevant step fraction. In particular, in the case of various types of energy deposition, quantities calculated using the accurate apportioning algorithm (see Note 14).

Quantity scored:
- if WHAT(2) = 208 (ENERGY), 211 (EM–ENRGY), 228 (DOSE), 229 (UNB–ENER), 230 (UNB–EMEN), 238 (NIEL–DEP), 239 (DPA–SCO), 241 (DOSE–EM), 243 (DOSEQLET) or 244 (RES–NIEL): energy or non ionising energy density (as such or weighted with a Quality Factor) or displacements per atom
- if WHAT(2) = 236 (SI1MEVNE): fluence weighted by a damage function
- if WHAT(2) = 240 (DOSE–EQ): Dose equivalent, calculated by folding fluence with conversion coefficients
- if WHAT(2) = 249 (HEHAD–EQ) or 250 (THNEU–EQ): high energy hadron equivalent or thermal neutron equivalent fluence
- otherwise: fluence (track-length density) of particles (or families of particles) with particle code or name = WHAT(2)

Not allowed:
- WHAT(2) = 219.0 (FISSIONS), 220.0 (HE–FISS), 221.0 (LE–FISS), 222.0 (NEU–BALA), 231.0 (X–MOMENT), 232.0 (Y–MOMENT), 233.0 (Z–MOMENT), 234.0 (ACTIVITY), 235.0 (ACTOMASS), 242.0 (NET–CHRG)

= 10.0: Mesh: Cartesian, no symmetry
= 11.0: Mesh: R–Z or R–Φ–Z, no symmetry
= 12.0: Mesh: by region (1 bin corresponds to n regions, with n = 1 to 3)
= 13.0: Mesh: Cartesian, with symmetry ± X (|x| used for scoring)
= 14.0: Mesh: Cartesian, with symmetry ± Y (|y| used for scoring)
= 15.0: Mesh: Cartesian, with symmetry ± Z (|z| used for scoring)
= 16.0: Mesh: Cartesian, with symmetry around the origin (|x|, |y|, |z| used for scoring)
= 17.0: Mesh: R–Z or R–Φ–Z, with symmetry ± Z (|z| used for scoring)
= 18.0: Special user-defined 3-D binning. Two variables are discrete (e.g., region number), the third one is continuous, e.g. a user-defined function of the space coordinates or of some energy, time or angular quantity. See 13.2.9.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Default</th>
<th>Override routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup></td>
<td>integer</td>
<td>region number</td>
<td>MUSRBR</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>integer</td>
<td>lattice cell number</td>
<td>LUSRBL</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>continuous</td>
<td>0.0</td>
<td>FUSRBV</td>
</tr>
</tbody>
</table>

Default = 0.0 (Cartesian scoring without symmetry, star density or energy density deposited at midstep with the old algorithm)
WHAT(2): particle (or particle family) type to be scored

- If **WHAT(2)** = 208 (ENERGY), 211 (EM–ENRGY), 228 (DOSE), 229 (UNB–ENER), 230 (UNB–EMEN), 238 (DPA–SCO), 241 (DOSE–EM), 243 (DOSEQLET) or 244 (RES–NIEL):
 - If **WHAT(1)** < 10.0, the binning will score with the old algorithm energy density or non ionising energy density (as such or weighted with a damage function or a Quality Factor), or displacements per atom.
 - If **WHAT(1)** ≥ 10.0, the apportioning algorithm will be used (more accurate, see Note 14).
- If **WHAT(2)** = 219 (FISSIONS), 220 (HE–FISS) or 221 (LE–FISS), and **WHAT(1)** < 10, the binning will score fission density.
 - If **WHAT(1)** ≥ 10 is not allowed.
- If **WHAT(2)** = 222 and **WHAT(1)** < 10, neutron balance density will be scored.
 - If **WHAT(1)** ≥ 10 is not allowed.
- If **WHAT(2)** = 231 (X–MOMENT), 232.0 (Y–MOMENT) or 233.0 (Z–MOMENT), and **WHAT(1)** < 10, the binning will score density of momentum transfer.
 - If **WHAT(1)** ≥ 10 is not allowed.
- If **WHAT(2)** = 234 (ACTIVITY) or 235.0 (ACTOMASS), and **WHAT(1)** < 10, the binning will score activity or specific activity.
 - If **WHAT(1)** ≥ 10 is not allowed.
- If **WHAT(2)** = 240 (DOSE–EQ) and **WHAT(1)** ≥ 10, the binning will score dose equivalent calculated as convolution of particle fluences and conversion coefficients (see option AUXSCORE. p. 70).
 - **WHAT(1)** < 10 is not allowed.
- If **WHAT(2)** = 242 (NET–CHRG), the binning will score density of net charge deposition.
 - If **WHAT(1)** ≥ 10 is not allowed.
- If **WHAT(2)** = 249 (HEHAD–EQ) and **WHAT(1)** ≥ 10, the binning will score high energy hadron equivalent fluence.
 - **WHAT(1)** < 10 is not allowed.
- If **WHAT(2)** = 250 (THNEU–EQ) and **WHAT(1)** ≥ 10, the binning will score thermal neutron equivalent fluence.
 - **WHAT(1)** < 10 is not allowed.
- Any other particle (or family of particles) requested will score:
 - If **WHAT(1)** < 10.0, density of stars produced by particles (or family of particles) with particle code (or name) = **WHAT(2)**. Of course, this choice is meaningful only for particles that can produce stars (hadrons, photons and muons).
 - If **WHAT(1)** ≥ 10.0, fluence of particles (or family of particles) with particle code (or name) = **WHAT(2)**.

Note that it is not possible to score energy fluence with this option alone (it is possible, however, by writing a special version of the user routine FLUSCW — see 13.2.6)

Default = 208.0 (total energy density)

WHAT(3) = logical output unit:

> 0.0: formatted data are written on **WHAT(3)** unit
< 0.0: unformatted data are written on |**WHAT(3)**| unit

Values of |**WHAT(3)**| < 21.0 should be avoided (with the exception of +11).

Default = 11.0 (standard output unit)
WHAT(4) = For Cartesian binning: X_{max}
 For R–Z and R–Φ–Z binning: R_{max}
 For region binning: last region of the first region set
 For special binnings, upper limit of the first user-defined variable (last region if the default version of the MUSRBR routine is not overridden)

 Default: No default

WHAT(5) = For Cartesian binning: Y_{max}
 For region binning: last region of the second region set
 For special binnings, upper limit of the second user-defined variable (last lattice cell if the default version of the LUSRBL routine is not overridden)

 Default: 0.0 for R–Z, R–Φ–Z and region binnings.
 No default otherwise (the user has to define a not null interval)

WHAT(6) = For R–Z, R–Φ–Z and Cartesian binnings: Z_{max}
 For region binnings, last region of the third region set
 For special binnings, upper limit of the third user-defined variable (0.0 if the default version of the FUSRBV routine is not overridden)

 Default: 0.0 for region binning
 No default otherwise (the user has to define a not null interval)

SDUM = any character string (not containing “&”) identifying the binning detector (max. 10 characters)

Continuation card: (not needed if the defaults are acceptable)

WHAT(1) = For Cartesian binning: X_{min} (if X symmetry is requested, X_{min} cannot be negative)
 For R–Z and R–Φ–Z binning: R_{min}
 For region binnings, first region of the first region set. **Default**: equal to last region (= WHAT(4) in the first USRBIN card)
 For special binnings, lower limit of the first user-defined variable (first region if the default version of the MUSRBR routine is not overridden)

 Default = 0.0

WHAT(2) = For Cartesian binning: Y_{min} (if Y symmetry is requested, Y_{min} cannot be negative)
 For region binnings, first region of the second region set. **Default**: equal to last region (= WHAT(5) in the first USRBIN card)
 For special binnings, lower limit of the second user-defined variable (first lattice cell if the default version of the LUSRBL routine is not overridden)

 Default = 0.0

WHAT(3) = For Cartesian, R–Z and R–Φ–Z binnings: Z_{min} (if Z symmetry is requested, Z_{min} cannot be negative)
 For region binnings, first region of the third region set. **Default**: equal to last region (= WHAT(6) in the first USRBIN card)
 For special binnings, lower limit of the third user-defined variable (0.0 if the default version of the FUSRBV routine is not overridden)

 Default = 0.0

WHAT(4) = For Cartesian binning: number of X bins. (Default: 30.0)
 For R–Z and R–Φ–Z binning: number of R bins (default: 50.0)
 For region binnings, step increment for going from the first to the last region of the first region set. (Default: 1.0)
 For special binnings, step increment for going from the first to the last “region” (or similar). (Default: 1.0)
WHAT(5) = For Cartesian binning: number of Y bins. (Default: 30.0).
For R–Φ–Z: number of Φ bins. (Default is R–Φ–Z = R–Z, i.e., 1 Φ bin).
For region binnings, step increment for going from the first to the last region of the second region set. (Default: 1.0).
For special binnings, step increment for going from the first to the last “lattice cell” (or similar). (Default: 1.0).

For region binnings, step increment for going from the first to the last region of the third region set. (Default: 1.0).
For special binnings, number of intervals for the third variable. (Default: 1.0).

SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)

Default (option **USRBIN** not given): no binning detector

Notes

1. A *binning* is a regular spatial mesh completely independent from the regions defined by the problem’s geometry. As an extension of the meaning, “region binnings” and “special user-defined binnings” are also defined, where the term indicates a detector structure not necessarily regular or independent from the geometry. On user’s request, **FLUKA** can calculate the distribution of several different quantities over one or more binning structures, separated or even overlapping.

 The following quantities can be “binned”:
 - energy density, total or deposited by e⁺e⁻γ only
 - dose (energy per unit mass), total or deposited by e⁺e⁻γ only
 - star density (density of hadronic inelastic interactions)
 - particle track-length density (fluence)
 - dose equivalent (fluence convoluted with fluence-to-dose equivalent conversion coefficients, or dose multiplied by a LET-dependent Quality Factor)
 - activity (per unit volume) or specific activity (per unit mass)
 - density of total, high-energy and low-energy fissions
 - density of neutron balance (algebraic sum of outgoing neutrons minus incoming neutrons for all interactions)
 - density of unbiased energy (physically meaningless but useful for setting biasing parameters and debugging)
 - density of momentum transfer components on the three axes
 - **DPA** (Displacements Per Atom)
 - density of Non Ionising Energy Losses deposited, unrestricted and restricted (i.e., larger than the **DPA** threshold)
 - silicon 1 MeV-neutron equivalent fluence
 - high energy hadron equivalent fluence (see Note 5.1, p. 46)
 - thermal neutron equivalent fluence (see Note 5.1, p. 46)
 - density of net charge deposited

 The available binning shapes are Cartesian (3-D rectangular, with planes perpendicular to the coordinate axes), R–Z (2-D cylindrical, with the cylinder axis parallel to the z-axis), and R–Φ–Z (3-D cylindrical).

2. It is possible to define also binnings with an arbitrary orientation in space, by means of options **ROT–DEFIni** (p. 228) and **ROTPRBIN** (p. 231).

3. A star is a hadronic inelastic interaction at an energy higher than a threshold defined via the option **THRESHOLd** (p. 251) (or by default higher than the transport threshold of the interacting particle). Star scoring (traditionally used in most high-energy shielding codes) can therefore be considered as a form of crude collision estimator: multiplication of star density by the asymptotic value of the inelastic nuclear interaction length gives the fluence of hadrons having energy higher than the current threshold. However, this is meaningful only if the interaction length doesn’t vary appreciably with energy; therefore it is recommended to set a scoring threshold = 50 MeV
17. The logical output unit for the estimator results (WHAT(3)), since interaction lengths are practically constant above this energy. Besides, star densities calculated with a 50 MeV threshold are the basis of some old techniques to estimate induced activity such as the ω-factors (see [200], p. 106), and the prediction of single isotope yields from the ratio of partial to inelastic cross section. These techniques have now been made obsolete by the capability of FLUKA to calculate directly induced activity and residual nuclei.

4. Selecting star scoring is meaningful for hadrons, photons and muons (if their energy is sufficiently high). Any other particle will not produce any star. And in FLUKA, stars do not include spallations due to annihilating particles.

The results will be expressed in stars per cm3 per unit primary weight.

5. Energy deposition will be expressed in GeV per cm3 per unit primary weight. Doses will be expressed in GeV/g per unit primary weight. To obtain dose in Gy, multiply GeV/g by $1.602176462 \times 10^{-7}$.

6. Non Ionising Energy Losses deposited (NIEL–DEP), restricted and unrestricted, will be expressed in GeV per cm3 per unit primary weight.

7. Displacements Per Atom (DPA) will be expressed as average DPAs in each bin per unit primary weight.

8. Fluence will be expressed in particles/cm2 per unit primary weight.

9. Dose equivalent will be expressed in pSv per unit primary weight.

10. Activity will be expressed in Bq/cm3 per unit primary weight. Specific activity will be expressed in Bq/g per unit primary weight. Scoring activity requires additional commands RADDECAY, IRRPROFI, DCYTIMES and DCYSCORE.

11. Total, High-energy and Low-energy fissions will be expressed as fissions/cm3 per unit primary weight.

12. Neutron balance density will be expressed as net number of produced neutrons per cm3 per unit primary weight.

13. The results from USRBIN are normalised per unit volume and per unit primary weight, except region binnings and special user-defined binnings, which are normalised per unit primary weight only, for DPA, which are given as number of displacements per atom per unit primary weight, averaged over the bin volume, and for dose equivalent, expressed as pSv per unit primary weight.

In case symmetries are requested, proper rescaled volumes are taken into account for normalisation (that is, an extra factor 2 is applied to the volume if symmetry around one plane is required, 8 if the symmetry is around the origin).

14. When scoring energy deposition or dose, i.e., generalised particles 208 (ENERGY), 211 (EM–ENRGY), 228 (DOSE) or 241 (DOSE–EM), it is recommended to set in the first USRBIN card WHAT(1) = 10.0, 11.0, ..., 18.0 (rather than 0.0, 1.0, ..., 8.0). The difference between the two settings is the following. With WHAT(1) = 0.0, 1.0, ..., 8.0, the energy lost in a charged particle step is deposited in the bin corresponding to the midpoint of the step: this is the old FLUKA algorithm, which is rather inefficient when the step length is larger than the bin size.

The accurate algorithm, selected by setting WHAT(1) = 10.0, 11.0, ..., 18.0, deposits in every bin traversed by the step a fraction of energy proportional to the respective chord (track-length apportioning). Statistical convergence is much faster.

15. When scoring region binning and more than one set of regions is defined, each of the sets (2 or 3) must consist of the same number of regions. The first bin will contain the sum of what is contained in the first regions of each set, the second bin the sum of the scores of the second regions, etc.

16. The maximum number of binnings that the user can define is 400.

17. The logical output unit for the estimator results (WHAT(3) of the first USRBIN card) can be any one of the following:

- the standard output unit 11: estimator results (that in this case need to be formatted) will be written on the same file as the standard FLUKA output.
- a pre-connected unit (via a symbolic link on most UNIX systems, ASSIGN under VMS, or equivalent commands on other systems)
- a file opened with the FLUKA command OPEN
- a file opened with a Fortran OPEN statement in a user-written initialisation routine such as USRINI, USRGLO or SOURCE (see 13.2.27, 13.2.26, 13.2.19)
- a dynamically opened file, with a default name assigned by the Fortran compiler (typically fort.xx or ftn.xx, with xx equal to the chosen logical output unit number).

18. The results of several USRBIN detectors in a same FLUKA run can be written on the same file, but of course only if they are all in the same mode (all formatted, or all unformatted).
19. It is also possible in principle to write on the same file the results of different kinds of estimators (USRBDX, USRTRACK, etc.) but this is not recommended, especially in the case of an unformatted file, because it would make very difficult any reading and analysis.

20. In R-Φ-Z binnings, the azimuthal angle Φ extends from $-\pi$ to $+\pi$ (-180° to $+180^\circ$), where $\Phi = 0$ corresponds to the positive x-axis. Note that it is not possible to further restrict the domain of Φ.

21. Binning data can be obtained also separately for each “event” (“event” = history of a primary particle and all its descendants). See option EVENTBIN (p. 127) for details.

22. Two programs, Usbsuw and Usbrea, are available with the normal FLUKA code distribution in directory FLUPRO/flutil. Usbsuw allows to compute standard deviations over several runs, and returns the standard deviations and the averages in an unformatted file. Usbrea reads an unformatted file and returns the equivalent formatted file, including the standard deviations if the input file was produced by Usbsuw.

Example:

```
*....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
USRBIN  10.0  ELECTRON  -25.0   7.0   7.0   12.1  verythin
USRBIN  -7.0   -7.0   12.0  35.0  35.0    1.0 &
```

- Cartesian binning of electron track-length density, to be written
- unformatted on unit 25. Mesh is 35 bins between $x = -7$ and $x = 7$, 35 bins
- between $y = -7$ and $y = 7$, and 1 bin between $z = 12$ and $z = 12.1$
7.84 USRCOLL

Defines a detector for a hadron fluence collision estimator

See also USRBDX, USRBIN, USRTRACK

The full definition of the detector may require two successive cards. The second card, identified by the character “&” in any column from 71 to 78 (or in the last field in case of free format input), must be given unless the corresponding defaults are acceptable to the user.

First card:

WHAT(1) = 1.0: linear binning in energy
= -1.0: logarithmic binning in energy
Default = 1.0 (linear binning)

WHAT(2) = (generalised) particle type to be scored
Default = 201.0 (all particles)

WHAT(3) = logical output unit:
> 0.0: formatted data are written on WHAT(3) unit
< 0.0: unformatted data are written on |WHAT(3)| unit
Values of |WHAT(3)| < 21.0 should be avoided (with the exception of +11).
Default = 11.0 (standard output unit)

WHAT(4) > 0.0: region defining the detector
= -1.0: all regions (see Note 7)
Default = 1.0

WHAT(5) = volume of the detector in cm³
Default = 1.0

WHAT(6) = number of energy bins
Default = 10.0

SDUM = any character string (not containing “&”) identifying the detector (max. 10 characters)

Continuation card:

WHAT(1) = maximum kinetic energy for scoring (GeV)
Default = beam momentum value according to the BEAM (p. 73) option (if no BEAM card is given, 200 GeV)

WHAT(2) = minimum kinetic energy for scoring (GeV). Note that the lowest energy limit of the last neutron group is 10⁻¹⁴ GeV (10⁻⁵ eV) for the 260 data set.
Default = 0.0 if linear energy binning, 0.001 GeV otherwise

WHAT(3) – WHAT(6): not used

SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)
For SDUM = EN-NUCL:

The energy scale for all USRCOLL estimators will be changed from energy to energy per nucleon (for particles with baryon number = 0 or 1, i.e., all elementary hadrons and leptons, nothing will be changed).

For SDUM = ENERGY:

The energy scale for all USRCOLL estimators will be changed to the default, that is total kinetic energy.

Default (option USRCOLL not given): no collision estimator detector
1. **IMPORTANT!** The results of a USRCOLL collision estimator are always given as *differential* distributions of fluence (or tracklength, if the detector region volume is not specified) in energy, in units of cm\(^{-2}\) GeV\(^{-1}\) (or cm GeV\(^{-1}\)) per incident primary unit weight. Thus, for example, when requesting a fluence energy spectrum, to obtain *integral binned* results (fluence in cm\(^{-2}\) or tracklength in cm *per energy bin* per primary) one must multiply the value of each energy bin by the width of the bin (even for logarithmic binning). This is done automatically by the dedicated post-processing utility program **Ustsuw** (see Note 6).

2. If the generalised particle is \(208.0\) (ENERGY) or \(211.0\) (EM–ENERGY), the quantity scored is differential energy fluence (or tracklength, if the detector region volume is not specified), expressed in GeV per cm\(^2\) (or cm GeV) *per energy unit* per primary. That can sometimes lead to confusion since GeV cm\(^{-2}\) GeV\(^{-1}\) = cm\(^{-2}\), where energy does not appear. Note that integrating over energy one gets GeV/cm\(^2\).

3. The maximum number of collision + track-length detectors (see option **USRTRACK**, p. 277) that the user can define is 2500.

4. The logical output unit for the estimator results (**WHAT(3)** of the first USRCOLL card) can be any one of the following:
 - the standard output unit **11**: estimator results will be written on the same file as the standard FLUKA output.
 - a pre-connected unit (via a symbolic link on most UNIX systems, **ASSIGN** under VMS, or equivalent commands on other systems)
 - a file opened with the FLUKA command **OPEN**
 - a file opened with a Fortran **OPEN** statement in a user-written initialisation routine such as **USRINI**, **USRGLO** or **SOURCE** (see 13.2.27, 13.2.26, 13.2.19)
 - a dynamically opened file, with a default name assigned by the Fortran compiler (typically **fort.xx** or **ftn.xx**, with **xx** equal to the chosen logical output unit number).

 The results of several USRCOLL and USRTRACK detectors in a same FLUKA run can be written on the same file, but of course only if they are all in the same mode (all formatted, or all unformatted).

 It is also possible in principle to write on the same file the results of different kinds of estimators (**USRBDX**, **USRBIN**, etc.) but this is not recommended, especially in the case of an unformatted file, because it would make very difficult any reading and analysis.

5. When scoring neutron fluence, and the requested energy interval overlaps with the structure of the low energy neutron groups, one gets two separate tables. In the lower one, interval boundaries are forced to coincide with group boundaries. For the upper one, the program uses the input energy limits and number of intervals to estimate the desired interval width. The number of intervals above the upper limit of the first low-energy neutron group is recalculated according to such width, which is readjusted to match the number of intervals with the least greater integer.

 Note that the lowest energy limit of the last neutron group is \(10^{-14}\) GeV (\(10^{-5}\) eV) for the 260 data set. All group energy boundaries are listed in Table 10.1 on p. 340.

6. A program **Ustsuw** is available with the normal FLUKA code distribution in directory \$/FLUPRO/flutil. **Ustsuw** reads USRCOLL results in binary form from several runs and allows to compute standard deviations. It returns differential and cumulative fluence, with the corresponding percent errors, in a file, and differential fluence in another file formatted for easy plotting. It also returns a binary file that can be read out in turn by **Ustsuw**. The content of this file is statistically equivalent to that of the sum of the files used to obtain it, and it can replace them to be combined with further output files if desired (the **Ustsuw** program takes care of giving it the appropriate weight).

7. Setting **WHAT(4) = -1** will provide the sum of the track-lengths (calculated as number of collisions times the respective mean free path!) in all regions, divided by the value set by the user for **WHAT(5)**.

8. A collision estimator can only be defined for hadrons.

Example:

```
*...+...1....+...2....+...3....+...4....+...5....+...6....+...7....+...8
USRCOLL  -1.0  NEUTRON   23.0  15.0  540.0  350.  NeutFlu
USRCOLL    250.0  1.E-14   0.0   0.0   0.0   0.  &
* Calculate neutron fluence spectrum in region 15 from thermal energies to
* 250 GeV, in 350 logarithmic energy intervals (but low-energy neutrons will
* stick to the energy group structure). Write formatted results on unit 23.
* The volume of region 15 is 540 cm3.
```
7.85 USRGCALL

Calls user-dependent global initialisation.

See also USRICALL, USROCALL

The meaning of WHAT(1) . . . WHAT(6), SDUM is defined by the user. A call to the user-written routine USRGLO with 6 WHAT numerical values and one character string SDUM as arguments is issued before any other FLUKA initialisation if this command is found anywhere in input.

Default (option USRGCALL not given): no user global initialisation

Notes

1. In subroutine USRGLO, WHAT and SDUM must be declared as follows:

 \texttt{DOUBLE PRECISION WHAT (6)
 CHARACTER SDUM*8}

2. A description of routine USRGLO and instructions about its use are given in 13.2.26.

3. It is suggested that the USRGLO routine shall contain at least the three standard \texttt{INCLUDE} files:

 \texttt{DBLPRC, DIMPAR, IOUNIT}

 Other useful files to be \texttt{INCLUDEd}, depending on the problem, can be BEAMCH, CASLM, SOURCH, SUMCOU, FLXMAT, PAPROP, SCOHLP, USRBDBX, USRBDX, USRSNC, USRTRC, USRYLD. See 13.1.1 for more information on \texttt{INCLUDE} files useful in user routines.

Example:

\texttt{**...+...1....+...2....+...3....+...4....+...5....+...6....+...7....+...8}
USRGCALL 789. 321. 18.0 144.0 -27.0 3.14 SPECIAL
\texttt{* Call global initialisation routine passing over 6 numerical values and a string}
7.86 **USRICALL**

Calls user-dependent initialisation.

See also USRGCALL, USROCALL

The meaning of **WHAT(1) . . . WHAT(6), SDUM** is defined by the user. A call to the user-written routine USRINI with 6 **WHAT** numerical values and one character string **SDUM** as arguments is issued every time this card is read.

Default (option USRICALL not given): no user initialisation

Notes

1. In subroutine USRINI, **WHAT** and **SDUM** must be declared as follows:

   ```
   DOUBLE PRECISION WHAT (6)
   CHARACTER SDUM*8
   ```

2. A description of routine USRINI and instructions about its use are given in 13.2.27.

3. It is suggested that the USRINI routine shall contain at least the three standard **INCLUDE** files:

   ```
   DLPRC, DIMPAR, IOUNIT
   ```

 Other useful files to be **INCLUDEd**, depending on the problem, can be BEAMCM, CASLIM, SOURCM, SUMCOU, FLKMAT, PAPROP, SCOHL, USRBOX, USRIN, USRSNC, USRTRC, USRYLD. See 13.1.1 for more information on **INCLUDE** files useful in user routines.

Example:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
USRICALL 123. 456. 1.0 -2.0 18.0 18. FLAG12
* Call initialisation routine passing over 6 numerical values and a string
```
7.87 USROCALL

Calls user-dependent output.

See also USRICALL

The meaning of WHAT(1) ... WHAT(6), SDUM is defined by the user.
A call to the user-written routine USROUT with 6 WHAT numerical values and one character string SDUM as arguments is issued every time this card is read.

Default (option USROCALL not given): no user-defined output

Notes

1. In subroutine USROUT, WHAT and SDUM must be declared as follows:

 DOUBLE PRECISION WHAT (6)
 CHARACTER SDUM*8

2. It is suggested that the USROUT routine shall contain at least the three standard INCLUDE files:

 DBLPRC, DIMPAR, IOUNIT

 Other useful files to be INCLUDED, depending on the problem, can be:

 BEAMCM (characteristics of beam particles)
 CASLIM, SOURCM, SUMCOU (normalisation factors)
 FLKMAT (info on materials)
 PAPROP (particle properties)
 SCOHLPL (scoring help: flags identifying the different estimators and binnings)

 USRBDX, USRBIN, USRSNC, USRTRC, USRYLD (info about different detectors and binnings)

 See 13.1.1 for more information on INCLUDE files useful in user routines.

Example:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
USROCALL 17.0 17.0 -5.5 1.1 654.0 321. OK
* Call output routine passing over 6 numerical values and a string
```
7.88 **USRTRACK**

Defines a detector for a track-length fluence estimator.

See also USRBDX, USRBIN, USRCOLL

The full definition of the detector may require two successive cards (the second card, identified by the character “&” in any column from 71 to 78, or in the last field in case of free format input, must be given unless the corresponding defaults are acceptable to the user)

For all SDUM except EN–NUCL and ENERGY:

First card:

WHAT(1) = 1.0: linear binning in energy
= -1.0: logarithmic binning in energy
Default = 1.0 (linear binning)

WHAT(2) = (generalised) particle type to be scored
Default = 201.0 (all particles)

WHAT(3) = logical output unit:
> 0.0: formatted data are written on WHAT(3) unit
< 0.0: unformatted data are written on |WHAT(3)| unit
Values of |WHAT(3)| < 21.0 should be avoided (with the exception of +11).
Default = 11.0 (standard output unit)

WHAT(4) > 0.0: region defining the detector
= -1.0: all regions (see Note 8)
Default = 1.0

WHAT(5) = volume of the detector in cm3
Default = 1.0

WHAT(6) = number of energy bins
Default = 10.0

SDUM = any character string (not containing “&”) identifying the detector (max. 10 characters)

Continuation card:

WHAT(1) = maximum kinetic energy for scoring (GeV)
Default = beam momentum value according to the BEAM (p. 73) option (if no BEAM card is given, 200 GeV)

WHAT(2) = minimum kinetic energy for scoring (GeV). Note that the lowest energy limit of the last neutron group is 10^{-14} GeV (10^{-15} eV) for the 260 data set.
Default = 0.0 if linear energy binning, 0.001 GeV otherwise

WHAT(3) – WHAT(6): not used

SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)
For SDUM = EN–NUCL:

The energy scale for all USRTRACK estimators will be changed from energy to energy per nucleon (for particles with baryon number $= 0$ or 1, i.e., all elementary hadrons and leptons, nothing will be changed).

For SDUM = ENERGY:

The energy scale for all USRTRACK estimators will be changed to the default, that is total kinetic energy.

Default (option USRTRACK not given): no tracklength fluence estimator
Notes

1. **IMPORTANT!** The results of a **USRTRACK** track-length estimator are always given as *differential* distributions of fluence (or tracklength, if the detector region volume is not specified) in energy, in units of cm$^{-2}$ GeV$^{-1}$ (or cm GeV$^{-1}$) per incident primary unit weight. Thus, for example, when requesting a fluence energy spectrum, to obtain *integral binned* results (fluence in cm$^{-2}$ or tracklength in cm per energy bin per primary) one must multiply the value of each energy bin by the width of the bin (even for logarithmic binning). This is done automatically by the dedicated post-processing utility program **Ustsuw** (see Note 7).

2. If the generalised particle is 208.0 (ENERGY) or 211.0 (EM–ENRGY), the quantity scored is differential energy fluence (or tracklength, if the detector region volume is not specified), expressed in GeV per cm2 (or cm GeV) per energy unit per primary. That can sometimes lead to confusion since GeV cm$^{-2}$ GeV$^{-1}$ = cm$^{-2}$, where energy does not appear. Note that integrating over energy one gets GeV/cm2.

3. The maximum number of track-length + collision detectors (see option **USRCOLL**, p. 271) that the user can define is 2500.

4. The logical output unit for the estimator results (**WHAT(3)** of the first **USRTRACK** card) can be any one of the following:
 - the standard output unit 11: estimator results will be written on the same file as the standard **Fluka** output.
 - a pre-connected unit (via a symbolic link on most UNIX systems, **ASSIGN** under VMS, or equivalent commands on other systems)
 - a file opened with the **Fluka** command **OPEN**
 - a file opened with a Fortran **OPEN** statement in a user-written initialisation routine such as **USRINI**, **USRGLO** or **SOURCE** (see 13.2.27, 13.2.26, 13.2.19)
 - a dynamically opened file, with a default name assigned by the Fortran compiler (typically **fort.xx** or **ftn.xx**, with **xx** equal to the chosen logical output unit number).

 The results of several **USRTRACK** and **USRCOLL** detectors in a same **Fluka** run can be written on the same file, but of course only if they are all in the same mode (all formatted, or all unformatted).

 It is also possible in principle to write on the same file the results of different kinds of estimators (**USRBDX**, **USRBIN**, etc.) but this is not recommended, especially in the case of an unformatted file, because it would make very difficult any reading and analysis.

5. When scoring neutron fluence, and the requested energy interval overlaps with the structure of the low energy neutron groups, one gets two separate tables. In the lower one, interval boundaries are forced to coincide with group boundaries. For the upper one, the program uses the input energy limits and number of intervals to estimate the desired interval width. The number of intervals above the upper limit of the first low-energy neutron group is recalculated according to such width, which is readjusted to match the number of intervals with the least greater integer.

 Note that the lowest energy limit of the last neutron group is 10$^{-5}$ GeV (10$^{-5}$ eV) for the 260 data set.

 All group energy boundaries are listed in Table 10.1 on p. 340.

6. If the scored fluence is that of a generalised particle which includes neutrons (e.g., **ALL-PART**, **ALL-NEUT**, **NUCLEONS**, **NUC&PI+-**, **HAD-NEUT**, and even **ENERGY**), the spectrum is also presented in two separate tables. One table refers to all non-neutron particles and to neutrons with energies above the upper limit of the first low-energy neutron group (20 MeV). In case an interval crosses 20 MeV, it will include the contribution of neutrons with energy > 20 MeV and not that of neutrons with energy < 20 MeV. The second table refers only to low-energy neutrons and its interval structure is that of the neutron energy groups.

7. A program **Ustsuw** is available with the normal **Fluka** code distribution in directory $FLUPRO/flutil$. **Ustsuw** reads **USRTRACK** results in binary form from several runs and allows to compute standard deviations. It returns differential and cumulative fluence, with the corresponding percent errors, in a file, and differential fluence in another file formatted for easy plotting. It also returns a binary file that can be read out in turn by **Ustsuw**. The content of this file is statistically equivalent to that of the sum of the files used to obtain it, and it can replace them to be combined with further output files if desired (the **Ustsuw** program takes care of giving it the appropriate weight).

8. Setting **WHAT(4) = -1** will provide the sum of the track-lengths in all regions, divided by the value set by the user for **WHAT(5)**.

Example:
Calculate photon fluence spectrum in region 16 from 0 to 1.5 GeV, in 150 linear energy intervals. Write unformatted results on unit 24. The volume of region 16 is 4500 cm³.
7.89 USRYIELD

Defines a detector to score a double differential particle yield around an extended or a point target

See also USRBBDX

The full definition of the detector may require two successive cards (the second card, identified by the character “&” in any column from 71 to 78 (or in the last field in case of free format input), must be given unless the corresponding defaults are acceptable to the user)

First card:

\[\text{WHAT(1)} = i_e + i_a \times 100, \]

where \(i_e\) and \(i_a\) indicate the two physical quantities with respect to which the double differential yield is calculated.

If \(i_e > 0\), the yield will be analysed in linear intervals with respect to the first quantity; if \(i_e < 0\), the yield distribution will be binned logarithmically.

(Note that for rapidity, pseudo-rapidity and Feynman-x logarithmic intervals are not available and will be forced to linear if requested).

For the second quantity, indicated by \(i_a\), only one interval will be considered.

\[
| i_e | \text{ or } | i_a | = \\
1 : \text{kinetic energy in } \text{GeV} \\
2 : \text{total momentum in } \text{GeV/c} \\
3 : \text{rapidity in the lab frame } \text{(only linear scoring available)} \\
4 : \text{rapidity in the c.m.s. frame } \text{(only linear scoring available)} \\
5 : \text{pseudo-rapidity in the lab frame } \text{(only linear scoring available)} \\
6 : \text{pseudo-rapidity in the c.m.s. frame } \text{(only linear scoring available)} \\
7 : \text{Feynman-x in the lab frame } (E/E_{\text{beam}}) \text{ (only linear scoring available)} \\
8 : \text{Feynman-x in the c.m.s. frame } \text{(only linear scoring available)} \\
9 : \text{transverse momentum in } \text{GeV/c} \\
10 : \text{transverse mass in } \text{GeV} \\
11 : \text{longitudinal momentum in the lab frame } \text{(in } \text{GeV/c}) \\
12 : \text{longitudinal momentum in the c.m.s. frame } \text{(in } \text{GeV/c}) \\
13 : \text{total energy in } \text{GeV} \\
14 : \text{polar angle in the lab frame } \text{(see Note 6)} \\
15 : \text{polar angle in the c.m.s. frame } \text{(see Note 6)} \\
16 : \text{square transverse momentum in } \text{(GeV/c)}^2 \\
17 : 1/(2\pi \sin \theta) \text{ weighted angle in the lab frame } \text{(see Note 6)} \\
18 : 1/(2\pi p_T) \text{ weighted transverse momentum in } \text{GeV/c} \\
19 : \text{ratio laboratory momentum/beam momentum} \\
20 : \text{transverse kinetic energy} \\
21 : \text{excitation energy} \\
22 : \text{particle charge} \\
23 : \text{particle LET} \\
24 : \text{like 14, but with input in degrees rather than in radians } \text{(see Note 6)} \\
25 : \text{like 15, but with input in degrees rather than in radians } \text{(see Note 6)} \\
26 : \text{laboratory kinetic energy/nucleon} \\
27 : \text{laboratory momentum/nucleon} \\
28 : \text{particle baryonic charge} \\
29 : \text{four-momentum transfer } -t \\
30 : \text{c.m.s. longitudinal Feynman-x } \text{(only linear scoring available)} \\
31 : \text{excited mass squared} \\
32 : \text{excited mass squared}/s \\
33 : \text{time } (s) \\
34 : \sin \text{ weighted angle in the lab frame } \text{(see Note 6)} \]
\[|i_a| \text{ or } |i_\alpha| = 35 \quad : \text{total momentum (GeV/c) in the c.m.s. frame} \]
\[= 36 \quad : \text{total energy (GeV) in the c.m.s. frame} \]
\[= 37 \quad : \text{like 17, but with input in degrees rather than in radians (see Note 6)} \]
\[= 38 \quad : \text{like 34, but with input in degrees rather than in radians (see Note 6)} \]

WHAT(2) > 0.0: number or name of the (generalised) particle type to be scored.
< 800.0 and WHAT(4) = -1.0 and WHAT(5) = -2: the (generalised) particles of type IJ entering an inelastic hadronic interaction are scored by setting WHAT(2) = -1000 -IJ
Default = 201.0 (all particles)

WHAT(3) = logical output unit:
> 0.0: formatted data are written on WHAT(3) unit
< 0.0: unformatted data are written on WHAT(3) unit
Values of |WHAT(3)| < 21.0 should be avoided (with the exception of +11).
Default = 11.0 (standard output unit)

WHAT(4) > 0.0: number or name of the first region defining the boundary (upstream region)
= -1.0 and WHAT(5) = -2.0: the yield of particles emerging from inelastic hadronic interactions is scored
Default = -1.0

WHAT(5) > 0.0: number or name of the second region defining the boundary (downstream region)
= -2.0 and WHAT(4) = -1.0: the yield of particles emerging from inelastic hadronic interactions is scored
Default = -2.0

WHAT(6) = normalisation factor (the results will be divided by WHAT(6))
SDUM = any character string (not containing “&”) identifying the yield detector (max. 10 characters)

Continuation card:
WHAT(1) = Upper limit of the scoring interval for the first quantity
Default = beam momentum value in case |i_a| = 1 or 2, no default otherwise!

WHAT(2) = Lower limit of the scoring interval for the first quantity
Default = 0.0 if linear binning, 0.001 otherwise. Note that these values might not be meaningful for all available quantities.

WHAT(3) = number of scoring intervals for the first quantity
Default = 50.0

WHAT(4) = Upper scoring limit for the second quantity
Default : no default!

WHAT(5) = Lower scoring limit for the second quantity
Default = 0.0

WHAT(6) = ia + im x 100, where ia indicates the kind of yield or cross section desired and im the target material (if needed in order to calculate cross section or particle LET, otherwise im = 0). Cross sections are obtained from yields multiplying the latter ones by the microscopic inelastic cross section of the beam particle at beam energy on the selected material. See Note 4 in case of a thick target.
\[ix_a = 1: \] plain double differential cross section \(\frac{d^2\sigma}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 2: \] invariant cross section \(E \frac{d^3\sigma}{dp^3} \)

\[ix_a = 3: \] plain double differential yield \(\frac{d^2N}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 4: \] double differential yield \(\frac{d^2(x_2N)}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 5: \] double differential yield \(\frac{d^2(x_1N)}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 6: \] double differential fluence yield \(\frac{1}{\cos \theta} \frac{d^2N}{dx_1dx_2} \) where \(x_1, x_2 \) are the first and second quantity, and \(\theta \) is the angle between the particle direction and the NORMAL TO THE SURFACE

\[ix_a = 7: \] double differential yield \(\frac{d^2(x_1^2N)}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 8: \] double differential yield \(\frac{d^2((x_1^2 + x_2^2)N)}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 9: \] double differential yield \(\frac{d^2((x_1^2 + x_2^2)N)}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 10: \] double differential yield \(\frac{d^2((x_1^2 + x_2^2))}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 11: \] double differential yield \(\frac{d^2(x_1\sqrt{x_1^2 - x_2^2})}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 12: \] double differential yield \(\frac{d^2((x_1^2 + x_2^2)N)}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 13: \] double differential yield \(\frac{d^2((x_1^2 + x_2^2)N)}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 14: \] double differential yield \(\frac{d^2((x_1^2 + x_2^2)N)}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 15: \] double differential yield \(\frac{d^2((x_1^2 + x_2^2))}{dx_1dx_2} \), where \(x_1, x_2 \) are the first and second quantity

\[ix_a = 16: \] double differential weighted fluence yield \(\frac{1}{\cos \theta} \frac{d^2(x_2N)}{dx_1dx_2} \) where \(x_1, x_2 \) are the first and second quantity, and \(\theta \) is the angle between the particle direction and the NORMAL TO THE SURFACE

\[ix_a = 26: \] double differential weighted fluence yield \(\frac{1}{\cos \theta} \frac{d^2(x_1N)}{dx_1dx_2} \) where \(x_1, x_2 \) are the first and second quantity, and \(\theta \) is the angle between the particle direction and the NORMAL TO THE SURFACE

\[ix_a > 52: \] as per \(ix_a = (ix_a - 50) \), but double differential cross section instead of yield, for instance \(ix_a = 59 \) is \(\frac{d^2\sigma}{dx_1dx_2} \), while note that \(ix_a = 53 \) (that is \(\frac{d^2\sigma}{dx_1dx_2} \)) coincides with \(ix_a = 1 \)

\[ix_m = \] material number of the target for cross section or LET calculations (default: HYDROGEN).

In case of scoring as a function of LET, it must be a material actually assigned to some geometry region (and this way initialised by the code).

Default = 1.0 (plain double differential cross section — but see Note 4)

SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)
WHAT(1) = projectile particle index, or corresponding name
Default = IJBEAM (beam particle)

WHAT(2) = target particle index, or corresponding name (used by the code to define the c.m.s. frame)
Default = 1.0 (proton)

WHAT(3) = projectile momentum
Default = PBEAM (beam momentum)

WHAT(4,5,6) = projectile direction cosines
Default = UBEAM, VBEAM, WBEAM (beam direction cosines)

Default (option USRYIELD not given): no yield estimator detector is defined

Notes
1. While option USRBDX (p. 260) calculates angular distributions with respect to the normal to the boundary at the point of crossing, USRYIELD distributions are calculated with respect to a fixed direction (the beam direction, or a different direction specified by the user with SDUM = BEAMDEF).
2. When scoring thick-target yields, the angle considered is that between the direction of the particle at the point where it crosses the target surface and the beam direction (or a different direction specified by the user, see Note 1). The target surface is defined as the boundary between two regions (positive values of WHAT(4) and WHAT(5) of the first USRYIELD card).
3. Point-target yields, i.e., yields of particles emerging from inelastic hadronic interactions with single nuclei (including hadronic interactions by ions and real or virtual photons), are scored by setting WHAT(4) = -1.0 and WHAT(5) = -2.0 in the first USRYIELD card). As an alternative, the corresponding cross sections can be calculated, depending on the value of WHAT(6) in the continuation card. In addition, if WHAT(2) in the same card is < -800.0, the distributions of particles entering the inelastic hadronic interactions can be scored.
4. Calculating a cross section has little meaning in case of a thick target.
5. Differential yields (or cross sections) are scored over any desired number of intervals for what concerns the first quantity, but over only one interval for the second quantity. However, the results are always expressed as second derivatives (or third derivatives in the case of invariant cross sections), and not as interval-integrated yields.
6. In the case of polar angle quantities (|i|e or |i|α = 14, 15, 17, 24, 25, 34, 37, 38) the differential yield is always referred to solid angle in steradian, although input is specified in radian or degrees.
7. When scoring yields as a function of LET, the intervals will be in keV/(µm g/cm³), and the histogram will be normalized, as usual, to the unit interval of the first and second quantities.
8. An USRYIELD card with SDUM = BEAMDEF, if given, does not refer to a particular detector, but modifies the reference projectile or target parameters for all USRYIELD detectors of the current run. No continuation card has to be given after one with SDUM = BEAMDEF.
9. The logical output unit for the estimator results (WHAT(3) of the first USRYIELD card) can be any one of the following:
 - the standard output unit 11: estimator results will be written on the same file as the standard FLUKA output.
 - a pre-connected unit (via a symbolic link on most UNIX systems, ASSIGN under VMS, or equivalent commands on other systems)
 - a file opened with the FLUKA command OPEN
 - a file opened with a Fortran OPEN statement in a user-written initialisation routine such as USRINI, USRGLO or SOURCE (see 13.2.27, 13.2.26, 13.2.19)
 - a dynamically opened file, with a default name assigned by the Fortran compiler (typically fort.xx or ftn.xx, with xx equal to the chosen logical output unit number).

The results of several USRYIELD detectors in a same FLUKA run can be written on the same file, but of course only if they are all in the same mode (all formatted, or all unformatted).

It is also possible in principle to write on the same file the results of different kinds of estimators (USRBDX, USRBD, etc.) but this is not recommended, especially in the case of an unformatted file, because it would make very difficult any reading and analysis.
10. Not all 38×38 combinations of quantities are accepted by the code, nor are they all meaningful (for instance one could run successfully by setting in the first USRYIELD card WHAT(1) with $i_a = i_e$, but the result would have no physical meaning).

11. When scoring neutron yield with energy as the first quantity, and the requested energy interval structure overlaps with that of the low energy neutron groups, interval boundaries are forced to coincide with group boundaries and no interval can be smaller than the corresponding group. Actually, the program uses the requested energy limits and number of intervals to estimate the desired interval width. The number of intervals above the upper limit of the first low-energy neutron group is recalculated according to such width. To preserve the requested upper energy limit, the width of the first interval above the low energy group may be smaller than that of the others.

 Note that the lowest energy limit of the last neutron group is 10^{-14} GeV (10^{-5} eV) for the 260 data set.

 All group energy boundaries are listed in Table 10.1 on p. 340.

12. If the scored yield with energy as the first quantity is that of a generalised particle which includes neutrons (e.g., ALL-PART, ALL-NEUT, NUCLEONS, NUC&P+P-, HAD-NEUT, and even ENERGY), the spectrum is presented in two separate tables. One table refers to all non-neutron particles and to neutrons with energies > 20 MeV. The second table refers only to neutrons with energy < 20 MeV, and its interval structure is that of the neutron energy groups.

 In case an interval crosses 20 MeV, it will include the contribution of neutrons with energy < 20 MeV and not that of neutrons with energy > 20 MeV.

13. A program USYSUW is available with the normal FLUKA code distribution in directory $FLUPRO/flutil$. USYSUW reads USRYIELD results in binary form from several runs and allows to compute standard deviations. It returns differential and cumulative fluence, with the corresponding percent errors, in a file, and differential fluence in another file formatted for easy plotting. It also returns a binary file that can be read out in turn by USYSUW. The content of this file is statistically equivalent to that of the sum of the files used to obtain it, and it can replace them to be combined with further output files if desired (the USYSUW program takes care of giving it the appropriate weight).

14. The maximum number of yield detectors detectors that the user can define is 1000.

Example (number based):

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
USRYIELD  1399.0   13.   21.0   3.0   2.0   1.0 TotPi+(E)
USRYIELD  50.0   0.001  100.0  3.14159265  0.0   3.0 &
```

 * Score double differential yield of positive pions going from region 3 to
 * region 2 with a polar angle between 0 and pi with respect to the beam
 * direction. Energy distribution is in 100 logarithmic intervals between 1 MeV
 * and 50 GeV. Normalisation factor = 1. Results are written formatted on
 * unit 21.

The same example, name based:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
USRYIELD  1399.0 PION+   21.0 ThirdReg RegioTwo  1.0 TotPi+(E)
USRYIELD  50.0   0.001  100.0  3.14159265  0.0   3.0 &
```
7.90 WW–FACTOr

Defines Weight Windows in selected regions

See also BIASING, WW–THRESh, WW–PROFIle

Attention: Option WW–FACTOr alone is not sufficient to define a weight window. One or more WW–THRESh cards (p. 291) are also necessary in order to activate the window.

WHAT(1)
\[\geq 0.0: \] Russian Roulette (RR) parameter (Window “bottom” weight at the lower energy threshold set by WW–THRESh).
\[< 0.0: \] resets to \(-1.0\) (no RR) a possible positive value set in a previous WW–FACTOr card

This value can be modified by WHAT(4) in option WW–THRESh or by WHAT(2) in WW–PROFIle, and can be overridden in the user routine UBSET (p. 387) by assigning a value to variable WWLOW.

Default \(= -1.0\) (no RR)

WHAT(2)
\[> 1.7 \times \text{WHAT}(1): \] Splitting parameter (Window “top” weight at the lower energy threshold set by WW–THRESh)
\[= 0.0: \] ignored
\[< 1.7 \times \text{WHAT}(1): \] resets to \(\infty\) (no splitting) a possible value set in a previous WW–FACTOr card

This value can be modified by WHAT(4) in option WW–THRESh or by WHAT(2) in WW–PROFIle (p. 289), and can be overridden in the user routine UBSET (p. 387) by assigning a value to variable WWHIG.

Default \(= \infty\) (no splitting)

WHAT(3)
\[> 0.0: \] Multiplicative factor to be applied to the two energy thresholds for RR/splitting (defined by option WW–THRESh) in the region of interest
\[= 0.0: \] ignored
\[< 0.0: \] resets to 1.0 (thresholds not modified) a possible value set in a previous WW–FACTOr card

This value can be overridden in the user routine UBSET (p. 387) by assigning a value to variable WWMUL.

Default \(= 1.0\) (RR/splitting thresholds are not modified)

WHAT(4)
is lower bound of the region indices (or corresponding name) in which the indicated RR and/or splitting parameters apply
(“From region \(\text{WHAT}(4)\)...”)

Default \(= 2.0\)

WHAT(5)
is upper bound of the region indices (or corresponding name) in which the indicated RR and/or splitting parameters apply
(“...to region \(\text{WHAT}(5)\)...”)

Default \(= \text{WHAT}(4)\)

WHAT(6)
is step length in assigning indices
(“...in steps of \(\text{WHAT}(6)\)”)

Default \(= 1.0\)

SDUM
is a number from 1.0 to 5.0 in any position, indicating the low-energy neutron weight window profile to be applied in the regions selected (see WW–PROFIle). Exceptionally, here SDUM must be a number, in free format, rather than a character string.

\(=\) blank, zero or non numerical: ignored
\(<0.0: \) resets to 1.0 a possible value previously given.

This value can be overridden in the user routine UBSET (p. 387) by assigning a value to variable JWSHPP.

Default (if no WW–PROFIle card is present): profile number 1

Default : (option WW–FACTOr or WW–THRESh not given): no weight window is defined

Notes

1. Option WW–FACTOr, which must be used together with WW–THRESh (p. 291), allows the user to define a very detailed weight window for Russian Roulette and splitting: energy-dependent, per region and per particle.
Input Commands

WW–THRESH is used to set two basic energy values for each particle (including electrons and photons but not low-energy neutrons). From each basic couple of energies, a different couple of thresholds is generated for each region by multiplication with the factor provided in WHAT(3). A weight window of minimum width is defined at the lower threshold by its bottom and top edges (WHAT(1) and WHAT(2)); a second wider window is obtained from it at the higher threshold by increasing the “top edge” (splitting level) and decreasing the “bottom edge” (RR level) by the amplification factor given with WW–THRESH. The whole energy range is thus divided in three parts. In the high-energy part (above the higher threshold) the window is of infinite width, i.e., no splitting/RR takes place. In the medium-energy range the window narrows down continuously with decreasing energy, its top and bottom edges varying linearly with energy between the two thresholds. In the low-energy range the window width remains constant and equal to the minimum value it has at the lower threshold.

2. Russian Roulette is played in a given region if the particle weight is lower than the bottom window edge for that energy, particle and region. The particle survives with a probability equal to the ratio between its weight and the RR edge, and is given a new weight equal to the RR edge itself. Splitting is performed if the particle weight is higher than the top window edge for that energy, particle and region. The particle is replaced by two identical ones with half its weight. Note that the top edge must always be at least a factor two higher than the bottom one, in order to avoid repeated and useless changes of weight. Actually, it is suggested to never make this factor less than 3 or 4.

3. For low-energy neutrons, a different scheme applies. Instead of dividing the energy range into three parts (constant window, continuously varying window, infinite window), the window is assigned group by group by means of option WW–PROFILE (7.91), creating a so-called “weight-window profile”. On the other hand, it is not possible to assign a different profile to each region, but only a maximum of 5 different profiles are allowed.

4. A form of splitting and Russian Roulette is also provided by option BIASING (p. 82). The two options, however, are different in many respects:

- with WW–FACTOR, splitting and RR are played at the moment a particle is taken from the stack and starts to be transported. With BIASING, splitting/RR happens when a particle crosses a boundary (in the case of hadrons also — on request — before loading in stack the secondaries from an inelastic hadron collision)
- while the criterion used by BIASING to trigger splitting/RR depends only on the relative importance of various regions of phase space, the weight window is based on absolute weight standards pre-assigned to different phase space regions
- BIASING can have two purposes: when used at collisions with RR only, i.e., reducing factor \(< 1\), it aims at increasing the total number of histories simulated in a given time, namely to sample over a more extended part of phase space (e.g., more primary interactions) without leaving any important part not sufficiently represented. (This is also true of leading particle biasing for electrons and photons via option EMF–BIAS, p. 111). At the same time (and this holds also for splitting, especially when the option is used at boundary crossing) it can be applied to sample preferentially from those regions of phase space which contribute more to the result.

This second purpose is also that of the WW–FACTOR weight window, but in addition this option has the advantage to avoid excessive weight fluctuations. These can be dangerous in two ways. In general, if transport is biased and no control is kept on particle weight, it can happen that too much time is wasted by tracking particles of very low weight which can only contribute little to the score. On the other hand, too large weights can also be a problem. If the part of phase space used for scoring (the “detector”) is very small (typically an element of a “binning” mesh), so that only a limited number of particles have a chance to enter it, it is statistically important that they all make contributions of the same order. A rare particle of large weight crossing the detector would give rise to an anomalous score not compensated by opposite fluctuations.

Why should one then use BIASING and not the weight window? The answer is that “tuning” an absolute weight by region and energy is more powerful but also much more difficult and time-consuming than just quantifying relative spatial importances. In general, it requires a lot of experience which can often be obtained only by performing repeated runs of the same case and by making a careful statistical analysis of history distributions in phase space. Not all problems are worth of it and not all users are able to do it.

5. It can also be said that WW–FACTOR and BIASING (and other non-analogue transport options) are not necessarily mutually exclusive; on the contrary the weight window can be successfully used to damp excessive weight fluctuations originated by other techniques. However, it is the user’s responsibility to ensure that the average absolute weights produced independently by the different options be of the same order of magnitude. Otherwise, possible conflicts could give rise to a waste of time due to an excessive rate of weight adjustments, and even to incorrect results.

6. The weight limits defined by WW–FACTOR apply to all particles: however, it is possible to set different values for specific particles (see WHAT(3) of option WW–THRESH). This is especially necessary when secondary
particles are generated with a weight much smaller than the parent particles of a different kind (for instance, as the result of the LAM–BIAS option).

7. WW–FACTOr is one of the two FLUKA options where SDUM is used to input numerical data. (Actually, the material number is first read as a string and then an internal reading is performed on the string to get the number).

Example 1 (number based):

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
WW–FACTOr 76.0 1200.0 1.0 5.0 6.0 0.0
* In regions 5 and 6, set the lower weight limit = 76.0 and set the upper limit = 1200. No modification of the two energy thresholds.

The same example, name based:

WW–FACTOR 76.0 1200.0 1.0 Regfive Regsix 0.0

Example 2 (number based):

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
WW–FACTOR 13.0 120.0 1.5 27.0 31.0 2.0 3.
* In regions 27, 29 and 31, set the lower weight limit = 13. and set the upper limit = 120. The two energy thresholds set by WW–THRES are multiplied by a factor 1.5. Apply low-energy neutron profile number 3.

The same example, name based:

WW–FACTOR 13.0 120.0 1.5 regio27 regio31 2.0 3.
7.91 WW–PROFIIe

Defines extra factors dependent on energy group (“profiles”), to modify the basic setting of the low-energy neutron weight windows in selected sets of regions, or the low-energy neutron importances in each region.

See also BIASING, WW–FACTOr, WW–THRESh

WHAT(1) = weight window extra factor for the profile defined by WHAT(6), concerning the energy groups defined by WHAT(3), WHAT(4) and WHAT(5) (both the top and bottom window levels will be multiplied by WHAT(1)). See Note 2.

- $= 0.0$: ignored
- < 0.0: resets to default (extra factor $= 1.0$)
- **Default** $= 1.0$ (windows are not modified)

WHAT(2) = importance extra factor. See Note 3.

- $= 0.0$: ignored
- < 0.0: resets to default (extra factor $= 1.0$)
- **Default** $= 1.0$ (importances are not modified)

WHAT(3) = lower bound of the group numbers for which the extra factor WHAT(1) or WHAT(2) is requested

- (“From group WHAT(3)...”)
- **Default** $= 1.0$ (the group of highest energy)

WHAT(4) = upper bound of the group numbers for which the extra factor WHAT(1) or WHAT(2) is requested

- (“... to group WHAT(4)...”)
- **Default** $= WHAT(3)$

WHAT(5) = step length in assigning group numbers

- (“... in steps of WHAT(5)”)
- **Default** $= 1.0$

WHAT(6) = profile number defined by WHAT(1), WHAT(3–5) (up to 5 different profiles are allowed).

- **Default**: profile number 1

SDUM: not used

- **Default**: (option WW–PROFIle not given): no extra factor is applied to low-energy neutron windows and importances

Notes

1. Option WW–PROFIle applies only to low-energy neutrons. It is used to refine the basic bias setting defined by two other options: WW–FACTOr (p. 286) and BIASING (p. 82).

2. WHAT(1) refers to WW–FACTOr: it allows the user to tune the weight window by energy group (WW–FACTOr does the same by region). The profile defined will be applied to raise or lower the weight window levels (for low-energy neutrons only) in a group of regions selected by means of WHAT(4–6) and SDUM in option WW–FACTOr.

3. WHAT(2) refers to BIASING: its aim is to define a reference weight level in each region, which is used by the program to avoid excessive biasing in some critical cases. If the user has defined a weight window (options WW–FACTOr and WW–THRESh), the reference weight level is not needed because it is derived directly from the window parameters. If the user has not defined a weight window but has defined region importances...
(option BIASING), the reference weight level for a region is assumed in most cases to be the inverse of the corresponding importance. However, since importance biasing is not based on absolute values of importance but on importance ratios, in some rare cases the user may give importances which are not equal to the inverse of the average particle weight, but only proportional to it. (This is in order to better exploit the full importance range, since for technical reasons in FLUKA allowed importance values range only from 0.0001 to 10000.) In such cases it is possible to multiply all the importances by a factor WHAT(2) only for the purpose of calculating the reference weight level.
Modification of importances by a factor WHAT(2) apply to all regions (but only for low-energy neutrons). If neither weight window nor importances have been given, FLUKA still calculates a weight reference level from the ratio of physical to biased non-absorption probability. If a particle’s weight exceeds the reference level in a given region by more than a factor calculated at run time, non-absorption probability biasing is switched off and transport continues according to the physical absorption probabilities (analogue transport).

Example 1:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
WW-PROFILE  0.9  0.0  1.  11.  0.0  4.0
WW-PROFILE  0.7  0.0  12. 70.  0.0  4.0
WW-PROFILE  0.5  0.0  71. 260. 0.0  4.0
* Profile n. 4 is defined a multiplication factor for weight windows, where
* the upper and the lower weight limits (as defined by WW-FACTOr and
* WW-THRESH) are multiplied by 0.9 for the first 11 neutron groups, by 0.7
* for groups 12 to 70, and by 0.5 for groups from 71 to 260.
```

Example 2:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
WW-PROFILE  0.0  1.8  1.  65.  0.0  2.0
WW-PROFILE  0.0  2.3  66. 260. 0.0  2.0
* Profile n. 2 is defined a multiplication factor for importances, where
* the importances (as defined by BIASING) are multiplied by 1.8 for the first
* 65 neutron groups, and by 2.3 for groups 66 to 260.
```
7.92 WW–THRESH

Defines the energy limits for a Russian Roulette/splitting weight window and applies particle-dependent modification factors to the windows defined by WW–FACTOR.

See also BIASING, WW–FACTOR, WW–PROFILE

WHAT(1) > 0.0: upper kinetic energy threshold in GeV for Russian Roulette (RR)/Splitting with a weight window. For low-energy neutrons, corresponding (smallest) group number (included)
- = 0.0: ignored
- < 0.0: any previously selected threshold is cancelled

WHAT(2) ≥ 0.0 and < WHAT(1): lower kinetic energy threshold in GeV for RR/Splitting with a weight window. For low-energy neutrons, corresponding (largest) group number (included)
- < 0.0 or > WHAT(1): WHAT(2) is set = WHAT(1)

WHAT(3) > 0.0: amplification factor used to define the weight window width at the higher energy threshold represented by WHAT(1). The weight window at the higher energy threshold is obtained by multiplying by WHAT(3) the top edge of the window (splitting level) at the lower threshold, and dividing by the same factor the bottom edge (RR-level)
- < 0.0: |WHAT(3)| is used as a multiplication factor for the bottom and top levels of every region for the particles selected by WHAT(4–6). That is, for such particles both bottom and top are multiplied by |WHAT(3)|

Default = 10.0 (amplification factor for the splitting and RR-level at the higher threshold).

WHAT(4) = lower bound of the particle numbers (or corresponding particle name) to which the indicated weight window energy limits apply. Note that particle number 40.0 indicates low-energy neutrons (for this purpose only!). Particle number 8.0 indicates neutrons with energy > 20 MeV ("From particle WHAT(4) . . .")

Default = 1.0

WHAT(5) = upper bound of the particle numbers (or corresponding particle name) to which the indicated weight window energy limits apply (". . . to particle WHAT(5) . . .")

Default = WHAT(4) if WHAT(4) > 0.0, all particles otherwise

WHAT(6) = step length in assigning numbers (". . . in steps of WHAT(6)"")

Default = 1.0

SDUM = PRIMARY: the weight window applies also to primary particles
- = NOPRIMARY: the weight window doesn’t apply to primaries

Default = PRIMARY

Default: (option WW–THRESH or WW–FACTOR not given): no weight window is defined
Notes

1. Option WW–THRESh is only meaningful when WW-FACTOr (7.90) is also requested. See Note 1 to that option for more information.

2. For low-energy neutrons, the two energy thresholds are expressed as group numbers, while for all other particles (including high-energy neutrons) they are expressed in GeV. Therefore, thresholds for low-energy neutrons must be assigned in a separate WW–THRESh card from other particles.

Example (number based):

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
WW-THRESh 2.0 0.05 2.4 3.0 7.0 0.0
* The weight window weight limits for particles 3 to 7 (practically electrons, positrons and photons, since neutrinos are discarded), which have been set by WW-FACTOr are applied as such below 50 MeV. Above that energy, the width of the window is progressively increased up to 2 GeV: at 2 GeV, the upper weight limit is a factor 2.4 larger and the lower limit a factor 2.4 smaller.
```

The same example, name based:

```
WW-THRESh 2.0 0.05 2.4 ELECTRON PHOTON 0.0
```
Chapter 8

Combinatorial Geometry

8.1 Introduction

The Combinatorial Geometry (CG) used by FLUKA is a modification of the package developed at ORNL for the neutron and gamma-ray transport program MORSE [60] which was based on the original combinatorial geometry by MAGI (Mathematical Applications Group, Inc.) [99,121].

The default input format is fixed, and different from that adopted elsewhere in the FLUKA code. The input sequence must be completely contained between a GEOBEGIN and a GEOEND card (see the corresponding description on p. 140, 143).

Two concepts are fundamental in CG: bodies and regions. Originally, MORSE bodies were defined as convex solid bodies (finite portions of space completely delimited by surfaces of first or second degree, i.e., planes or quadrics). In FLUKA, the definition has been extended to include infinite cylinders (circular and elliptical) and planes (half-spaces). Use of such “infinite bodies” is encouraged since it makes input preparation and modification much easier and less error-prone. They also provide a more accurate and faster tracking.

Regions are defined as combinations of bodies obtained by boolean operations: Union, Subtraction and Intersection. Each region is not necessarily simply connected (it can be made of two or more non contiguous parts), but must be of homogeneous material composition. Because the ray tracing routines cannot track across the outermost boundary, all the regions must be contained within a surrounding “blackhole” (an infinitely absorbing material, in MORSE jargon “external void”, designated by the FLUKA material number 1), so that all escaping particles are absorbed. It is suggested to make the external blackhole region rather big, so as not to interfere with possible future modifications of the problem layout. The external blackhole must be completely surrounded by the boundary of a closed body, and therefore cannot be defined by means of half-spaces or infinite cylinders only. Inside such outermost boundary, each point of space must belong to one and only one region.

Note that in MORSE the concept of “region” refers to a portion of space of homogeneous statistical importance or weight setting, which may extend over one or several “zones” (homogeneous in material composition). Since the two MORSE concepts of region and zone coincide in FLUKA (there is a one-to-one correspondence), the term “region” will be used here to define “a portion of space of uniform material composition, obtained by boolean operations on one or more subregions”, while “zone” will indicate one of such subregions, obtained by boolean operations on one or more geometrical bodies.

Repetition of sets of regions according to symmetry transformations is possible in FLUKA through the card LATTICE (p. 314) and through a user-written routine. This allows, for instance, to model in detail only a single cell of a calorimeter and to replicate it in the entire volume.

8.2 Combinatorial Geometry input

CG input must respect the following sequential order:

GEOBEGIN card (in FLUKA standard format, or free format if requested by a FREE or GLOBAL command)
Geometry title (in special format, or in free geometry format if requested by a GLOBAL command)
Body data (in special or free geometry format)
END line (in special or free geometry format)
Region data (in special or free geometry format)
END line (in special or free geometry format)
LATTICE cards (optional, in FLUKA standard format, or in free format if requested by a FREE or GLOBAL command)
Region volumes (optional, see Geometry title line)
GEOBEGIN card (in FLUKA standard format, or free format if requested by a FREE or GLOBAL command)

8.2.1 GEOBEGIN card

This card follows the general FLUKA format (see description on p. 49). It can be in free format if the latter has been requested with option FREE (see p. 137) or GLOBAL (p. 145). The rest of the geometry must be in a special fixed format described below, unless free geometry format has been requested by GLOBAL.

The meanings of the WHAT and SDUM parameters are:

WHAT(1) > 0.0: switches on online parenthesis expansion. If during expansion at initialization the length of an expression (measured in number of terms) exceeds the original length in a factor NINT(WHAT(1)), expansion is aborted and online parenthesis expansion is used.

WHAT(2) > 0.0: absolute accuracy parameter (A_a) in units of 10^{-6} cm. It is used for tracking and boundary identification. A_a should be larger than $A_r \times L$, where L is the largest coordinate value in the geometry description (excluding the outer black-hole shell containing it) and A_r is the relative accuracy achievable in double precision (of the order of $10^{-14} \div 10^{-15}$).

Default = 0.0001

WHAT(3) > 0.0: logical unit for geometry input. The name of the corresponding file must be input on the next card if WHAT(3) is different from 5.0. Note that values of WHAT(3) ≠ 5.0 and < 21.0 must be avoided because of possible conflicts with FLUKA pre-defined units.

Default = 5.0 (i.e., geometry input follows)

WHAT(4) > 0.0: logical unit for geometry output. If different from 11, the name of the corresponding file must be input on the next card if WHAT(3) = 0.0 or 5.0, otherwise on the card following the next one. Values of WHAT(3) ≠ 11.0 and < 21.0 must be avoided because of possible conflicts with FLUKA pre-defined units.

Default = 11.0 (i.e., geometry output is printed on the standard output)

WHAT(5) = $i p_0 + i p_1 \times 1000$, where $i p_0$ indicates the level of parentheses optimisation and $i p_1$, if > 0, forces the geometry optimisation even when there are no parentheses

$i p_0 = 1$: logical optimisation only activated
$i p_0 = 2$: logical plus “plane” optimisation activated
$i p_0 = 3$: logical plus “plane” plus “bounding box” optimisation activated

Default : $i p_0 = 3$ and $i p_1 = 0$

WHAT(6) if > 0 it indicates the number of geometry output lines to be skipped before starting writing debugging lines. Please note that the output can rapidly become huge

SDUM = COMBINAT: Combinatorial Geometry is used. See Chapter 8 on Combinatorial Geometry for input description. Other geometries, available in older versions of FLUKA, are no longer supported.

SDUM = COMBNAME: Combinatorial Geometry is used in free format, and names can be used instead of body and region numbers.

Default : COMBINAT

Default (option GEOBEGIN not given): not allowed! GEOBEGIN and GEOEND must always be present.
8.2.2 Geometry Title line

Three variables are input in the CG Title line: IVLFLG, IDBG, TITLE. The format is (2I5,10X,A60).

The first integer value (IVLFLG = Input VoLume FlAg) is a flag to indicate how to normalise the quantities scored in regions by the FLUKA option SCORE (p. 234).

IVLFLG = 0 means that no normalisation must be performed (output values are total stars or total energy deposited in each region).

IVLFLG = 1 and IVLFLG = 2 are reserved for future use and they have currently no meaning in FLUKA.

IVLFLG = 3 means that the scores must be normalised dividing by region volumes input by the user just before the GEOEND line (see 8.2.9).

The second integer value can be used to modify the format with which body and region data are read:

IDBG = 0 or 10: default fixed format for both bodies and regions
 = -10: high-accuracy fixed format for bodies; default fixed region
 = -100: high-accuracy fixed format for bodies; region fixed format allowing more than 10000 regions
 = 100: default fixed format for bodies; region fixed format allowing more than 10000 regions

Note however that the maximum number of regions is dimensioned to 10000 in INCLUDE file (DIMPAR).

Any other IDBG value should be avoided. The value of IDBG is irrelevant if free format has been requested (see the GLOBAL command, p. 145). If fixed format is not used, the value of IDBG is irrelevant. The remaining 60 characters can be used for any alphanumeric string at the user’s choice.

8.2.3 Body data

The geometry must be specified by establishing two tables. The first table describes the type, size and location of the bodies used in the geometry description. The second table defines the physical regions in terms of these bodies.

Each body type is referred to by a three-letter code.

There are three kinds of possible input formats, two fixed and one free. Free format, if used, implies necessarily also the use of free format in region input (see 8.2.7).

8.2.3.1 Fixed format body input

Fixed format for both body and region input is the default, unless requested differently by a GLOBAL command at the beginning of the input file. In fixed format, each input body is defined by: its code, a sequential number, and a set of floating point numerical parameters defining its size, position and orientation in space (all in cm).

Default fixed format is the original CG one as used in MORSE and in other Monte Carlo programs. It expects up to 6 floating point values per line.

High-accuracy fixed format allows to enter numerical data with full precision (16 significant digits) and accommodates only a maximum of 3 floating point values per line.

The fixed input format for each body depends on the value of the IDBG variable given in the Geometry Title line (see 8.2.2 above).

If IDBG = 0, 10 or 100, the body input format is (2X, A3, I5, 6D10.3);
if IDBG = -10 or -100, the format is (2X, A3, I5, 3D22.15);
where the 3-letter code in columns 3-5 is one of the following:

ARB BOX ELL PLA QUA RAW RCC REC RPP SPH
TRC WED XCC XEC XYP XZP YCC YEC YZP ZCC ZEC
Rectangular Parallelepiped

(columns 3–5 must be left blank in continuation lines). The integer in columns 6–10 is the body sequential number (if left blank numbers are assigned automatically, but this is not recommended; it must be left blank in continuation lines).

The floating-point numbers in columns 11–76 are geometrical quantities defining the body (their number depends on the body type as explained below, and can extend over several continuation lines). The presence of the decimal point in the numerical data is compulsory.

8.2.3.2 Free format body input

Free format is used for both body and region input only if requested by a GLOBAL command (see p. 145) at the beginning of the input file or by the string COMBNAME in the SDUM field of the GEOBEGIN command.

In free format, each body is defined by: its code, its identifier (an alphanumeric string of up to 8 characters, with the first character alphabetical) and a set of numerical parameters defining its size, position and orientation in space (all in cm).

Free format has been introduced only recently and is expected to supersede soon the other formats, which will be kept however for reasons of back compatibility. Its main advantages, in addition to the freedom from strict alignment rules, are the possibility to modify the input sequence without affecting the region description (for instance, by inserting a new body) and the availability of parentheses to perform complex boolean operations in the description of regions.

The input for each body consists of a 3-letter code indicating the body type

ARB BOX ELL PLA QUA RAW RCC REC RPP SPH TRC WED XCC XEC XYP XZP YCC YEC YZP ZCC ZEC

followed by a unique “body name” (alphanumeric identifier) and a set of geometrical quantities defining the body (their number depends on the body type as explained below). The different items, separated by one or more blanks, or by one of the separators [, % ; :] can extend over as many lines as needed, each line having a maximum length of 132 characters. See option FREE (p. 137) for more detailed instructions on the use of separators.

After the last body description, end with a line having the code END.

With all input formats, a line having an asterisk (*) in column 1 is treated as a comment line. Such comment lines can be inserted freely at any point of Body and Region input, allowing easier identification.

The following body shapes are no longer maintained and should not be used. They will be removed in future releases.

ARB BOX RAW WED

8.2.4 Body types

8.2.4.1 Rectangular Parallelepiped. Code: RPP

An RPP (Fig. 8.1) has its edges parallel to the coordinate axes.

It is defined by 6 numbers in the following order: \(X_{\text{min}}, X_{\text{max}}, Y_{\text{min}}, Y_{\text{max}}, Z_{\text{min}}, Z_{\text{max}} \) (minimum and maximum coordinates which bound the parallelepiped).

Warning! Of course \(X_{\text{min}} \) must be \(< X_{\text{max}} \), \(Y_{\text{min}} < Y_{\text{max}} \) and \(Z_{\text{min}} < Z_{\text{max}} \). If this condition is not satisfied, the body is ignored.

An RPP definition extends over one single line in default fixed format, or over two lines in high-accuracy
body fixed format (\(\text{IDBG} = -10 \) or \(-100 \) in the CG Title line, see 8.2.2).

Example (the comment lines shown are allowed input lines):

```
X
X min
X max
Y
Y min
Y max
Z
Z min Z max
ä
ä
ä
```

Fig. 8.1: Rectangular Parallelepiped (RPP)

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
RPP  4  -20.0  +20.0  -50.0  +50.0  -38.5  +38.5
* (a parallelepiped centred on the origin)

The same input, in high-accuracy fixed format, would be:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
RPP 4 -20.0 +20.0 -50.0 +50.0 +38.5 +38.5
```

The same input could be, in free format:

```
RPP SmBrick -20.0 +20.0 -50.0 +50.0 -38.5 +38.5
```

8.2.4.2 General Rectangular Parallelepiped. Code: BOX

A BOX (Fig. 8.2) is also a Rectangular Parallelepiped, but with arbitrary orientation in space. Its use is generally not recommended, since it can be replaced by a suitable combination of infinite planes (PLA, XYP, XZP, YZP). Planes are easier to define, make tracking more accurate and often only a few are needed in a region description.

A BOX is defined by 12 numbers in the following order: \( V_x, V_y, V_z \) (coordinates of a vertex), \( H_x^{(1)}, H_y^{(1)}, H_z^{(1)} \), \( H_x^{(2)}, H_y^{(2)}, H_z^{(2)} \), \( H_x^{(3)}, H_y^{(3)}, H_z^{(3)} \) (x-, y- and z- components of three mutually perpendicular vectors representing the height, width and length of the box). Note that it is the user's responsibility to ensure perpendicularity. This is best attained if the user has chosen high-accuracy input fixed format (\( \text{IDBG} = -10 \) or \(-100 \) in the CG Title line, see 8.2.2), or free format, and the value of each vector component is expressed with the largest available number of significant digits.

A BOX definition extends over 2 lines in default fixed format, or over 4 lines in high-accuracy body fixed format.

Example in default fixed format:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
BOX 18 0.0 0.0 0.0 7.0710678 7.0710678 0.0
 -14.142136 14.142136 0.0 0.0 0.0 30.0
* (a parallelepiped with a corner on the origin, with edges 10, 20 and
* 30 cm long, rotated counterclockwise by 45 degrees in the x-y plane)
```

The same example in high-accuracy body fixed format:
8.2.4.3 **Sphere. Code:** SPH

A SPH (Fig. 8.3) is defined by 4 numbers: \( V_x, V_y, V_z \) (coordinates of the centre), \( R \) (radius).

A SPH definition extends over one single line in default fixed format, or over two lines in high-precision body fixed format.

Example in default fixed format:

\[
\text{SPH 002 5.0 -30.0 27.0 528.2}
\] *(a sphere centred at point \( x=5, y=30, z=27 \), with a radius of 528.2 cm)*

The same example in high-accuracy body fixed format:

\[
\text{SPH 002 5.0 -30.0 27.0 528.2}
\]

The same, in free format:

\[
\text{SPH TheBall 5.0 -30.0 27.0 528.2}
\]

8.2.4.4 **Right Circular Cylinder. Code:** RCC

An RCC (Fig. 8.4) can have any orientation in space. It is limited by a cylindrical surface and by two plane faces perpendicular to its axis. (If the cylinder axis is parallel to one of the coordinate axes, it is worth considering instead the use of an infinite cylinder XCC, YCC or ZCC (see below), leading to increased tracking speed).

Each RCC is defined by 7 numbers: \( V_x, V_y, V_z \) (coordinates of the centre of one of the circular plane faces), \( H_x, H_y, H_z \) (x-, y- and z- components of a vector corresponding to the cylinder height, pointing to the other
Circular and Elliptical Cylinder

An \textit{RCC} definition extends over 2 lines in default fixed format, or over 3 lines in high-accuracy body fixed format.

Example in default fixed format:

\begin{verbatim}
RCC 07 5.0 5.0 5.0 57.735027 57.735027 57.735027 37.
\end{verbatim}

(a circular cylinder 100 cm long and of 37 cm radius, with base
centred at point \(x=5, y=5, z=5\), its axis making equal angles to
the three coordinate axes).

The same example in high-accuracy body fixed format:

\begin{verbatim}
RCC 07 5.0 5.0 5.0 57.73502691896258 57.73502691896258 57.73502691896258 37.
\end{verbatim}

The same cylinder, in free format:

\begin{verbatim}
RCC BYGCYL 5.0 5.0 5.0 57.73502691896258 57.73502691896258 57.73502691896258 37.
\end{verbatim}

\subsection*{8.2.4.5 Right Elliptical Cylinder. Code: \texttt{REC}}

A \texttt{REC} (Fig. 8.5) can have any orientation in space. It is limited by a cylindrical elliptical surface and by two plane faces perpendicular to its axis. (If the cylinder axis is parallel to one of the coordinate axes, it is worth considering instead the use of an infinite cylinder \texttt{XEC}, \texttt{YEC} or \texttt{ZEC} (see below), leading to increased tracking speed).

Each \texttt{REC} is defined by 12 numbers: \(V_x, V_y, V_z\) (coordinates of the centre of one of the elliptical plane faces), \(H_x, H_y, H_z\) (\(x\), \(y\) and \(z\) components of a vector corresponding to cylinder height, pointing to other plane face), \(R_{x1}, R_{y1}, R_{z1}\) (components of a vector corresponding to the minor half-axis of the cylinder elliptical base), \(R_{x2}, R_{y2}, R_{z2}\) (ditto for the major half-axis).

A \texttt{REC} definition extends over 2 lines in default fixed format, or over 4 lines in high-accuracy body fixed
8.2.4.6 Truncated Right Angle Cone. Code: TRC

A TRC (Fig. 8.6) can have any orientation in space. It is bounded by a conical surface and by two circular plane faces perpendicular to the axis of the cone. Each TRC is defined by 8 numbers: \(V_x, V_y, V_z\), (coordinates of the centre of the major circular base), \(H_x, H_y, H_z\) (components of a vector corresponding to the TRC height, directed from the major to the minor base), \(R^{(1)}\) (radius of the major base), \(R^{(2)}\) (radius of the minor base)

A TRC definition extends over 2 lines in default fixed format, or over 3 lines in high-accuracy body fixed format.

Example in default fixed format:

\[
\begin{align*}
\text{TRC} & \ 102 \ 0.0 \ 0.0 \ -130.0 \ 0.0 \ 0.0 \ 0.0 \ 1000.0
\end{align*}
\]
600. 150.0
* (a truncated cone 1000 cm long parallel to the z axis, with the
* larger circular base 600 cm in radius located at z = -130 and the
* smaller base 150 cm in radius located at z = 870)

The same example in high-accuracy body fixed format:
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+.
TRC 102 0.0 0.0 -130.0
0.0 0.0 1000.0
600. 150.0

The same, in free format:
TRC NewCone 0.0 0.0 -130.0 0.0 0.0 1000.0 600. 150.0

Fig. 8.6: Truncated Right Angle Cone (TRC)

8.2.4.7 Ellipsoid of Revolution. Code: ELL

An ELL (Fig. 8.7) is a prolate (cigar-shaped) ellipsoid, obtainable by revolution of an ellipse around its major
axis, and having any orientation in space.
Each ELL is defined by 7 numbers: $F_x^{(1)}$, $F_y^{(1)}$, $F_z^{(1)}$, $F_x^{(2)}$, $F_y^{(2)}$, $F_z^{(2)}$, (coordinates of the two foci on the
major ellipsoid axis), $L$ (full length of the major axis).
An ELL definition extends over 2 lines in default fixed format, or over 3 lines in high-accuracy body fixed
format.
Example in default fixed format:
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
ELL 003 -400.0 0.0 0.0 400.0 0.0 0.0 1000.
* (an ellipsoid obtained by revolution around the x axis of an ellipse
* centred at the origin, with major axis parallel to x 1000 cm long and
* minor axis 600 cm long).

The same example in high-accuracy body fixed format:
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+.
ELL 003 -400.0 0.0 0.0
400.0 0.0 0.0 1000.
The same example in free format:

ELL TheCigar -400.0 0.0 0.0 400.0 0.0 0.0 1000.0

**8.2.4.8 Right Angle Wedge. Code: WED or RAW**

A WED (Fig. 8.8) is the half of a BOX (see), cut by a plane passing through its centre and through four corners. Its use, like that of the BOX, is now mostly superseded by the availability of infinite planes (XYP, XZP, YZP and PLA).

A WED is defined by 12 numbers: $V_x$, $V_y$, $V_z$ (coordinates of one of rectangular corners), $H_1^x$, $H_1^y$, $H_1^z$, $H_2^x$, $H_2^y$, $H_2^z$, $H_3^x$, $H_3^y$, $H_3^z$ (x-, y- and z- components of three mutually perpendicular vectors corresponding to the height, width and length of the wedge). Note that it is the user’s responsibility to ensure perpendicularity. This is best attained if the user has chosen high-accuracy input format (IDBG = -10 or -100 in the CG Title line, see 8.2.2), or free format, and the value of each vector component is expressed with the largest available number of significant digits.

The face defined by vectors 1 and 3 and that defined by vectors 2 and 3 are rectangular; the two faces defined by vectors 1 and 2 are triangular; the fifth face is rectangular with two edges parallel to vector 3 and two edges parallel to the hypotemuse of the triangle made by vectors 1 and 2.

A WED definition extends over 2 lines in default fixed format, or over 4 lines in high-accuracy body fixed format.

Example in default fixed format:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
 WED 97 0.0 0.0 0.0 7.0710678 7.0710678 0.0
 -14.142136 14.142136 0.0 0.0 0.0 30.0
 * (the bottom half of a parallelepiped with a corner on the origin,
 * with edges 10, 20 and 30 cm long, rotated counterclockwise by 45
 * degrees in the x-y plane)
```

The same example in high-accuracy format:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
 WED 97 0.0 0.0 0.0 7.071067811865475 7.071067811865475 0.0
 -14.14213562373095 14.14213562373095 0.0
 * (the bottom half of a parallelepiped with a corner on the origin,
 * with edges 10, 20 and 30 cm long, rotated counterclockwise by 45
 * degrees in the x-y plane)
```

The same body, in free format:

```
WED halfbox1 0.0 0.0 0.0 7.071067811865475 7.071067811865475
 -14.14213562373095 14.14213562373095 0.0 0.0 0.0 30.0
```

Fig. 8.7: Ellipsoid of Revolution (ELL)
8.2.4.9 Arbitrary Convex Polyhedron. Code: ARB

An ARB (Fig. 8.9) is a portion of space bounded by 4, 5 or 6 plane faces. Its use is rather complicated and is now superseded by the availability of infinite planes (XYP, XZP, YZP and PLA). For completeness, however, a description of input will be reported here.

Assign an index (1 to 8) to each vertex. For each vertex, give the x, y, z coordinates on 4 lines (8 lines in high-accuracy body fixed format), with 6 numbers on each line (3 numbers per line in high-accuracy format):

\[
\begin{align*}
V_x^{(1)}, & \quad V_y^{(1)}, & \quad V_z^{(1)}, \\
V_x^{(2)}, & \quad V_y^{(2)}, & \quad V_z^{(2)}, \\
V_x^{(3)}, & \quad V_y^{(3)}, & \quad V_z^{(3)}, \\
V_x^{(4)}, & \quad V_y^{(4)}, & \quad V_z^{(4)}, \\
V_x^{(5)}, & \quad V_y^{(5)}, & \quad V_z^{(5)}, \\
V_x^{(6)}, & \quad V_y^{(6)}, & \quad V_z^{(6)}, \\
V_x^{(7)}, & \quad V_y^{(7)}, & \quad V_z^{(7)}, \\
V_x^{(8)}, & \quad V_y^{(8)}, & \quad V_z^{(8)},
\end{align*}
\]

The vertices not appearing in face descriptions are ignored, but eight must always be supplied. The above vertex lines are followed by one line describing the faces (two lines in high-accuracy format). Each face is described by a four-digit number in floating point format, such that each digit gives the indices of the three or four vertex points of that face. These indices must be entered in the same order for each face (i.e., all clockwise or all counterclockwise).

When the number of the faces is less than 6, the remaining face description(s) must be zero, and must appear at the end of the list. If a face has three vertices, the omitted position may be either 0 or a repeat of one of the other vertices.

An ARB definition extends over 5 lines in default fixed format, or over 10 lines in high-accuracy body fixed format.

Example in default fixed format:

\[
\begin{align*}
* \ldots + \ldots 1 \ldots + \ldots 2 \ldots + \ldots 3 \ldots + \ldots 4 \ldots + \ldots 5 \ldots + \ldots 6 \ldots + \ldots 7 \ldots
\end{align*}
\]

ARB 5 -44.2 -36.5 3572.0 -44.2 -33.5 3572.0
-37.1 -31.0 3572.0 -37.1 -39.0 3572.0
-44.2 -36.5 0.0 -44.2 -33.5 0.0
-37.1 -31.0 0.0 -37.1 -39.0 0.0
1234. 1562. 5876. 1485. 4378. 6732.

* (a right prism of trapezoidal base, of height 3572 cm parallel to the z axis)

The same example in high-accuracy body fixed format:
8.2.4.10 Infinite half-space delimited by a coordinate plane. Code: XYP, XZP, YZP

There are 4 kinds of infinite half-spaces. Three of them are delimited by planes perpendicular to the coordinate axes:

1. Delimited by a plane perpendicular to the x-axis. **Code:** YZP
2. Delimited by a plane perpendicular to the y-axis. **Code:** XZP
3. Delimited by a plane perpendicular to the z-axis. **Code:** XYP
Each of these half-spaces is defined by a single number: $V_x$ (resp. $V_y$, or $V_z$), the coordinate of the plane on the corresponding perpendicular axis.

The half-space “inside the body” is the locus of points for which $x < V_x$ (resp. $y < V_y$, or $z < V_z$).

An YZP, XZP, XYP (Fig. 8.10) definition, in fixed format, extends always over a single line. Example in default fixed format:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7..
  YZP 71 -44.2
  XZP 72 108.0
  XYP 73 0.0
* (respectively, all points having $x < -44.2$, those having $y < 108$, * and those having $z < 0$)

The same example in high-accuracy body fixed format:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+.
  YZP 71 -44.2
  XZP 72 108.0
  XYP 73 0.0

The same example in free format:

YZP horizPla -44.2
XZP vertPla1 108.0
XYP vertPla2 0.0

Fig. 8.10: Infinite half-space delimited by a plane perpendicular to the $z$ axis (XYP)

8.2.4.11 Generic infinite half-space. Code: PLA

Each PLA (Fig. 8.11) is defined by 6 numbers: $H_x$, $H_y$, $H_z$ ($x$-, $y$- and $z$- components of a vector of arbitrary length perpendicular to the plane), $V_x$, $V_y$, $V_z$ (coordinates of any point lying on the plane).

The half-space “inside the body” is that from which the vector is pointing (i.e., the vector points “outside”). A PLA definition extends over a single line in default fixed format, and over two lines in high-accuracy body fixed format.

Example in default fixed format:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7..
  PLA 74 0.0 1.0 1.0 200.0 -300.0 240.0
* (all points “below” a plane at 45 degrees in the $y$-$z$ projection which * passes through the point $x=200$, $y=-300$, $z=240$ – note that for such a * plane the $x$ value of the point is completely irrelevant – )
The same example in high-accuracy body fixed format:

*...+......1......+......2......+......3......+......4......+......5......+......6......+......7......+,
PLA 74 0.0 1.0 1.0 200.0 -300.0 240.0

The same plane in free format:

PLA tiltPla 0.0 1.0 1.0 200.0 -300.0 240.0

8.2.4.12 Infinite Circular Cylinder parallel to a coordinate axis. Code: XCC, YCC, ZCC

A XCC (YCC, ZCC) is an infinite circular cylinder parallel to the x (y, z) axis. Each XCC (YCC, ZCC) (Fig. 8.12) is defined by 3 numbers: \( A_y, A_z, A_x \) for YCC, \( A_z, A_x, A_y \) for ZCC (coordinates of the cylinder axis), "R" (cylinder radius)

An XCC (YCC, ZCC) definition, in fixed format, extends always over one single line.

Example in default fixed format:

\[
X Y Z R A_z A_x a_a
\]

* (an infinite cylinder of radius 300 cm, with axis defined by \( y=-480, z=25 \))
* (an infinite cylinder of radius 2.5 cm, with axis equal to the z axis)

The same example in high-accuracy body fixed format:

*...+......1......+......2......+......3......+......4......+......5......+......6......+......7......+
XCC 013 -480.0 25.0 300.0
ZCC 014 0.0 0.0 2.5

The same, in free format:

XCC Column -480.0 25.0 300.0
ZCC Tunnel 0.0 0.0 2.5

8.2.4.13 Infinite Elliptical Cylinder parallel to a coordinate axis. Code: XEC, YEC, ZEC

A XEC (YEC, ZEC) is an infinite elliptical cylinder parallel to the x (y, z) axis, and with the axes of the ellipse parallel to the other two coordinate axes.
Each XEC (YEC, ZEC) is defined by 4 numbers: \(A_y, A_z, (A_z, A_y\) for YEC, \(A_x, A_y\) for ZEC) (coordinates of the cylinder axis), \(L_y, L_z (L_z, L_x\) for YEC, \(L_x, L_y\) for ZEC) (semiaxes of the ellipse).

A XEC (YEC, ZEC) definition extends over one single line in default fixed format, and over two lines in high-accuracy body fixed format.

Example in default fixed format:

```
ZEC 101 15.0 319.0 33.0 80.0
*(an infinite elliptical cylinder, centred on x=15, y=319, with the
* ellipse minor semi-axis parallel to x, 33 cm long, and the major
* semi-axis parallel to y, 80 cm long)
```

The same example in high-accuracy body fixed format:

```
ZEC 101 15.0 319.0 33.0
80.0
```

The same body, described in free format:

```
ZEC ChimneyA 15.0 319.0 33.0 80.0
```

8.2.4.14 Generic Quadric. Code: QUA

A QUA is a quadric surface defined by a 2\(^{nd}\) degree equation \(F(x, y, z) = 0\).

Each QUA is defined by 10 numbers: \(A_{xx}, A_{yy}, A_{zz}, A_{xy}, A_{xz}, A_{yz}, A_x, A_y, A_z, A_0\) corresponding to the equation: \(A_{xx}x^2 + A_{yy}y^2 + A_{zz}z^2 + A_{xy}xy + A_{xz}xz + A_{yz}yz + A_xx + A_yy + A_z + A_0 = 0\).

A QUA definition extends over two lines in default fixed format, and over 4 lines in high-accuracy body fixed format.

Example in default fixed format:

```
QUA 27 0.0025 0.04 0.0064 0.0 0.0 0.0
0.055 0.64 0.0256 1.8881
*(an ellipsoid centred at x = -11 cm, y = -8 cm, z = -2 cm, with
```
* a semi-axis 20 cm long parallel to x, one 5 cm long parallel to y and
* one 12.5 cm long parallel to z)

The same example in high-accuracy body fixed format:

```
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+.
QUA 27 0.0025 0.04 0.0064
 0.0 0.0 0.0
0.055 0.64 0.0256
 1.8881
```

The same body, described in free format:

```
QUA Elipsoid 0.0025 0.04 0.0064 0.0 0.0 0.0 0.055 0.64 0.0256 1.8881
```

**NOTE**

Whenever it is possible, the following bodies should be preferred:
PLA, QUA, RPP, SPH, XCC, XEC, XYP, XZP, YCC, YEC, YZP, ZCC, ZEC
These should indeed make tracking faster, since for them extra coding ensures that unnecessary boundary intersection calculations are avoided when the length of the next step is smaller than the distance to any boundary of the current region.

### 8.2.5 Geometry directives

Geometry directives are special commands enclosed between two lines

```
$Start_xxx $End_xxx
```

where `xxx` stands for **expansion**, **translat** or **transform**. They allow to provide respectively a coordinate expansion, a coordinate translation and a coordinate roto-translation of the bodies embedded between the starting and the ending directive lines. Directives can be nested.

The body definitions which are contained between the lines `$Start_xxx` and `$End_xxx` are automatically modified according to the syntax described below.

#### 8.2.5.1 Expansion

This directive provides a coordinate expansion (or reduction) of the body dimensions by a defined scaling factor, for all bodies embedded between the two lines.

```
$Start_expansion [scaling factor]

.............

...........

$End_expansion
```

Example:

```
$Start_expansion 10.
QUA Elipsoid 0.0025 0.04 0.0064 0.0 0.0 0.0 0.055 0.64 0.0256 1.8881
$End_expansion
```

transforms an ellipsoid centred at (-11, -8, -2), with semiaxes 20, 5 and 12.5 cm long parallel to the coordinate axes, to one centred at (110, 80, -20) with semiaxes 200, 50 and 125 cm long.
### 8.2.5.2 Translation

This directive provides a coordinate translation. The bodies embedded between the two lines are translated by \([\text{d}X] \ [\text{d}Y] \ [\text{d}Z]\) on the three axes.

```plaintext
$\text{Start_translat} \ [\text{d}X] \ [\text{d}Y] \ [\text{d}Z]
```

Example:

```plaintext
$\text{Start_translat} \ -5.\, -7.\, +9.
\text{QUA\ Ellipsoid} \ 0.0025 \ 0.04 \ 0.0064 \ 0.0 \ 0.0 \ 0.0 \ 0.055 \ 0.64 \ 0.0256 \ 1.8881
$\text{End_translat}
```

transforms an ellipsoid centred at (-11, -8, -2), with semiaxes 20, 5 and 12.5 cm long parallel to the coordinate axes, to an identical one centred at (6, 1, 7)

### 8.2.5.3 Roto-translation transformation

This directive provides a coordinate transformation, predefined by a \texttt{ROT-DEFIni} card, for all bodies embedded between the two lines.

```plaintext
$\text{Start_transform} \ [\text{ROT-DEFIni\ name}] \ (\text{or} \ [\text{ROT-DEFIni\ number}])
```

Two nested (signed) transformations \(R_2\) and \(R_1\) can be used, acting on a body vector \(\mathbf{r}\) as \(\mathbf{r}' = R_2 R_1 \mathbf{r}\):

```plaintext
$\text{Start_transform\ } R_2
...$\text{Start_transform\ } R_1
...$\text{End_transform}
...$\text{End_transform}
```

Example 1:

```plaintext
...
* Cylindrical target is transformed with transformation "Rotdefi1" $\text{Start_transform\ } \text{Rotdefi1}
\text{RCC\ targRepl} \ 0.0 \ 0.0 \ -5.0 \ 0.0 \ 0.0 \ 10.0 \ 5.0
$\text{End_transfor}
...
* ROT-DEFI transformations shift of \((0,-2,-30)\) then rotation of \(-21\) degrees * around the x axis
\text{ROT-DEFI} \ 0.0 \ -2.0 \ -30.0\text{Rotdefi1}
\text{ROT-DEFI} \ 100. \ -21. \ \text{Rotdefi1}
```

Example 2 (with lattice):

```plaintext
...
* Cylindrical target
\text{RCC\ target} \ 0.0 \ 0.0 \ -5.0 \ 0.0 \ 0.0 \ 10.0 \ 5.0
```
* Target replica is transformed with inverse transformation of the lattice
$\text{Start\_transform } -$Rotdefi1
RCC targRepl 0.0 0.0 -5.0 0.0 0.0 10.0 5.0
$\text{End\_transform}
....
* Regions
TARGET 5 +target
REPLICA 5 +targRepl
....
* Lattice
LATTICE REPLICA Rotdefi1
....
* ROT-DEFI transformation: shift of (0, -2, -30) then rotation of -21 degrees
around the x axis
ROT-DEFI 0.0 -2.0 -30.0 Rotdefi1
ROT-DEFI 100. -21. Rotdefi1
Example 3:
ROT-DEFIni 3. -90. 0. 0. 0. 0. XtoZ
........................................
$\text{Start\_transform XtoZ}$
$\text{Start\_translat 0. -30. +20.}$
$\text{Start\_expansion 10.}$
QUA Ellipsoid 0.0025 0.04 0.0064 0.0 0.0 0.0 0.055 0.64 0.0256 1.8881
$\text{End\_expansion}$
$\text{End\_translat}$
$\text{End\_transform}$
transforms an ellipsoid centred at (-11, -8, -2), with semiaxes 20, 5 and
12.5 cm long parallel to the coordinate axes, to a similar one with
semiaxes 200, 50 and 125 cm, centred at (11, -22, 18) and rotated by 90
degrees (axis z becomes axis x). Note that $\text{Start\_expansion}$ takes
precedence over $\text{Start\_translat}$, which in turn takes precedence over
$\text{Start\_transform}$.
Example 4: Trivial example where the combined nested transformation is the identity. The first transforma-
tion (ft) is a rotation by 90 deg around the y axis, followed by a shift of 10 cm along the z axis. The second
transformation is the inverse: a shift of -10 cm along the z axis and a rotation of -90 deg around the y axis.

ROT-DEFI 200. 90. ft
ROT-DEFI 0.0 10. ft
ROT-DEFI 0.0 -10. st
ROT-DEFI 200. -90. st
$\text{Start\_transform st}$
$\text{Start\_translat ft}$
* Cylindrical target
RCC target 0.0 0.0 0.0 0.0 0.0 10. 2.
$\text{End\_translat}$
$\text{End\_transform}$

8.2.5.4 Geometry directives: usage notes

$\text{Start\_expansion}$ takes precedence over $\text{Start\_translat}$, which in turn takes precedence over
$\text{Start\_transform}$.

Directives $\text{Start\_expansion}$ and $\text{Start\_translat}$ are applied when reading the geometry: therefore they
imply no CPU penalty. Directive $\text{Start\_transform}$, instead, is applied at run-time and requires some
additional CPU time.

Directives can be nested. All the directives can be used in association with lattices.
The ROT-DEFIni cards are used by the geometry directive to transform the coordinates of the bodies (not of the particles!). If a “−” sign is placed in front of the [ROT-DEFIni name or number] of the $Start_transform directive the inverse transformation is used instead.

8.2.6 Body END line

Body definitions must be terminated by a line with the string END (in column 3-5 if fixed format is used).

8.2.7 Region data

The various regions are described in terms of differences, intersections and unions of bodies. As in the case of body description, the user has the choice between free format and two kinds of fixed format. One of the latter is the traditional format used by the original Combinatorial Geometry as implemented for example in MORSE. The other fixed format is similar to it, but has been extended to allow body numbers larger than 10000. Both fixed formats are now superseded by the more convenient free region input format, recently introduced. Free format is based on body mnemonic “names” instead of sequential numerical identifiers and allows the use of parentheses to perform more complex boolean operations. However, the two fixed formats are still available for back compatibility reasons. With any input format, a line having an asterisk (*) in column 1 is treated as a comment card.

8.2.7.1 Fixed format region input

Each region is described as a combination of one or more bodies, by means of the three operator symbols: \[-\]\[+\] and \[OR\]
referring respectively to the boolean operations of subtraction (or complement), intersection and union.

Each body is referred to by its sequential number in the body description table (see 8.2.3). Input for each region extends on one or more lines, in a format which depends on the value of IDBG on the Geometry Title line (see 8.2.2).

If IDBG = 0, 10 or -10, region input format is (2X,A3,I5,9(A2,I5));
if IDBG = 100 or -100, region input format is (2X,A3,I5,7(A2,I7));
where the 3 characters in columns 3–5 are:

- on the first input line of a given region, an arbitrary non-blank string chosen by the user (it can be used, together with optional comment lines, to help identifying the region or the region material). Note that regions are identified in the code by an integer number corresponding to the order of their input definition: therefore it can be useful (but not mandatory) to have that number appearing in the string. For instance, if the 5th region is air, it could be labelled AI5.
- on all continuation lines, columns 3-5 must be blank.

the integer in columns 6–10 (variable NAZ):

- is the number of regions which can be entered by a particle leaving any of the bodies defined for the region being described (leave blank in continuation lines). The NAZ number is used to allocate memory for this so-called “contiguity list”, and it is not essential that it be exact (if left blank, it is set to 5). Any number is accepted, but if the final sum of these integers is close to the actual sum, tracking speed can be slightly improved.

in columns 11-73:

- alternate as many 2-character fields (‘OR’ or blank) and integer fields (body numbers preceded by + or − sign), as are needed to complete the description of that region (see below for an explanation of symbol meaning). If one line is not sufficient, any number of continuation lines can be added (identified by a blank field in column 3–5).

After the last region description, end with a line having the code END in columns 3–5.
8.2.7.2 Meaning of the + - OR operators

If a body number appears in a zone description preceded by a + operator, it means that the zone being described is wholly contained inside the body.
If a body number appears in a zone description preceded by a - operator, it means that the zone being described is wholly outside the body.
Obviously, in the description of each region the symbol + must appear at least once.
Examples:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
BA1  4    +7   +3
* (the above region is the part of space common to body 7 and 3)
MU2  7    +3   -4   -7   +20
* (the above region is the part of space common to body 3 and 20, excluding however that which is inside body 4 and that which is inside 7)
AIR  5    +19
* (the latter region coincides entirely with body 19)

In some instances a region may be described in terms of subregions, lumped together. The OR operator is used as a boolean union operator in order to combine subregions (partially overlapping or not). Subregions (also called “zones” in this manual) are formed as intersections or differences as explained above, and then the region is formed by a union of these subregions. When OR operators are used there are always two or more of them, and they refer to all body numbers following them until the next OR or the end of the region description, each body being preceded by its + or - sign.
Examples:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
SA7 110R +4    +6   -7   -80R +6    +3   -21
* <---- first subregion ----> <- second subregion ->
G18 20R +90R +150R +10R +8   -20R +8   -30R +8   +18
*    < 1st >> 2nd >> 3rd >>---- 4th ----> <---- 5th ----> <---- 6th ---->
   OR +12  +10  -11  -13   -14
*< blank > <---- 7th and last subregion ----> (continuation line)

8.2.7.3 Free format region input

Each region is described as a combination of one or more bodies, by means of the three operator symbols: 

referring respectively to the boolean operations of subtraction (or complement), intersection and union.
Each body is referred to by its “name” (an alphanumeric string of up to 8 characters, the first character being alphabetical) in the body description table (see the description of free format body input in 8.2.3.2). Input for each region starts on a new line and extends on as many continuation lines as are needed, each line having a maximum length of 132 characters. It is of the form:

REGNAME NAZ boolean-zone-expression
or
REGNAME NAZ | boolean-zone-expression | boolean zone expression | ...

where REGNAME, NAZ and the remaining part are separated by one or more blanks.

- REGNAME is the region “name” (an arbitrary unique alphanumeric character string chosen by the user). The region name must begin by an alphabetical character and must not be longer than 8 characters.
- NAZ is an integer indicating (approximately) the number of regions which can be entered by a particle leaving any of the bodies appearing in the region description that follows. The NAZ number is used to allocate memory for this so-called “contiguity list”, and it is not essential that it be exact. Any number is accepted, but if the final sum of these integers is close to the actual sum, tracking speed can be slightly improved. In free format input, NAZ may not be left blank.
- If NAZ is negative is enforcing the use of DNEAR (see GLOBAL card) for that specific zone, which will result in more efficient tracking in this zone.
Meaning of the operators

– If NAZ is positive the use of DNEAR will be decided by the code depending or not the existence of overlapping zones.

– “boolean-zone-expression” is a sequence of one or more body names preceded by the operators + (intersection) or − (complement or subtraction). A zone expression can be contained inside one or more sets of left and right parentheses. Several zone expressions can be combined by the union operator | (corresponding to OR in fixed format input). When | operators are used there are always two or more of them, and they refer to all bodies following them until the next | or the end of the region description, each body being preceded by its + or − sign. In evaluating the expressions, the highest operator precedence is given to parentheses (the most inner ones first), followed by the | operator. In each zone expression, at least one body name preceded by + must be present. If one line is not sufficient, any number of continuation lines can be added. Blanks are ignored.

Region description ends with a line containing the single string END.

8.2.7.4 Meaning of the + − | operators

– If a body name is preceded by a + operator in an expression describing a zone (or a zone component surrounded by parentheses) it means that the zone or zone component being described is wholly contained inside the body (boolean intersection).

– If a body name is preceded by a − operator in an expression describing a zone (or a zone component surrounded by parentheses) it means that the zone or zone component being described is wholly outside the body (boolean complement).

Obviously, in the description of each region the symbol + must appear at least once. The same is true for each zone (subregion delimited by | operators) and for each zone component (subzone delimited by parentheses)

Examples of regions consisting of a single zone:

```
lastlayr 4 +bigball +slab
* Region "lastlayr" is the part of space common to body "bigball" and body
 * "slab"

MidVacuu 7 +cylind2 -slit -sqrhole +Plane1
* Region "MidVacuu" is the part of space common to bodies "cylind2" and
 * "Plane1", excluding however that which is inside body "slit" and that which
 * is inside body "sqrhole"

H2Osphere 5 +marble
* Region "H2Osphere" coincides entirely with body "marble"
```

Examples of regions consisting of the union of several zones, possibly (but not necessarily) partially overlapping:

```
Corners 6 | +dice +topNorth | +dice +topEast | +dice +topSouth |
 +dice +topWest | +dice +botNorth | +dice +botEast | +dice +botSouth | +dice +botWest
* Region "Corners" is made of the 8 corners of a cube, each of which is
 * obtained by the intersection of a cubic body "dice" and a tilted plane
 * described by vector pointing to the centre of the cube

twoparts 0 | +leftpart -outerbox | +rghtpart +topplane
* Region "twoparts" is the sum of two parts of space: the space points which
 * are inside body "leftpart" but not inside body "outerbox", plus those which
 * are common to bodies "rghtpart" and "topplane"
```

Examples of a region defined as a single zone by means of parentheses:
Region "AirAroun" contains the space points located inside the intersection
* of body "tunnel" and body "Column", with the exception of those which are
* inside body "outrpipe" but not inside body "innrpipe"

CmplexRg | +longcyl (+shortcyl +vertPla1 -vertPla2) | (+Brick | +ceeling -floor)
* Region CmplexRg is the union of two zones. The first zone is the
* intersection of body "longcyl" with a portion of space contained inside
* both bodies "shortcyl" and "vertPla1" but not inside body "vertPla2".
* The second zone is the union of the space points inside body "Brick"
* and the space points contained by body "ceeling" but located outside
* body "floor".

8.2.8 Region END line
Region data must be terminated by a line with the string END (in column 3–5 if format is fixed).

8.2.9 Region Volumes
This is an optional set of cards which must be input if (and only if) flag IVLFLG in the CG Title line has
been given a value 3 (see 8.2.2). As many volume definition cards must be given as is needed to input a
volume for every region. The input variable is an array VNOR(I) = volume of the Ith region. The format is
(7E10.5). Volume data are used by FLUKA only to normalise energy or star densities per region, requested
by the SCORE command (p. 234).

8.2.10 LATTICE card
This is an optional card for modular geometries. Its use needs some more effort and preparation.

- The basic unit of the geometry, composed by an arbitrary number of regions, must be described in full
detail in the body and region data.
- Additional body and region data must also be provided to describe “container” regions representing
the “boxes”, or lattice cells, wherein the basic unit has to be replicated. No material assignment is
needed for these lattice-cell regions.
- A roto-translation must be defined (option ROT–DEFI, (p. 228) and associated with each lattice to
provide the transformation bringing from any point and direction inside each lattice cell to the corre-
sponding point and direction in the basic unit. Alternatively, a user routine (LATTIC, see 13.2.10) can
be written for the same purpose.
- The LATTICE card itself identifies the lattice cells and establishes the correspondence between region
number and lattice cell number, where the region number is the sequential number in the region table,
and the lattice cell number is that used in the tracking to address the transformation routine, and is
chosen by the user. Contiguous numbering is recommended for memory management reasons, but is
not mandatory. Non-contiguous numbering can be done using several LATTICE cards.

In the LATTICE card, the meanings of the WHAT parameters are:

WHAT(1) = “Container-region” number of the first lattice cell
   ("From region WHAT(1). . .")
   Default : No default

WHAT(2) = “Container-region” number of the last lattice cell
   (". . . to region WHAT(2). . .")
   Default = WHAT(1)

WHAT(3) = step length in assigning “Container-region” numbers
   (". . . in steps of WHAT(3)"
   Default = 1.0
**LATTSNGL card**

WHAT(4) = lattice number of the first lattice cell (or corresponding name), assigned to region WHAT(1)

Default : No default

WHAT(5) = lattice number of the last lattice cell (or corresponding name), assigned to region WHAT(2)

Default : No default

WHAT(6) = step length in assigning cell numbers/names

(“... in steps of WHAT(6)”)

Default = 1.0

SDUM = possible index of transformation associated with this lattice. Exceptionally, here SDUM can contain an integer number, in free format, following any of the strings “ROT#”, “Rot#”, “rot#”, “Ro#”, “Ro#”, “ro#”. If any one of such strings is present, an integer identifying the associated roto-translation is read in the following characters. If no such string is found, the LATTIC user routine will be called whenever a transformation is required. Otherwise, if a name is present, it is supposed to be the (character) name (with sign) of the associated roto-translation. If a null string is found, the LATTIC user routine will be called whenever a transformation is required.

It is possible to associate a nested transformation to a lattice (see card LATTSNGL 8.2.11).

A single geometry can be a mixture of modular areas, described by lattices, and “normal” areas, described by standard regions. Many different LATTICE cards may be issued in the same geometry, when different symmetries are present in different areas. In principle, any analytical symmetry transformation can be implemented (rotation, translation, reflection, or combination of these). Care must be taken to ensure that any region in the basic unit is fully contained (after coordinate transformation) in any lattice cell belonging to its symmetry transformation. Regions falling across two different lattice cells would lead to unpredictable behaviour.

The basic unit does not need necessarily to describe a “real” geometry region, but can as well be used only as a prototype to reproduce in any number of “copies”.

**NOTE:** The lattice cell regions do not need to be included in the other input option cards. Materials, thresholds, etc., must be assigned only to the regions contained in the basic unit. Of course, this implies that all copies of a same basic unit share the same material, setting and biasing properties.

**IMPORTANT:** If the geometry is being described in free format, using alphanumeric names as body and region identifiers, names must be used also in the LATTICE card(s) for both regions and lattices.

**8.2.11 LATTSNGL card**

This card allows to associate two nested (signed) transformations $R_1$ and $R_2$ to a lattice. The resulting nested transformation acts on a body vector $r$ as

$$r' = R_2R_1r.$$  \hspace{1cm} (8.1)

WHAT(1) = “Container-region” number of the lattice cell.

Default = No default

WHAT(2) = Index or name (with sign) of the first transformation, $R_1$.

Default =0

WHAT(3) = Index or name (with sign) of the second transformation, $R_2$.

Default =0

WHAT(4) = Lattice number of the lattice cell (or corresponding name), assigned to region WHAT(1).
**Default** = No default

**WHAT(5)** = Not used.

**WHAT(6)** = Not used.

**SDUM** = Not used.

### 8.2.12 **GEOEND** card

A card with the string GEOEND in column 1–6 must terminate the combinatorial geometry input (see p. 143).

#### 8.2.12.1 **Geometry debugger**

The GEOEND card can be used also to activate the *geometry debugger*, using the WHAT and SDUM parameters. In this case, a second GEOEND card (continuation) may be necessary. It is recommended that a STOP card should follow immediately, avoiding to start transport when debugging is completed.

**First GEOEND card:**

\[
\begin{align*}
\text{WHAT}(1) & = X_{\text{max}} \text{ of the geometry region to be debugged (no default)} \\
\text{WHAT}(2) & = Y_{\text{max}} \text{ of the geometry region to be debugged (no default)} \\
\text{WHAT}(3) & = Z_{\text{max}} \text{ of the geometry region to be debugged (no default)} \\
\text{WHAT}(4) & = X_{\text{min}} \text{ of the geometry region to be debugged (no default)} \\
\text{WHAT}(5) & = Y_{\text{min}} \text{ of the geometry region to be debugged (no default)} \\
\text{WHAT}(6) & = Z_{\text{min}} \text{ of the geometry region to be debugged (no default)} \\
\text{SDUM} & = \text{DEBUG} \text{ to activate the debugger, otherwise must be left blank}
\end{align*}
\]

**Second (optional) GEOEND card:**

\[
\begin{align*}
\text{WHAT}(1) & = \text{Number of mesh intervals in the } X\text{-direction between } X_{\text{min}} \text{ and } X_{\text{max}} \\
\text{Default} & = 20.0 \\
\text{WHAT}(2) & = \text{Number of mesh intervals in the } Y\text{-direction between } Y_{\text{min}} \text{ and } Y_{\text{max}} \\
\text{Default} & = 20.0 \\
\text{WHAT}(3) & = \text{Number of mesh intervals in the } Z\text{-direction between } Z_{\text{min}} \text{ and } Z_{\text{max}} \\
\text{Default} & = 20.0 \\
\text{WHAT}(4) & = \text{Maximum number of errors after which geometry debugging stops.} \\
\text{Default} & = 500.0 \\
\text{WHAT}(5) - \text{ WHAT}(6): & \text{ not used} \\
\text{SDUM} & = "&" \text{ in any position in column 71 to 78 (or in the last field if free format is used)}
\end{align*}
\]

**Default** (option GEOEND not given): **not allowed**! GEOBEGIN and GEOEND must always be present.

See the Notes to GEOEND option (7.31) for more details and instructions.
8.3 Voxel geometry

It is possible to describe a complex geometry in terms of “voxels” (tiny identical parallelepipeds forming a 3-dimensional grid). In principle this can be done with any geometry but it is especially useful when translating a CT scan of a human body into a dosimetry phantom [206]. Therefore, we will use loosely the word “organ” to indicate a contiguous group of voxels (or even more than one group) made of the same material. The code handles each organ as a Combinatorial Geometry region, possibly in addition to other conventional “non-voxel” regions defined by the user, and assigns automatically to each organ a new region number.

To describe a voxel geometry, the user must:

1. Assign an organ to each voxel. Each organ is identified by a unique integer \( \leq 32767 \). The numbering does not need to be contiguous, i.e., gaps in the numbering sequence are allowed. One of the organs must have number 0 and plays the role of the medium surrounding the voxels (usually vacuum or air).

The assignment is done via a special file where the organ corresponding to each voxel is listed sequentially in Fortran list-oriented format, with the \( x \) coordinate running faster than \( y \), and \( y \) running faster than \( z \). In practice the file is always written by a program similar to the one reported below. The user will need to modify the values of the parameters \( DX, DY, DZ, NX, NY, NZ \) (respectively voxel size and number of voxels for each coordinate), and possibly some other more trivial things (file names, title, reading from the original CT scan file).

The following program takes also care of recompacting the original organ numbers by eliminating all gaps in the sequence, and writes a translation table to the screen:

```fortran
WRITE(*,'(A,2I10)') 'New number, old number: ', NO, IC
```

After having modified the program (assumed to be in a file `writegolem.f`), compile it:

```bash
$FLUPRO/flutil/fff writegolem.f
```

link it with the FLUKA library:

```bash
$FLUPRO/flutil/lfluka -o writegolem writegolem.o
```

execute it:

```bash
./writegolem
```

The result will be a file `golem.vxl` (or equivalent name chosen by the user) which will be referred to by a special command line in the geometry input (see 2 below).

```
PROGRAM WRITEGOLEM
INCLUDE '(DBLPRC)'
INCLUDE '(DIMPAR)'
INCLUDE '(IOUNIT)'
* COLUMNS: FROM LEFT TO RIGHT
* ROWS: FROM BACK TO FRONT
* SLICES: FROM TOP TO BOTTOM
PARAMETER (DX = 0.208D+00)
PARAMETER (DY = 0.208D+00)
PARAMETER (DZ =-0.8D+00)
PARAMETER (NX = 256)
PARAMETER (NY = 256)
PARAMETER (NZ = 220)
DIMENSION GOLEM(NX,NY,NZ)
INTEGER*2 GOLEM
CHARACTER TITLE*80
DIMENSION IREG(1000), KREG(1000)
INTEGER*2 IREG, KREG

CALL CMSPPR
DO IC = 1, 1000
 KREG(IC) = 0
END DO
OPEN(UNIT=30,FILE='ascii_segm_golem',STATUS='OLD')
```
Starting from Fluka2011.2b, the voxel files can contain an arbitrary number of extra records of 80 characters each, which are read and interpreted as ordinary input cards. This allows to embed in the voxel files informations such as material definitions, material assignments, correction factor etc, which are often generated by automatic programs out of a CT scan. Flair contains tools for reading CT scans in Dicom format, and automatically generate a voxel file containing the material and correction factor informations according to a Hounsfield number to material/density translation algorithm which can be tuned by the user.

2. Prepare the usual FLUKA input file. The geometry must be written like a normal Combinatorial Geometry input (in any of the allowed formats, as part of the normal input stream or in a separate file), but in addition must include:

- A VOXELS card as a first line, before the Geometry title card (8.2.2), with the following information:

  WHAT(1), WHAT(2), WHAT(3) = x, y, z coordinates chosen as the origin of the “voxel volume”, i.e., of a region made of a single RPP body (8.2.4.1) which contains all the voxels
  WHAT(4) = index (or name) of the ROT-DEFIni card for an eventual roto/translation of the VOXELS
  WHAT(5): not used
  WHAT(6): used mainly for debugging. If WHAT(6) is not divisible by 10, a voxel geometry test is carried out. The RPP-to-voxel, voxel-to-organ, and organ-to-region correspondences are checked. The program stops in case of inconsistency.
  SDUM = name of the voxel file (extension will be assumed to be .vxl)

- The usual list of NB bodies, not including the RPP corresponding to the “voxel volume” (see VOXELS card above). This RPP will be generated and added automatically by the code as the (NB+1)th body, with one corner in the point indicated in the VOXELS card, and dimensions NX*DX, NY*DY and NZ*DZ as read from the voxel file.
The usual region list of NR regions, with the space occupied by body NB+1 (the “voxel volume”) subtracted. In other words, the NR regions listed must cover the whole available space, except the space corresponding to the “voxel volume”. This is easily obtained by subtracting body NB+1 in the relevant region definitions, even though this body is not explicitly input at the end of the body list. The code will automatically generate and add several regions:

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOXEL</td>
<td>NR+1</td>
<td>this is a sort of &quot;cage&quot; for all the voxels. Nothing (energy etc.) should ever be deposited in it: the user shall assign VACUUM to it</td>
</tr>
<tr>
<td>VOXEL001</td>
<td>NR+2</td>
<td>containing all voxels belonging to organ number 0. There must be at least 2 of such voxels, but in general they should be many more. Typical material assignment to region NR+2 is AIR.</td>
</tr>
<tr>
<td>VOXEL002</td>
<td>NR+3</td>
<td>corresponding to organ 1</td>
</tr>
<tr>
<td>VOXEL003</td>
<td>NR+4</td>
<td>corresponding to organ 2</td>
</tr>
<tr>
<td>.........</td>
<td>.........</td>
<td></td>
</tr>
<tr>
<td>VOX*****</td>
<td>NR+2+NO</td>
<td>corresponding to organ NO</td>
</tr>
</tbody>
</table>

where NO = number of non-zero organs.

The assignment of materials shall be made by command ASSIGNMA (p. 68) (and in a similar way other region-dependent options) referring to the first NR regions in the usual way, and to the additional regions using the correspondence to organs as explained above.

8.4 The Flair Geometry Editor

The Geometry Editor is an addition to Flair (see 2.8) for viewing/debugging and editing FLUKA geometries in a graphical way. It works on 2D cross sections of the geometry with some 3D capabilities.

Main features:

- Fast display of complex geometries
- Many user-customizable layers:
  - the Layers dialog allows the user to create customized views. The user has the possibility to change the fill color of the regions displaying regions, materials or even color encoding of biasing, cuts, thresholds etc. Moreover the user has the possibility to overlay a background image, e.g. a technical drawing, USRBIN data, BEAM parameters, lattices, voxels, transformations, as well as 3D representations using a raytracing technique.
  - Or a combination of any of the above.
- Graphical editing of the bodies with snapping mechanism to generate accurate coordinates
- Visual selection and editing of zones without the need to know the orientation of bodies
- Use real curve of bodies with no conversion to vertices/edges
- Interactive debugging with information of problematic bodies, regions and/or zones
Chapter 9

Output

The output of FLUKA consists of:

- a main (standard) output, written on logical output unit LUNOUT (pre-defined as 11 by default)
- a scratch file, of little interest to the user, written on output unit LUNGEO (16 by default). However, if the rfluka script is used to run FLUKA, this file is automatically deleted by the script at the end of the run
- a file with the last random number seeds, unit LUNRAN (2 by default)
- a file of error messages (if any), unit LUNERR (15 by default)
- any number (including zero) of estimator output files. Their corresponding logical unit number is defined by the user: in case the number chosen coincides with one of the above, in particular LUNOUT, estimator formatted output will appear as part of the corresponding output stream. However, this is not recommended, and it is not allowed anyway in the case of unformatted output. Generally, the user can choose between formatted and unformatted output. Only formatted output is presented here, while unformatted output is described at the end of each option description
- possible additional output generated by the user in any user routine, in particular USROUT (see 13.2.29, p. 390)

9.1 Main output

The standard, or main, output is made of several different parts:

- A banner page
- The FLUKA license
- A header with the FLUKA version and the time when the output was printed
- A straight echo of the input cards.
  Each input line is echoed in output, but not character by character. The input WHATs and SDUMs are read, and then written with a different format. Any alignment error shows up as a number or a character string different from the one intended: therefore in case of problems checking this part of the output is more effective than checking the input itself.
  Comments are reproduced in output, with the exception of in-line comments preceded by an exclamation mark (!)
- Geometry output (if not redirected to a separate file, see GEOBEGIN, Note 1). The geometry output (which is part of the standard output by default, but can be re-directed to a separate file) begins with an echo of the geometry title and the value of the two input variables IVLFLG (Input VoLume FLaG) and IDBG (in the original CG a debugging flag, but now used to select various format lengths). Then there in an echo of the body and region input, including comment lines, and some lines left over from the original MORSE CG, but which are of little or no meaning in the context of FLUKA: for instance the arrays IR1 and IR2 (originally material and biasing assignment to regions, which in FLUKA however are not part of the geometry data). Other information concerns the memory allocation: FPD (Floating Point Data), INTEGER ARRAY, zone locations (“zone” and “region” in FLUKA have a different meaning than in MORSE). “Code zones” indicates the subregions defined by the input OR operator.
  The next sections, “Interpreted body echo” and “Interpreted region echo”, show the numbers assigned by the program to bodies and regions defined by alphanumerical identifiers (if the traditional fixed format has been used, these output sections are of little interest).
  The interpreted echos are followed by the volumes used to normalise a possible output from option SCORE (p. 234). Then, for each region in whose description the OR operator is used, one line similar to the following is printed at the end of the geometry output:

  *** Region # 2 Dnear according to no overlapping ORs ***
  *** Region # 3 Dnear according to possible overlapping ORs ***
This information concerns the possibility that random number sequences might not be reproducible, a technical issue which does not affect the quality of the results but can be important for debugging or other purposes (see a more detailed explanation in Note 4 to option GLOBAL) (p. 146).

- **Basic nuclear data used in the program**
The data reported are nuclear masses and model parameters used by the program. This part of the output is constant and does not depend on the problem input (it is printed even if the calculation is purely electromagnetic and does not depend on nuclear models).

- **Information on physical models used in the run**
The nuclear models used by FLUKA to describe intermediate nuclear effects and interactions have been continuously improved since 1989. They are automatically activated if the user chooses the appropriate defaults. Depending on the latter and on the input options used, an informative message is issued concerning the presence of the following:
  - Evaporation from residual nucleus
  - Production of deexcitation gammas
  - Transport of heavy evaporation products
  - High-energy fission
  - Fermi Break-Up

- **Material quantities related to multiple scattering**
The values of various quantities used by the FLUKA multiple Coulomb scattering algorithm are printed for each material and for each type of charged particle.

- **Memory allocation information**
Starting and ending location in memory of various arrays dynamically allocated are printed at different points on main output, depending on the order of input cards.

- **Table of correspondence between materials used in the run and materials in the low-energy neutron cross section library**
Example:

```
*** Fluka to low en. xsec material correspondence: printed atomic densities are meaningless when used in a compound ***

<table>
<thead>
<tr>
<th>Fluka medium number</th>
<th>Name</th>
<th>Xsec medium number</th>
<th>atomic density (at/(cm barn))</th>
<th>Id. 1</th>
<th>Id. 2</th>
<th>Id. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BLCKHOLE</td>
<td>0</td>
<td>0.0000E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>VACUUM</td>
<td>1000</td>
<td>0.0000E+00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>CARBON</td>
<td>1</td>
<td>0.0000E+00</td>
<td>6</td>
<td>-2</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>NITROGEN</td>
<td>2</td>
<td>0.0000E+00</td>
<td>7</td>
<td>-2</td>
<td>293</td>
</tr>
<tr>
<td>8</td>
<td>OXYGEN</td>
<td>3</td>
<td>5.3787E-05</td>
<td>8</td>
<td>16</td>
<td>293</td>
</tr>
<tr>
<td>17</td>
<td>LEAD</td>
<td>5</td>
<td>3.2988E-02</td>
<td>82</td>
<td>-2</td>
<td>293</td>
</tr>
<tr>
<td>21</td>
<td>ARGON</td>
<td>4</td>
<td>0.0000E+00</td>
<td>18</td>
<td>-2</td>
<td>293</td>
</tr>
</tbody>
</table>
```

Compounds are not listed in this table, since for the time being the FLUKA neutron library contains only single elements or nuclides. “FLUKA medium number” refers to the material number given by the user via WHAT(4) in option MATERIAL; “Xsec medium number” is the material index used internally by the FLUKA low-energy neutron package. Such index is assigned only to library materials actually used in the current problem, unlike “FLUKA media” which can be pre-defined or defined in input, without being actually assigned to any region.

Blackhole and vacuum are always assigned Xsec index 0 and 1000.
Atomic densities refer to the material in its elemental form and are printed as 0.0000E+00 if the corresponding element is used only as part of a compound.

The last 3 columns in the table are the material identifiers unique to each library material (see 10.4, p. 339 and option LOW–MAT, p. 163).

- **Information on the low-energy neutron cross sections**
If low-energy neutrons are transported, some problem-specific information may be printed, e.g., materials for which recoil or (n,p) protons are produced explicitly and not accounted for by kerma factors (usually hydrogen and nitrogen), or materials for which pointwise cross sections are used (see LOW–NEUT, WHAT(6) and Note 5, p. 166). This is followed by generic information on the neutron cross section library used (number of energy groups and angles, number of materials, etc.).
If the user requests a more detailed printout (option LOW–NEUT, p. 165) the following information is printed, depending on the value of WHAT(4):

For each neutron energy group:
- group energy limits
- average energies
- velocities and momenta corresponding to the group energy limits of each gamma group
- thermal neutron velocities

For each material used: availability of residual nuclei information and, for each neutron energy group:

\( \text{SIGT} = \text{total cross section} \) in barn

\( \text{SIGST} = \text{“scattering” cross section} \) in barn. Actually equal to \( \sigma(n,n) + 2\sigma(n,2n) + 3\sigma(n,3n) \) etc.

\( \text{PNUP} = \text{upsatter probability} \) (can be different from zero only if the number of thermal groups is more than one)

\( \text{PNABS} = \text{Probability of Non-ABSorption} \) (= scattering). It is \( = \text{SIGST}/\text{SIGT} \), and can sometimes be \( > 1 \) because of \( (n,xn) \) reactions

\( \text{GAMGEN} = \text{GAMma GENERation probability} = \) gamma production cross section divided by \( \text{SIGT} \) and multiplied by the average number of gammas per \( (n,\gamma) \) reaction

\( \text{NU*FIS} = \text{fission neutron production} = \) fission cross section divided by \( \text{SIGT} \) and multiplied by \( \nu \) (nu), the average number of neutrons per fission

\( \text{EDEP} = \text{kerma contribution} \) in GeV per collision

\( \text{PNEL, PXN, PFISS, PNGAM} = \text{partial cross sections} \), expressed as probabilities (i.e., ratios to \( \text{SIGT} \)). In the order: non-elastic, \( (n,xn) \), fission, \( (n,\gamma) \)

The line: (RESIDUAL NUCLEI INFORMATIONS AVAILABLE), if present, indicates the possibility to use option RESNUCLE with WHAT(1) = 2.0 (p. 225).

If WHAT(4) = 1.0:

the same as above plus:

For each material used and for each neutron energy group:

the downscattering matrix (group-to-group transfer probabilities), as in the following example:

\[
\begin{array}{cccccccccc}
6 & \ldots & 0.4927 & 0.0148 & 0.0006 & 0.0012 & 0.0017 & 0.0023 & 0.0028 & 0.0033 \\
& & 0.0038 & 0.0045 & 0.0056 & 0.0070 & 0.0087 & 0.0104 & 0.0120 & 0.0134 \\
& & 0.0149 & 0.0163 & 0.0175 & 0.0184 & 0.0190 & 0.0193 & 0.0193 & 0.0190 \\
& & 0.0185 & 0.0178 & 0.0164 & 0.0329 & 0.0311 & 0.0278 & 0.0247 & 0.0219 \\
& & 0.0198 & 0.0158 & 0.0126 & 0.0101 & 0.0112 & 0.0070 & 0.0026 & 0.0008 \\
& & 0.0004 & 0.0002 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
& & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
& & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\end{array}
\]

The above table means: after scattering in material 4 of a neutron in energy group 6, the probability of getting a neutron in the same group is 49.27%; that to get a neutron in the following group (group 7) is 1.48%, in group 8 is 0.06% etc. This matrix, normalised to 1, gives the relative probability of each neutron group: but the actual probability per collision must be obtained by multiplying by \( \text{PNABS} \), the scattering cross section divided by the total cross section and multiplied by the average number of neutrons per non absorption reaction.

\( \text{neutron-to-gamma group transfer probabilities} \), for instance:
The meaning is similar to that explained above, except that each number refers to the probability of getting a gamma in the corresponding gamma group. Again, this matrix, normalised to 1, gives the relative probability of each gamma group: but the actual probability per collision must be obtained by multiplying by \( \text{GAMGEN} \), the gamma production cross section divided by the total cross section and multiplied by the average number of gammas per \((n,\gamma)\) reaction.

If \( \text{WHAT}(4) = 3.0 \):

For each material used and for each neutron energy group:

Cumulative scattering probabilities and scattering polar angle cosines as in the following example:

<table>
<thead>
<tr>
<th>GP TO GP</th>
<th>PROB ANGLE</th>
<th>PROB ANGLE</th>
<th>PROB ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>0.4105</td>
<td>0.8383</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.4444</td>
<td>0.0001</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0.4444</td>
<td>-0.0001</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0.4444</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>-1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>-1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>-1.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

The above table reports 3 discrete angle cosines (corresponding to a Legendre P5 expansion) for each group-to-group scattering combination, with the respective cumulative probabilities. For instance, the line:

<table>
<thead>
<tr>
<th>GP TO GP</th>
<th>PROB ANGLE</th>
<th>PROB ANGLE</th>
<th>PROB ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>0.4105</td>
<td>0.8383</td>
</tr>
</tbody>
</table>

means that neutron scattering from energy group 6 to group 7 has a 0.4105 probability to be at a polar angle of 33 degrees \((0.8383 = \cos 33^\circ)\); a probability \(0.8199 - 0.4105 = 0.4094\) to be at \(84^\circ = \arccos(0.1057)\); and a probability \(1.000 - 0.8199 = 0.1801\) to be at \(139^\circ = \arccos(-0.7588)\). A -1.0000 probability indicates an isotropic distribution.

### Table of available particle types

This table presents constant properties of all particles transported by FLUKA (name, id-number, rest mass and charge), plus two columns indicating:

- the particles which are discarded, by default (neutrinos) or on user’s request (option \textsc{discard}, p. 107)
- the particle decay flag (see option \textsc{physics} with \textsc{sdum} = \textsc{decays}, p. 208)

The available generalised particles and their id-numbers are also listed.

### An expanded summary of the input:

This part of output summarises the most important input data, decoded and presented in a more colloquial way.

(a) **Beam properties**

Information given by \textsc{beam} and \textsc{beampos} options (p. 73, 78): type of particle, energy/momentum, direction, etc. If a user \textsc{source} is used (p. 236, 380), it is indicated here.

(b) **Energy thresholds**

Particle cutoff energies of hadrons and muons as set by default or by option \textsc{part–thr} (p. 202). Neutron cutoff means the threshold between high and low-energy (multi-group) neutron treat-
ment. Low-energy neutron group cutoffs are reported by region in a separate table: see (f) below. Electron and photon cutoffs are also reported in a separate table.

(c) Termination conditions The maximum number of histories and other ending options set in card START (p. 244) are summarised here

(d) Multiple scattering (hadrons and muons) The logical flags printed are related to option MULSOPT (p. 180) with SDUM = GLOBAL or GLOBHAD. The number of single scatterings to be performed at boundary crossing is also printed.

(e) Treatment of electrons and photons, including multiple scattering. For historical reasons dating from the time when FLUKA was handling only high-energy particles, this title of this part is “Electromagnetic Showers”. The logical flags which follow are related to option MULSOPT with SDUM = GLOBAL or GLOBEMF. The number of single scatterings to be performed at boundary crossing is also printed.

(f) Biasing parameters This table reports several region-dependent biasing and cutoff parameters:

- Particle importances (set by WHAT(1) and WHAT(3) of option BIASING, p. 82)
- Russian Roulette factor (multiplicity biasing set by WHAT(2) of option BIASING)
- Cutoff group (WHAT(1) of option LOW–BIAS, p. 159)
- Group limit for non-analogue absorption (WHAT(1) of option LOW–BIAS)
- Non-analogue survival probability (WHAT(3) of option LOW–BIAS)
- Group limit for biased downscattering (WHAT(1) of option LOW–DOWN)
- Biasing downscattering factor (WHAT(2) of option LOW–DOWN)

(g) Estimators requested For each requested estimator (USRBIN, USRBDX, USRCOLL, USRTRACK, USRYIELD, RESNUCLEI, DETECT), a complete description is printed (detector number, particle type, defining region(s) or binning limits, number of intervals/bins, area/volume, linear/logarithmic, type of quantity etc.). If the estimator output file is formatted, the same information is printed also there in an identical format, otherwise it is available on the corresponding binary file.

Note that the estimator detectors are numbered separately according to their estimator type (Bdrx n. 1, Bdrx n. 2 etc.; Binning n. 1, Binning n. 2 etc. — independent from the type of binning — Track n. 1, Track n. 2 etc.), in the order they appear in input. The estimator type and the detector number can be passed (as variables ISCRNG and JSCRNG in COMMON SCOHLP ) to the user routines COMSCW and FLUSCW (p. 367, 369), to allow different kinds of weighting on the scored quantities, depending on the detector number (see 13.2.2, 13.2.6)

(h) Materials defined and pre-defined This table includes all materials pre-defined and not overridden by the user, plus those defined in the user input via options MATERIAL and COMPOUND (p. 169, 86), independent from the fact that they have been assigned or not to any region.

The different columns report the material number, name, atomic number Z and atomic weight A (effective Z, A for compounds), density, inelastic and elastic scattering lengths for the primary particles at the energy defined by option BEAM (p. 73) (meaningful only for primary hadrons), radiation length (value not used by the program) and inelastic scattering length for neutrons at the threshold momentum (by default 20 MeV unless overridden by PART–THR, p. 202).

For compounds, an insert is printed with the element composition, plus the atom fraction and partial density of each component.

(i) dE/dx tabulations (if requested, see DELTARAY, p. 101)

For each assigned material and for each charged heavy particle (hadrons, muons, recoil ions) a table is printed with the following data:

- energy, unrestricted stopping power, \( \eta \) (\( = \beta \gamma \)), shell correction, restricted stopping power (according to the threshold specified by the user with DELTARAY, WHAT(1)).

(j) Other stopping power information The following is printed for each material used:
gas pressure (if applicable), average excitation energy, effective Z/A, Sternheimer density effect parameters, delta ray production, threshold, description level for stopping power fluctuations (set with IONFLUCT, WHAT(1) and WHAT(3), p. 149), and threshold for pair production and bremsstrahlung by heavy particles (set with PAIRBREM, p. 200, p. 149), and threshold for pair.

(k) Photomuclear reaction requests
A line of information is printed for each material in which muon photomuclear interactions have been activated (see MUPHOTON, p. 184). A similar information is printed for gamma photomuclear interactions, with the PHOTONUC flag for the relevant energy ranges (see p. 204).

(l) Table of correspondence between materials and regions
“Correspondence of regions and EMF-FLUKA material numbers and names”
This table corresponds to the ASSIGNMAAt command (p. 68) and may be useful to check the material assignment to the various regions, as well as the regions where a magnetic field is present. The minimum step size set with option STEPSIZE (p. 245) is also reported. The last column refers to the maximum step size for charged particles.

(m) Rayleigh scattering requests
A line of information is printed for each material in which Rayleigh scattering has been activated (option EMFRAY, p. 125).

(n) Fluorescence requests
For each material for which fluorescence X-ray production has been requested, information about the relevant photoelectric cross section edges is reported (option EMFFLUO, p. 123).

(o) Table of correspondence between regions and EMF materials/biasing
For each assigned material, this table reports the name, number (the internal numbering sequence is different in the EMF part of FLUKA), electron and photon energy cutoffs (set with EMFCUT, p. 116), and four logical flags indicating whether some options have been activated for the material concerned (T means on, F off).

The meaning of the flags is:

- BIAS → Leading Particle Biasing (LPB) (set by EMF–BIAS or EMFCUT, p. 111 and 116)
- Ray. → Rayleigh scattering (set by EMFRAY with WHAT(1) ≥ 1.0, see p. 125)
- S(q,Z) → Compton binding corrections (EMFRAY with WHAT(1) = 1., 3., 4. or 6.)
- Pz(q,Z) → Compton Doppler broadening (EMFRAY with WHAT(1) = 4. or 6.)

The energy thresholds below which LPB is played for electrons and photons (WHAT(2) and WHAT(3) of EMF–BIAS) are also reported, and so is the LPB bit-code for selected effects (WHAT(1) of EMF–BIAS)

- Random number generator calls and CPU time for some histories
During the calculation, a couple of lines is printed time and again after a certain number of histories (or after each history, depending on WHAT(5) of option START, p. 244)\(^1\).

One of the two lines contains the number of random number generator calls, expressed in hexadecimal format.

The second line reports, in the following order: the number of primary particles handled, the number of particles still to be handled (with respect to the maximum requested by WHAT(1) of START), the number of particles which can still be handled judging from the average time spent so far, the average time per primary based on the histories already completed, and the estimated time still available with respect to WHAT(3) of START.

The sequence of random number call lines is terminated by a message (FEEDER is the FLUKA routine which starts every history):

All cases handled by Feeder
Run termination forced from outside
if the run has been shortened by the FLUKA “stop file”

Feeder ended due to timeout
if the time limit has been reached — see WHAT(6) of START or system-imposed time limit

---

\(^1\)Occasional warning messages printed during particle transport are found between the lines, especially if photomuclear reactions have been activated: they have mainly a temporary debugging purpose and should be ignored
Results of SCORE option for all regions
Up to 4 different quantities (energy or star density) are printed at one line per region (see SCORE, p. 234). The volume used for normalisation is also printed (equal to 1.0 unless a different value has been input by the user at the end of the geometry description, see IVLFLG = 3 in 8.2.2, p. 295). Even if SCORE has not been requested a line of zeros is printed for each region.

Statistics of Coulomb scattering
The number of scatterings which were not performed or were performed without LDA (Lateral Displacement Algorithm) because they failed to satisfy Molière's conditions is reported here. This number is usually very small compared to the total number of scatterings, also reported. If single scatterings have been activated, their number is also printed.

Russian Roulette/Splitting counters (if requested, see BIASING, p. 82)
If the BIASING option has been used with SDUM = PRINT, the following statistics is printed for each region:
\( N. \text{ of } RR \Rightarrow \text{Number of Russian Roulette (RR) operations made on particles entering that region} \)
\( <\text{wt}> \text{ in} \Rightarrow \text{Average weight of particles submitted to RR when entering the region} \)
\( <\text{wt}> \text{ kill} \Rightarrow \text{Average weight of particles killed by RR when entering the region} \)
\( N. \text{ of } Sp \Rightarrow \text{Number of splitting operations made on particles entering the region} \)
\( <\text{wt}> \text{ in} \Rightarrow \text{Average weight of particles splitted when entering the region} \)
\( <\text{wt}> \text{ out} \Rightarrow \text{Average weight of particles after being splitted when entering the region} \)
Separate counters are printed for hadrons/muons, electrons/photons and low-energy neutrons (referring to importance biasing requested by BIASING respectively with WHAT(1) = 1.0, 2.0 and 3.0, or = 0.0 for all).
The number of RR actually refers to “all particles which have not been splitted” (a particle crossing a boundary between two regions of equal importance is submitted neither to RR nor to splitting, but is counted as if it was a RR).
Therefore, the counters can be used to calculate the following quantities, useful as a guide to set importances and weight windows:
\( A = \text{"N. of RR"} + \text{"N. of Sp"} = \text{total number of particles entering the region} \)
\( B = ("<\text{wt}> \text{ in}_{RR} \ast \text{"N. of RR"}) + ("<\text{wt}> \text{ in}_{Sp} \ast \text{"N. of Sp"}) = \text{total weight of the particles entering the region} \)
\( B/A = \text{average weight of the particles entering the region} \)
Note that RR and splitting arising from Weight-Window biasing (options WW–FACTOr, WW–THRESh, WW–PROFIle, pp. 286, 291, 289) or from multiplicity biasing (WHAT(2) in option BIASING) are not accounted for in the counters.

Final global statistics
At the end of a successful run, after a title
Summary of FLUKA-xxxx run
the following are printed:
- Total number of primary particles
- Total weight of the primary particles (can be different from the previous one, especially if a user source has been used)
- Total number of stars (hadron inelastic collisions) generated
- Total weight of the stars generated
  Note: this statistics includes all hadron inelastic collisions, independently from any threshold set by option THRESHOLD. Therefore, this number of stars can be different from that obtained with SCORE or USRBIN.
- Total number of low-energy neutron interactions
- Total weight of the low-energy neutron interactions
- Total CPU time used to describe all the histories
- Average CPU time per history
- Maximum CPU time used by a history
- Time left before time limit (if applicable)
A more detailed statistics of different quantities follows, including all regions and separately for prompt and radioactive decay radiation. The contribution of each type of particle is given, normalised per unit
weight of beam/source particles and also in percent of the total.
- Stars (inelastic hadron interactions)
- Secondaries created in inelastic hadron interactions
- High-energy fissions
- Decay products
- Decayed particles
  For each particle the decay length at the decay position is also reported (decay length = cτ, with τ = mean life)
- Particles reaching cutoff energy
- Secondaries created in low-energy neutron interactions

Energy balance
Each main output ends with a global energy budget. The user should always check it to make sure that the calculation is not affected by any unphysical effect or mistake. The budget entries are:

- **Total** energy “deposited” per unit weight of beam/source particle.
  “Deposited” means actually “accounted for”. This value should normally be equal to the average energy of the primary particles, except in the case of abnormal termination before the end of the first history
- Energy deposited by **hadron!and muon dE/dx** (ionisation)
  This is energy deposited by continuous losses of heavy charged particles (hadron, muon and ion stopping power). Note that it depends on several user choices:
  * the thresholds set for delta ray production (energy transferred to electrons is accounted for in the next entry)
  * the transport thresholds (energy of stopping particles is counted in a separate entry below)
  * transport of light ion recoils (if not transported, their energy is deposited at the point of production and is recorded under a separate entry)
- Energy deposited by **electrons and positrons**
  For historical reasons this is labelled as “by electro-magnetic showers”. It may depend on delta ray thresholds (see above)
- Energy deposited by **nuclear recoils and heavy fragments**
  This includes only ions which have not been transported
- Energy of particles below threshold
- **Residual excitation** energy
  This is excitation energy which is left after evaporation of nuclei and not emitted as prompt gamma de-excitation (e.g., radioactive decay energy)
- Energy deposited by **low-energy neutrons**
  This energy is deposited as kerma at the point of collision. It does not include the energy of hydrogen proton recoils and that of protons from the $^{14}$N(n,p)$^{14}$C reaction. These protons are transported explicitly and their energy losses are accounted for as ionisation losses
- **Escaping** the system the system
  More generally, energy entering the blackhole, whether in the external region or in other blackhole regions defined by the user
- Energy of **discarded** particles
  (Remember that neutrinos are always discarded by default)
- Energy of particles **out of time limit**
  Can be different from zero only if the **TIME–CUT** option has been chosen for at least one type of particles (p. 252)
- **Missing** energy
  This entry is calculated as the difference between the total energy and the sum of all the other entries. While it is usually extremely small in pure electromagnetic problems, it can take substantial values (positive or negative) in problems involving nuclear reactions. It is usually positive, since most nuclear reactions are endothermic (very roughly, about 8 MeV are spent to produce each secondary nucleon). However, most low-energy neutron capture reactions are exothermic, and several MeV per capture are emitted as gamma rays. In problems with fissile materials such
as $^{235}\text{U}$, the “missing” energy can reach very large negative values.

Note that a similar, but more detailed energy balance can be obtained event by event with option EVENTDAT (p. 331). See description below, in 9.5.3.

9.2 Scratch file

The scratch file used by FLUKA is of little importance for most users, and actually is deleted automatically by the rfluka script at the end of a successful run. It is mentioned here only for the sake of completeness.

The file, written on output unit LUNGEO (16 by default) is a simple echo of the Combinatorial Geometry input, in a different format. At input time, FLUKA stores temporarily the geometry data on this file and calculates the length of the various geometry arrays, which must include also additional information (e.g., the DNEAR value for each body, see Note 4 to option GLOBAL, p. 146). Then the data are retrieved and the final memory allocation takes place.

9.3 Random number seeds

A file of 97 seeds for the random number generator is written on output unit LUNRAN (2 by default) at the end of each run. The file, which can be read in the next run on an input unit defined by the user with option RANDOMIZE (p. 224, is written in hexadecimal format.

9.4 Error messages

Most error messages are written on output unit LUNERR (15 by default), interspersed with lines giving the number of random number generator calls identical to those printed on standard output (see 9.1 above). This file has generally extension .err. Each error message begins with the name of the routine in which it is originated. Some messages, however (especially if fatal) are printed on standard output. Many error messages (often somewhat cryptic) are printed only for debugging or information purposes and should be of concern to the user unless there is a large number of them: for instance when one of the hadronic event generators fails to conserve some quantity within the strict limits imposed. Example:

```%
Eventq: charge/baryon conservation failure with Nucrin 5 4 11 10
Eventv: ekin+am < pla,ij,igreyt 4.93747684 4.94905223 14 1
```

The following type of message is also not important, and is especially frequent in runs with photonuclear reactions activated:

```*** Umfnst: eexany,eexdel,eexmin,amepar,enenew,np,ikpmx,eexnew,eemax 0.
 0.002 0.004319 1.11498839 1.09082268 2 0 0. 0.0171591096```

Another type of informative message, indicating that a step counter has been reset because it was approaching the upper limit for an integer, is the following:

```*** Emfgeo: Ncoun 2000000000```

Generally, messages issued by the geometry routines are more important. However, fatal ones are written to standard output, for instance:

```EXIT BEING CALLED FROM G1, NEXT REGION NOT FOUND```

In such cases, it is recommended to run the geometry debugger (see command GEOEND on page 143) to find and correct the error.

The following one indicates a real problem if repeated more than a few times:

```GEOFAR, TXYZ: 1. -0.0721463599 -0.409276348 -0.909553612
Nfrom, Nreg, X, Y, Z 1001 3 -0.108787724 -1.26878781 8.78769155```
Geofar: Particle in region 3 (cell # 0) in position 1.000000000E+00 0.000000000E+00 1.000000000E+00
is now causing trouble, requesting a step of 6.258867675E-07 cm
to direction -2.285059979E-01 -9.412338141E-01 2.487245789E-01, error count: 0

[...skipped ...]

Particle index 3 total energy 5.189748600E-04 GeV Nsurf 0
We succeeded in saving the particle: current region is n. 2 (cell # 0)

As it can be seen, the program has some difficulty to track a particle in a certain direction, and it tries
to fix the problem by “nudging” the particle by a small amount, in case the problem is due to a rounding
error near a boundary. If the message appears often, it is recommended to run the geometry debugger
centring around the position reported in order to find if there is an error in the geometry description.

Other geometry errors concern particles with direction cosines not properly normalised. This happens
often with user routines where the user has forgotten to check that the sum of the squares be = 1.0D0
in double precision. For instance, the following message is generally caused by an inaccurate MAGFLD user
routine:

MAGNEW, TXYZ: ...[sum of the squares]... U,V,V: ...[3 cosines]...

A similar message may be issued by the tracking routine GEOFAR:

GEOFAR, TXYZ: ...[sum of the squares]... U,V,V: ...[3 cosines]...
Nfrom, Nreg, X, Y, Z' ...[calling code, region number, particle position]...

Another geometry error message is the following:

****************************************
GEOMETRY SEARCH ARRAY FULL
****************************************

This message indicates that insufficient memory has been allocated for the “contiguity list” (list of zones
contiguous to each zone, see 8.2.7.1, 8.2.7.3). This is not an actual error, but it is suggested that the user could
optimise computer time by increasing the values of the NAZ variable in the geometry region specifications.

9.5 Estimator output

Most estimator results can be printed either as unformatted files or as formatted (ASCII) text, on logical
output units chosen by the user. The only exception is DETECT (p. 104), for which only the unformatted
option is available, and for which the output unit number cannot be chosen (it is always 17).

If the formatted option is chosen, it is possible to write the estimator output as part of the main
output (logical output unit 11). It is also possible to write the results of more than one detector on the same
file. However, the task of post-processing analysis programs is easier if estimators of a different kind (e.g.,
USRBIN and USRBDX), or even detectors with a different structure (e.g., two USRBINs wit a different number
of bins), have their outputs directed to separate files.

All the formatted estimator outputs follow the same pattern:

– The title of the run (as given in input with option TITLE, p. 253).
– Date and time
– Total number of particles followed, and their total weight. (Note that the number of particles is written
  in format 17, that may be insufficient for very large runs. In this case the value will be replaced by a
  line of asterisks)
9.5.1 DETECT output

Option DETECT (p. 104) produces only unformatted output (see DETECT description on p. 104 for instructions on how to read it). As for all other estimators (p. 324), a complete description in clear of the requested scoring is printed on the standard output. For instance:

Detector n. 1 "COINC", Ecuttoff = 3.142E-07 GeV
1024 energy bins 2.717E-03 GeV wide, from 3.700E-03 to 2.786E+00 GeV
  in coincidence with energy deposition in 1 regions, (n.: 3)
  energy deposition in 1 regions, (n.: 4)

Detector n. 2 "ANTICOINC", Ecuttoff = 6.614E-06 GeV
1024 energy bins 6.704E-03 GeV wide, from 7.300E-03 to 6.872E+00 GeV
  in anti-coincidence with energy deposition in 1 regions, (n.: 3)
  energy deposition in 1 regions, (n.: 4)

9.5.2 EVENTBIN output

Option EVENTBIN (p. 127) produces either unformatted or formatted output. The formatted output is seldom used because of its size (the binning results, similar to those produced by option USRBIN (see 9.5.6 below), are printed after each primary event). As for most other estimators, a complete description in clear of the requested scoring is printed also on the standard output. For instance:

Cartesian binning n. 1 "Eventscore", generalised particle n. 208
  X coordinate: from -1.5000E+02 to 1.5000E+02 cm, 75 bins (4.0000E+00 cm wide)
  Y coordinate: from 1.0000E+02 to 2.0000E+02 cm, 50 bins (2.0000E+00 cm wide)
  Z coordinate: from -2.0000E+01 to 1.8000E+02 cm, 20 bins (1.0000E+01 cm wide)
  data will be printed on unit 21 (unformatted if < 0)
  accurate deposition along the tracks requested
  unnormalised data will be printed event by event

The header of the formatted output is practically identical to that of USRBIN, except for the words “event by event” printed after the total number of particles:

```
***** Title (as provided by input command TITLE) ******

DATE: 1/5/5, TIME: 8:39:44

Total number of particles to be followed 8000, event by event

1

Cartesian binning n. 1 "Eventscore", generalised particle n. 208
 X coordinate: from -1.5000E+02 to 1.5000E+02 cm, 75 bins (4.0000E+00 cm wide)
 Y coordinate: from 1.0000E+02 to 2.0000E+02 cm, 50 bins (2.0000E+00 cm wide)
 Z coordinate: from -2.0000E+01 to 1.8000E+02 cm, 20 bins (1.0000E+01 cm wide)
 Data follow in a matrix A(ix,iy,iz), format (1(5x,1p,10(1x,e11.4)))

accurate deposition along the tracks requested

The binning matrix is then printed once for each event (8000 times in the above example), every time preceded by a line:

Binning n: 1, "Eventscore", Event #: 1, Primary(s) weight 1.0000E+00

Binning n: 1, "Eventscore", Event #: 8000, Primary(s) weight 1.0000E+00

As for most other estimators, the matrix is easily read and manipulated by a simple program, using the format reported in the header.
9.5.3 **EVENTDAT output**

Option **EVENTDAT** (p. 129) produces either unformatted or formatted output (see **EVENTDAT** description for instructions on how to read an unformatted output). Unlike other estimators, no information is printed on standard output.

The formatted output begins with run title and run time, followed by a short information about:

- Number of regions
- Number of generalised particle distributions requested

Then, for each primary history:

- History number
- Primary weight
- Primary energy
- Total energy balance for the current history, made of 12 contributions. Some of them correspond to those found in the final balance printed at the end of the standard output, but in this case no normalisation to the primary weight is made. Note that some of the contributions are meaningful only in specific contexts (e.g., if low-energy neutron transport has been requested). No explanation is given about the meaning of each contribution, which must be found here below in the order they are printed:
 1 = energy deposited by ionisation
 2 = energy deposited by π^0, electrons, positrons and photons
 3 = energy deposited by nuclear recoils and heavy fragments
 4 = energy deposited by particles below threshold
 5 = energy leaving the system
 6 = energy carried by discarded particles
 7 = residual excitation energy after evaporation
 8 = energy deposited locally by low-energy neutrons (kerma)
 9 = energy of particles outside the time limit
 10 = energy lost in endothermic nuclear reactions above 50 MeV
 11 = energy lost in endothermic low-energy neutron reactions
 12 = missing energy
- Energy or stars (depending on the generalised particle scoring distribution) deposited or produced in each region during the current history
- Random number generator information to be read in order to reproduce the current sequence (skipping calls)

Example:

```plaintext
***** Event-Data *****
Energy deposition by protons in PbWO4
DATE: 1/ 5/ 5, TIME: 17:42:33
No. of regions. 3 No. of distr. scored 1

Event # 1
Primary Weight 1. Primary Energy 2. GeV
Contributions to the energy deposition
(GeV not normalised to the weight):
0.519268453 0.963951886 0.183623865 0. 0. 0.0999941751 0. 0.0797502846
0. 0. 0.153411314
Generalised scoring distribution # 208
from first to last region:
0. 0.109102778 1.6374917
Seeds after event # 1
*** FADB81 0 0 0 0 0 33B49B1 0 0 0***
```
Event # 2
Primary Weight 1. Primary Energy 2. GeV
Contributions to the energy deposition
(GeV not normalised to the weight):
1.04535329 0.827161014 0.00902671926 0. 0. 0. 0. 0.0179061908 0. 0.
0. 0.100570783
Generalised scoring distribution # 208
from first to last region:
0. 0.00186400011 1.89756525
Seeds after event # 2
*** 1034722 0 0 0 0 0 33B49B1 0 0 0***

9.5.4 RESNUCLEi output

Option RESNUCLEi (p. 225) produces either formatted or unformatted output. For the latter, see RESNUCLEi description for instructions on how to read it.
The formatted output begins with the same heading as the standard output (run title and run time), followed by a short information about:

1. Total number of primary particles followed
2. Total weight of the primaries
3. Number and name of the residual nuclei detector, type of reactions considered (high energy or low energy only, or all), region number
4. Detector volume in cm3
5. Range of Z and N-Z printed
6. Tabulation format

The information reported in 3, 4 and 5 is printed also in the expanded input summary on main output (see (g), p. 324). For instance:

Res. nuclei n. 1 "Al-Region " , "high" energy products, region n. 3
detector volume: 1.0000E+00 cm3
data will be printed on unit 21 (unformatted if < 0)

Res. nuclei n. 2 "Cu-Region ", all products, region n. 4
detector volume: 1.0000E+00 cm3
data will be printed on unit -22 (unformatted if < 0)

On the formatted RESNUCLEi output, the above text is followed by one additional line explaining how to read the result matrix which follows:

Data follow in a matrix A(z,n-z-k), k: -5 format (1(5x,1p,10(1x,e11.4)))

Here is an example of a simple program which can be used to display the same results in a more plain way:

PROGRAM READRN
CHARACTER*125 LINE, FILINP, FILOUT
PARAMETER (MAXZ = 86, MINNMZ = -4, MAXNMZ = 49, K = -5)
DIMENSION RESULT(MAXZ, MINNMZ-K:MAXNMZ-K)

WRITE(*,*) "Filename?"
READ(*,'(A)') FILINP
OPENUNIT1, FILE=FILINP, STATUS='OLD')
LQ = INDEX(FILINP, ',') - 1
FILOUT = FILINP(1:LQ)='.rn'
OPENUNIT2, FILE=FILOUT, STATUS='UNKNOWN')

DO 1 I = 1, 14
 READ1, ('A') LINE ! skip header lines
1 CONTINUE

READ1, (100, END=4) RESULT
4 CONTINUE

WRITE2, ('(A') ' Z A Residual nuclei'
WRITE2, ('(A,/)') per cm**3 per primary'
DO 2 I = 1, MAXZ
 DO 3 J = MINNMZ-K, MAXNMZ-K
 IFRESULTS(I,J) GT 0.D0)
 WRITE2, ('(2I4,1P, G15.6)') I, J+K+2*I, RESULT(I,J)
3 CONTINUE
2 CONTINUE

100 FORMAT(1(5X,1P,10(1X,E11.4)))
END

9.5.5 USRBIDX output

Option USRBIDX (p. 260) produces either formatted or unformatted output (for the latter, see USRBIDX description for instructions on how to read it). As for most other estimators, a complete description in clear of the requested scoring is printed also on the standard output. For instance:

Bdxn n. 1 "bxlogchb", generalised particle n. 202, from region n. 5 to region n. 6
detector area: 6.3664E+01 cm**2
this is a two ways estimator
this is a fluence like estimator
logar. energy binning from 1.0000E-11 to 3.0000E+00 GeV, 200 bins (ratio : 1.1413E+00)
linear angular binning from 0.0000E+00 to 1.2566E+01 sr, 1 bins (1.2566E+01 sr wide)
data will be printed on unit -25 (unformatted if < 0)

After the title and date, and one line reporting the total number of particles and their weight, the header of the formatted output is very similar to the above text:

***** Test boundary crossing estimator

DATE: 1/025/4, TIME: 10:32:59

Total number of particles followed 10000, for a total weight of 1.0000E+04

1

Bdxn n. 5 "bxlogchf", generalised particle n. 202, from region n. 5 to region n. 6
detector area: 6.3664E+01 cm**2
this is a two ways estimator
this is a fluence like estimator
logar. energy binning from 1.0000E-11 to 3.0000E+00 GeV, 200 bins (ratio : 1.1413E+00)
linear angular binning from 0.0000E+00 to 1.2566E+01 sr, 1 bins (1.2566E+01 sr wide)
Data follow in a matrix A(ie,ia), format (1(5X,1P,10(1X,E11.4)))

As for most other estimators, the matrix is easily read and manipulated by a simple program, using the format reported in the header. It can also be cut and pasted into a spreadsheet.
9.5.6 **USRBIN output**

Option **USRBIN** (p. 263) produces either formatted or unformatted output (for the latter, see **USRBIN** description for instructions on how to read it). As for most other estimators, a complete description in clear of the requested scoring is printed also on the standard output. For instance:

```
Cartesian binning n. 1 "Cufront ", generalised particle n. 208
  X coordinate: from -2.1100E+01 to 5.5910E+00 cm, 58 bins (1.0003E-01 cm wide)
  Y coordinate: from 0.0000E+00 to 5.4010E+00 cm, 53 bins (1.0191E-01 cm wide)
  Z coordinate: from 0.0000E+00 to -1.0000E-03 cm, 1 bins (-1.0000E-03 cm wide)
  +/- Y symmetry requested and implemented
  accurate deposition along the tracks requested
  normalised (per unit volume) data will be printed at the end of the run
```

After the title and date, and one line reporting the total number of particles and their weight, the header of the formatted output is very similar to the above text:

```
***** Roman Pot: box with windows *****

DATE: 12/ 8/ 3, TIME: 15:57:27

Total number of particles followed 30000, for a total weight of 3.0000E+04
```

As for most other estimators, the matrix is easily read and manipulated by a simple program, using the format reported in the header. It can also be cut and pasted into a spreadsheet.

9.5.7 **USRCOLL output**

Option **USRCOLL** (p. 271) produces either formatted or unformatted output (for the latter, see **USRTRACK** description for instructions on how to read it - the two options produce output with identical format).

As for most other estimators, a complete description in clear of the requested scoring is printed also on the standard output. For instance:

```
Coll n. 1 "collogchf ", generalised particle n. 202, region n. 6
  detector volume: 4.0000E+01 cm**3
  Warning! Collision estimators not implemented for electrons/positrons and photons
  logar. energy binning from 1.0000E-11 to 1.0000E+00 GeV, 1000 bins (ratio : 1.0257E+00)
  data will be printed on unit 24 (unformatted if < 0)
```

After the title and date, and one line reporting the total number of particles and their weight, the header of the formatted output is very similar to the above text:

```
***** Test collision estimator *****

DATE: 1/ 5/ 5, TIME: 18:32:28

Total number of particles followed 100000, for a total weight of 1.0000E+05
```
As for most other estimators, the matrix is easily read and manipulated by a simple program, using the format reported in the header. It can also be cut and pasted into a spreadsheet.

9.5.8 USRTRACK output

Option USRTRACK (p. 277) produces either formatted or unformatted output (for the latter, see USRTRACK description for instructions on how to read it).

As for most other estimators, a complete description in clear of the requested scoring is printed also on the standard output. For instance:

```
Track n. 1 "tklogchf", generalised particle n. 202, region n. 6
detector volume: 4.0000E+01 cm**3
logar. energy binning from 1.0000E-11 to 1.0000E+00 GeV, 1000 bins (ratio : 1.0257E+00)
data follow in a vector A(ie), format (1(5x,1p,10(1x,e11.4)))
```

As for most other estimators, the matrix is easily read and manipulated by a simple program, using the format reported in the header. It can also be cut and pasted into a spreadsheet.

9.5.9 USRYIELD output

Option USRYIELD (p. 281) produces either formatted or unformatted output (for the latter, see USRYIELD description for instructions on how to read it).

As for most other estimators, a complete description in clear of the requested scoring is printed also on the standard output. For instance:

```
Yield n. 1 "TotPi+(E)", generalised particle n. 13, from region n. 3 to region n. 2
user normalisation: 1.0000E+00, adopted cross section (if any): 1.0000E+00 mb
logar. 1st variable binning from 1.0000E-03 to 5.0000E+01 100 bins (ratio : 1.1143E+00)
2nd variable ranges from 0.0000E+00 to 3.1416E+00
1st variable is: Laboratory Kinetic Energy
2nd variable is: Laboratory Angle (radians)
data will be printed on unit 21 (unformatted if < 0)
```

As for most other estimators, the matrix is easily read and manipulated by a simple program, using the format reported in the header. It can also be cut and pasted into a spreadsheet.
***** Yield calculation *****

DATE: 1/5/5, TIME: 18:54:19

Total number of particles followed 10, for a total weight of 1.0000E+01

Yield n. 1 "TotPi+(E)" , generalised particle n. 13, from region n. 3 to region n. 2
user normalisation: 1.0000E+00, adopted cross section (if any): 1.0000E+00 mb
logar. 1st variable binning from 1.0000E-03 to 5.0000E+01 100 bins (ratio : 1.1143E+00)
2nd variable ranges from 0.0000E+00 to 3.1416E+00
1st variable is: Laboratory Kinetic Energy
2nd variable is: Laboratory Angle (radians)
Data follow in a vector A(ie), format (1(5x,1p,10(1x,e11.4)))

As for most other estimators, the matrix is easily read and manipulated by a simple program, using
the format reported in the header. It can also be cut and pasted into a spreadsheet.

9.6 USERDUMP output

As a default, no formatted output is available for the USERDUMP option (p. 255). A description of the
unformatted collision file is given in Chap. 11 (p. 348). However, the user can modify the MGDRAW user
routine as described in 13.2.13 (p. 374), to obtain any desired output of selected events in the preferred
format.

9.7 RAY output

Tracking RAY pseudo-particles (Chap. 14, p. 392) produces only an unformatted file. No formatted output
is available.

9.8 User-generated output

Users can generate their own output in any user routine. However, one special routine, USROUT (p. 390), has
been designed for this purpose. It is called on request by command USROCALL (p. 276), usually at the end
of the run, after command START. The desired output can be printed on the standard output file (logical
unit LUNOUT), or on one or more separate files. These can be opened explicitly with a normal Fortran OPEN
statement or with a FLUKA OPEN command (p. 187). Otherwise, any WRITE(xx,...) statement will cause
a file to be opened by default with a name fort.xx (ftn.xx on some systems), where xx is a logical unit
number. In any case, it is important that the logical unit numbers be ≥ 21 (unit numbers up to 20 are
internally reserved for FLUKA).
Chapter 10

Low-energy neutrons in FLUKA

Low-energy neutron transport is activated by option LOW-NEUT, but it is requested by defaults with most of the options available with the DEFAULTS command (CALORIMetry, EET/TRANSmut, HADROTherapy, ICARUS, NEUTRONS, NEW-DEFAults, PRECISION, SHIELDINg), see p. 95. The only exception is the DEFAULTS option EM-CASCAdes. However, command LOW-NEUT may be still necessary in order to define the cross section library used, or to issue special requests.

10.1 Multigroup neutron transport

Low-energy neutron transport is activated by option LOW-NEUT (p. 165)

Transport of neutrons with energies lower than a certain energy is performed in FLUKA by a multigroup algorithm. The energy boundary below which multigroup transport takes over depends in principle on the cross section library used. This energy is 20 MeV for the 260-groups library which is distributed with the code.

The multi-group technique, widely used in low-energy neutron transport programs, consists in dividing the energy range of interest in a given number of intervals ("energy groups"). Elastic and inelastic reactions are simulated not as exclusive processes, but by group-to-group transfer probabilities forming the so-called downscattering matrix.

The scattering transfer probability between different groups is represented by a Legendre polynomial expansion truncated at the \((N+1)\)th term, as shown in the equation:

\[
\sigma_s(g \rightarrow g', \mu) = \sum_{i=0}^{N} \frac{2i + 1}{4\pi} P_i(\mu) \sigma^i_s(g \rightarrow g')
\]

where \(\mu = \Omega \cdot \Omega'\) is the scattering angle and \(N\) is the chosen Legendre order of anisotropy.

The particular implementation used in FLUKA has been derived from that of the MORSE program [60] (although the relevant part of the code has been completely rewritten). In the FLUKA neutron cross section library, the energy range up to 20 MeV is divided into 260 energy groups of approximately equal logarithmic width (31 of which are thermal). The angular probabilities for inelastic scattering are obtained by a discretisation of a P5 Legendre polynomial expansion of the actual scattering distribution which preserves its first 6 moments. The generalised Gaussian quadrature scheme to generate the discrete distribution is rather complicated: details can be found in the MORSE manual [60]. The result, in the case of a P5 expansion, is a set of 6 equations giving 3 discrete polar angles (actually angle cosines) and 3 corresponding cumulative probabilities.

In the library, the first cross section table for an isotope (isotropic term \(P_0\)) contains the transfer probabilities from each group \(g\) to any group \(g'\): \(\sum_{g \rightarrow g'} / \sum_g\) where \(\sum_g\) is the sum over all the \(g'\) (including the “in-scattering” term \(g' = g\)). The next cross section table provides the \(P_1\) term for the same isotope, the next the \(P_2\) multigroup cross sections, etc.

10.1.1 Possible artefacts

The multigroup scheme adopted in FLUKA is reliable and much faster than any possible approach using continuous cross sections. However, it is important to remember that there are two rare situations where the group approximation could give bad results.

\[\text{In FLUKA, there are two neutron energy thresholds: one for high-energy neutrons (set by option PART-THR) and one for low-energy neutrons (set by option LOW-BIAS). The high-energy neutron threshold represents in fact the energy boundary between continuous and discontinuous neutron transport.}\]
One of such situations may occur when each neutron is likely to scatter only once (e.g., in a very thin foil) before being scored: an artefact then is possible, due to the discrete angular distribution. In practice the problem vanishes entirely, however, as soon as there is the possibility of two or more scatterings: it must be kept in mind, in fact, that after a collision only the polar angle is sampled from a discrete distribution, while the azimuthal angle is chosen randomly from a uniform distribution. In addition, the 3 discrete angles are different for each $g \rightarrow g'$ combination and for each element or isotope. Thus, any memory of the initial direction is very quickly lost after just a few collisions.

The second possible artefact is not connected with the angular but with the energy structure of the cross sections used. The group structure is necessarily coarse with respect to the resonance structure in many materials. A resonance in a material present in a dilute mixture or as a small piece cannot affect much a smooth neutron flux (case of so-called “infinite dilution”) but if an isotope is very pure and is present in large amounts, it can act as a “neutron sink”, causing sharp dips in the neutron spectrum corresponding to each resonance. This effect, which results in a lower reaction rate $\sigma \phi$, is called self-shielding and is necessarily lost in the process of cross section averaging over the width of each energy group, unless a special correction is made. Such corrected cross section sets with different degrees of self-shielding have been included in the Fluka libraries for a few important elements (Al, Fe, Cu, Au, Pb, Bi): but it is the responsibility of the user to select the set with the degree of self-shielding most suitable in each different case. It is worth stressing that non-self-shielded materials are perfectly adequate in most practical cases, because the presence of even small amounts of impurities is generally sufficient to smooth out the effect. On the other hand, in regions of non-resolved resonances the multigroup approach is known to give very good results anyway.

10.2 Pointwise transport

For a few isotopes only, neutron transport can be done also using continuous (pointwise) cross sections. For 1H, 6Li and 10B, it is applied as a user option (above 10 eV in 1H, for all reactions in 6Li, and only for the reaction 10B(n,α)7Li in 10B). For the reaction 14N(n,p)14C, pointwise neutron transport is always applied.

10.3 Secondary particle production

10.3.1 Gamma generation

In general, gamma generation by low-energy neutrons (but not gamma transport) is treated in the frame of a multigroup scheme too. A downscattering matrix provides the probability, for a neutron in a given energy group, to generate a photon in each of a number of gamma energy groups (42 in the Fluka library), covering the range from 1 keV to 50 MeV. With the exception of a few important gamma lines, such as the 2.2 MeV transition of Deuterium and the 478 keV photon from 10B(n,α) reaction, the actual energy of the generated photon is sampled randomly in the energy interval corresponding to its gamma group. Note that the gamma generation matrix does not include only capture gammas, but also gammas produced in other inelastic reactions such as (n,n').

For a few elements (Cd, Xe, Ar), for which evaluated gamma production cross sections could not be found, a different algorithm, based on published energy level data, has been provided to generate explicitly the full cascade of monoenergetic gammas [77].

In all cases, the generated gammas are transported in the same way as all other photons in Fluka, using continuous cross sections and an explicit and detailed description of all their interactions with matter, allowing for the generation of electrons, positrons, and even secondary particles from photonuclear reactions.

10.3.2 Secondary neutrons

In the multigroup transport scheme, the production of secondary neutrons via (n,xn) reactions is taken into account implicitly by the so-called non-absorption probability, a group-dependent factor by which the weight of a neutron is multiplied after exiting a collision. If the only possible reactions are capture and scattering, the non-absorption probability is < 1, but at energies above the threshold for (n,2n) reaction it can take values larger than 1.

Fission neutrons, however, are treated separately and created explicitly using a group-dependent
fission probability. They are assumed to be emitted isotropically and their energy is sampled from the fission spectrum appropriate for the relevant isotope and neutron energy. The fission neutron multiplicity is obtained separately from data extracted from European, American and Japanese databases.

10.3.3 Generation of charged particles

Recoil protons and protons from N(n,p) reaction are produced and transported explicitly, taking into account the detailed kinematics of elastic scattering, continuous energy loss with energy straggling, delta ray production, multiple and single scattering.

The same applies to light fragments (α, 3H) from neutron capture in 6Li and 10B, if pointwise transport has been requested by the user. All other charged secondaries, including fission fragments (see 10.3.4), are not transported but their energy is deposited at the point of interaction (kerma approximation).

10.3.4 Residual nuclei

For many materials, but not for all, group-dependent information on the residual nuclei produced by low-energy neutron interactions is available in the Fluka libraries. This information can be used to score residual nuclei, but it is important that the user check its availability before requesting scoring.

Fission fragments are sampled separately, using evaluated data extracted from European, American and Japanese databases.

10.4 The Fluka neutron cross section library

As explained in Chap. 3, an unformatted cross section data set, or library, is needed for low-energy neutron transport. For a description of the algorithms used for tracking low-energy neutrons, see 10.1. Other useful information can be found in the Notes to options LOW–NEUT (p. 165), LOW–MAT (p. 163) and LOW–BIAS (p. 159).

The Legendre expansion used in Fluka is P_5, i.e. at each collision the polar scattering angle is sampled from three discrete values, such that the first 6 moments of the angular distribution are preserved (the azimuthal angle is sampled instead from a uniform distribution between 0 and 2π). The energy group structure depends on the cross section set used. Here below the group structure of the currently available sets is reported, and a list of the materials they contain.

The default Fluka neutron cross section library (originally prepared by G. Panini of ENEA [57]) contains more than 250 different materials (natural elements or single nuclides), selected for their interest in physics, dosimetry and accelerator engineering. This library has a larger number of groups and a better resolution in the thermal energy range in respect to the original one.

The preparation of the library involves the use of a specialised code [141] and several ad-hoc programs written to adjust the output to the particular structure of these libraries. The library is continuously enriched and updated on the basis of the most recent evaluations (ENDF/B, JEF, JENDL etc.). The library format is similar to that known as ANISN [62] (or FIDO) format, but it has been modified to include kerma factor data, residual nuclei and partial exclusive cross sections when available. The latter are not used directly by Fluka, but can be folded over calculated spectra to get reaction rates and induced activities.

More materials can be made available on request, if good evaluations are available. Some cross sections are available in the library at two or three different temperatures mainly in view of simulations of calorimeters containing cryogenic scintillators. Doppler broadening is taken into account.

Note that the energy groups are numbered in order of decreasing energy (group 1 corresponds to the highest energy).

The default Fluka neutron cross section library has 260 neutron groups and 42 gamma groups. Gamma energy groups are used only for (n,\gamma) production, since transport of photons in Fluka is continuous in energy and angle and is performed through the EMF module).
Hydrogen cross sections, which have a particular importance in neutron slowing-down, are available also for different types of molecular binding (free, \(\text{H}_2\text{O}, \text{CH}_2 \)).

At present, the FLUKA libraries contain only single isotopes or elements of natural isotopic composition, although the possibility exists to include in future also pre-mixed materials.

Neutron energy deposition in most materials is calculated by means of kerma factors (including contributions from low-energy fission). However, recoil protons and protons from N(p,p) reaction are produced and transported explicitly (see 10.3.3 above).

Each material is identified by an alphanumeric name (a string not longer than 8 characters, all in upper case), and by three integer identifiers. Correspondence with FLUKA materials (standard or user-defined) is based on any combination of name and zero or more identifiers. In case of ambiguity, the first material in the list fulfilling the combination is selected. (See command LOW-MAT, p. 163, for more details).

The convention generally used (but there may be exceptions) for the three identifiers is:

1. Atomic number
2. Mass number, or natural isotopic composition if negative (exceptions are possible in order to distinguish between data from different sources referring to the same nuclide)
3. Neutron temperature in degrees Kelvin

10.4.1 260 neutron, 42 gamma group library

10.4.1.1 Neutron and gamma energy groups

The neutron group structure of the 260-group data set is reported in Table 10.1. The corresponding gamma 42-group structure is reported in Table 10.2.

<table>
<thead>
<tr>
<th>Neutron group number</th>
<th>Upper limit number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0000000 \cdot 10^{-2}</td>
<td>2</td>
<td>1.964033 \cdot 10^{-2}</td>
<td>3</td>
<td>1.915541 \cdot 10^{-2}</td>
<td>4</td>
<td>1.868246 \cdot 10^{-2}</td>
</tr>
<tr>
<td>5</td>
<td>1.822119 \cdot 10^{-2}</td>
<td>6</td>
<td>1.777131 \cdot 10^{-2}</td>
<td>7</td>
<td>1.733253 \cdot 10^{-2}</td>
<td>8</td>
<td>1.690459 \cdot 10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>1.648721 \cdot 10^{-2}</td>
<td>10</td>
<td>1.608014 \cdot 10^{-2}</td>
<td>11</td>
<td>1.568312 \cdot 10^{-2}</td>
<td>12</td>
<td>1.529590 \cdot 10^{-2}</td>
</tr>
<tr>
<td>13</td>
<td>1.491825 \cdot 10^{-2}</td>
<td>14</td>
<td>1.454991 \cdot 10^{-2}</td>
<td>15</td>
<td>1.419068 \cdot 10^{-2}</td>
<td>16</td>
<td>1.384031 \cdot 10^{-2}</td>
</tr>
<tr>
<td>17</td>
<td>1.349859 \cdot 10^{-2}</td>
<td>18</td>
<td>1.316531 \cdot 10^{-2}</td>
<td>19</td>
<td>1.284025 \cdot 10^{-2}</td>
<td>20</td>
<td>1.272323 \cdot 10^{-2}</td>
</tr>
<tr>
<td>21</td>
<td>1.221403 \cdot 10^{-2}</td>
<td>22</td>
<td>1.191246 \cdot 10^{-2}</td>
<td>23</td>
<td>1.161834 \cdot 10^{-2}</td>
<td>24</td>
<td>1.131348 \cdot 10^{-2}</td>
</tr>
<tr>
<td>25</td>
<td>1.105171 \cdot 10^{-2}</td>
<td>26</td>
<td>1.077884 \cdot 10^{-2}</td>
<td>27</td>
<td>1.051271 \cdot 10^{-2}</td>
<td>28</td>
<td>1.025315 \cdot 10^{-2}</td>
</tr>
<tr>
<td>29</td>
<td>1.000000 \cdot 10^{-2}</td>
<td>30</td>
<td>9.753099 \cdot 10^{-3}</td>
<td>31</td>
<td>9.512294 \cdot 10^{-3}</td>
<td>32</td>
<td>9.277435 \cdot 10^{-3}</td>
</tr>
<tr>
<td>33</td>
<td>9.048374 \cdot 10^{-3}</td>
<td>34</td>
<td>8.824969 \cdot 10^{-3}</td>
<td>35</td>
<td>8.607080 \cdot 10^{-3}</td>
<td>36</td>
<td>8.394570 \cdot 10^{-3}</td>
</tr>
<tr>
<td>37</td>
<td>8.187308 \cdot 10^{-3}</td>
<td>38</td>
<td>7.985162 \cdot 10^{-3}</td>
<td>39</td>
<td>7.788008 \cdot 10^{-3}</td>
<td>40</td>
<td>7.595721 \cdot 10^{-3}</td>
</tr>
<tr>
<td>41</td>
<td>7.408128 \cdot 10^{-3}</td>
<td>42</td>
<td>7.225274 \cdot 10^{-3}</td>
<td>43</td>
<td>7.046881 \cdot 10^{-3}</td>
<td>44</td>
<td>6.872893 \cdot 10^{-3}</td>
</tr>
<tr>
<td>45</td>
<td>6.703200 \cdot 10^{-3}</td>
<td>46</td>
<td>6.647595 \cdot 10^{-3}</td>
<td>47</td>
<td>6.592384 \cdot 10^{-3}</td>
<td>48</td>
<td>6.537698 \cdot 10^{-3}</td>
</tr>
<tr>
<td>49</td>
<td>6.376282 \cdot 10^{-3}</td>
<td>50</td>
<td>6.218851 \cdot 10^{-3}</td>
<td>51</td>
<td>5.915554 \cdot 10^{-3}</td>
<td>52</td>
<td>5.915554 \cdot 10^{-3}</td>
</tr>
<tr>
<td>53</td>
<td>5.769498 \cdot 10^{-3}</td>
<td>54</td>
<td>5.488116 \cdot 10^{-3}</td>
<td>55</td>
<td>5.220458 \cdot 10^{-3}</td>
<td>56</td>
<td>4.965853 \cdot 10^{-3}</td>
</tr>
<tr>
<td>57</td>
<td>4.843246 \cdot 10^{-3}</td>
<td>58</td>
<td>4.723666 \cdot 10^{-3}</td>
<td>59</td>
<td>4.607038 \cdot 10^{-3}</td>
<td>60</td>
<td>4.493290 \cdot 10^{-3}</td>
</tr>
<tr>
<td>61</td>
<td>4.274149 \cdot 10^{-3}</td>
<td>62</td>
<td>4.065967 \cdot 10^{-3}</td>
<td>63</td>
<td>3.867410 \cdot 10^{-3}</td>
<td>64</td>
<td>3.678794 \cdot 10^{-3}</td>
</tr>
<tr>
<td>65</td>
<td>3.499377 \cdot 10^{-3}</td>
<td>66</td>
<td>3.328711 \cdot 10^{-3}</td>
<td>67</td>
<td>3.246525 \cdot 10^{-3}</td>
<td>68</td>
<td>3.166368 \cdot 10^{-3}</td>
</tr>
<tr>
<td>69</td>
<td>3.088190 \cdot 10^{-3}</td>
<td>70</td>
<td>3.011942 \cdot 10^{-3}</td>
<td>71</td>
<td>2.865048 \cdot 10^{-3}</td>
<td>72</td>
<td>2.725318 \cdot 10^{-3}</td>
</tr>
<tr>
<td>73</td>
<td>2.592403 \cdot 10^{-3}</td>
<td>74</td>
<td>2.465970 \cdot 10^{-3}</td>
<td>75</td>
<td>2.425130 \cdot 10^{-3}</td>
<td>76</td>
<td>2.385295 \cdot 10^{-3}</td>
</tr>
<tr>
<td>77</td>
<td>2.365253 \cdot 10^{-3}</td>
<td>78</td>
<td>2.345703 \cdot 10^{-3}</td>
<td>79</td>
<td>2.306855 \cdot 10^{-3}</td>
<td>80</td>
<td>2.268877 \cdot 10^{-3}</td>
</tr>
<tr>
<td>81</td>
<td>2.231302 \cdot 10^{-3}</td>
<td>82</td>
<td>2.122480 \cdot 10^{-3}</td>
<td>83</td>
<td>2.018965 \cdot 10^{-3}</td>
<td>84</td>
<td>1.969117 \cdot 10^{-3}</td>
</tr>
<tr>
<td>85</td>
<td>1.920499 \cdot 10^{-3}</td>
<td>86</td>
<td>1.873082 \cdot 10^{-3}</td>
<td>87</td>
<td>1.826835 \cdot 10^{-3}</td>
<td>88</td>
<td>1.737739 \cdot 10^{-3}</td>
</tr>
</tbody>
</table>

...Continues...
Neutron library

341
. . . Continues. . .

Neutron
group
number

Upper
limit
GeV

89
93
97
101
105
109
113
117
121
125
129
133
137
141
145
149
153
157
161
165
169
173
177
181
185
189
193
197
201
205
209
213
217
221
225
229

1.652989 · 10−3
1.495686 · 10−3
1.224564 · 10−3
1.053992 · 10−3
9.536916 · 10−4
7.808167 · 10−4
6.392786 · 10−4
5.366469 · 10−4
4.735892 · 10−4
3.877421 · 10−4
3.174564 · 10−4
2.872464 · 10−4
2.472353 · 10−4
2.024191 · 10−4
1.699221 · 10−4
1.499558 · 10−4
1.227734 · 10−4
8.651695 · 10−5
5.946217 · 10−5
4.086771 · 10−5
3.182781 · 10−5
2.417552 · 10−5
1.930454 · 10−5
1.170880 · 10−5
7.101744 · 10−6
4.528272 · 10−6
3.354626 · 10−6
2.612586 · 10−6
1.841058 · 10−6
1.363889 · 10−6
5.829466 · 10−7
2.144541 · 10−7
7.889325 · 10−8
2.902320 · 10−8
1.067704 · 10−8
3.927864 · 10−9

90
94
98
102
106
110
114
118
122
126
130
134
138
142
146
150
154
158
162
166
170
174
178
182
186
190
194
198
202
206
210
214
218
222
226

1.612176 · 10−3
1.422741 · 10−3
1.194330 · 10−3
1.002588 · 10−3
9.071795 · 10−4
7.427358 · 10−4
6.081006 · 10−4
5.233971 · 10−4
4.504920 · 10−4
3.688317 · 10−4
3.096183 · 10−4
2.801543 · 10−4
2.351775 · 10−4
1.925470 · 10−4
1.657268 · 10−4
1.426423 · 10−4
1.167857 · 10−4
7.635094 · 10−5
5.656217 · 10−5
3.606563 · 10−5
2.808794 · 10−5
2.357862 · 10−5
1.703620 · 10−5
1.033298 · 10−5
6.267267 · 10−6
4.307425 · 10−6
3.035391 · 10−6
2.485168 · 10−6
1.665858 · 10−6
1.234098 · 10−6
4.539993 · 10−7
1.670170 · 10−7
6.144212 · 10−8
2.260329 · 10−8
8.315287 · 10−9

91
95
99
103
107
111
115
119
123
127
131
135
139
143
147
151
155
159
163
167
171
175
179
183
187
191
195
199
203
207
211
215
219
223
227

1.572372 · 10−3
1.353353 · 10−3
1.164842 · 10−3
9.778344 · 10−4
8.629359 · 10−4
7.065121 · 10−4
5.784432 · 10−4
5.104743 · 10−4
4.285213 · 10−4
3.508435 · 10−4
3.019738 · 10−4
2.732372 · 10−4
2.237077 · 10−4
1.831564 · 10−4
1.616349 · 10−4
1.356856 · 10−4
1.110900 · 10−4
6.737947 · 10−5
5.247518 · 10−5
3.517517 · 10−5
2.605841 · 10−5
2.187491 · 10−5
1.503439 · 10−5
9.118820 · 10−6
5.530844 · 10−6
4.097350 · 10−6
2.863488 · 10−6
2.248673 · 10−6
1.584613 · 10−6
9.611165 · 10−7
3.535750 · 10−7
1.300730 · 10−7
4.785117 · 10−8
1.760346 · 10−8
6.475952 · 10−9

92
96
100
104
108
112
116
120
124
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184
188
192
196
200
204
208
212
216
220
224
228

1.533550 · 10−3
1.287349 · 10−3
1.108032 · 10−3
9.616402 · 10−4
8.208500 · 10−4
6.720551 · 10−4
5.502322 · 10−4
4.978707 · 10−4
4.076220 · 10−4
3.337327 · 10−4
2.945181 · 10−4
2.599113 · 10−4
2.127974 · 10−4
1.742237 · 10−4
1.576442 · 10−4
1.290681 · 10−4
9.803655 · 10−5
6.251086 · 10−5
4.630919 · 10−5
3.430669 · 10−5
2.478752 · 10−5
2.133482 · 10−5
1.326780 · 10−5
8.047330 · 10−6
5.004514 · 10−6
3.707435 · 10−6
2.746536 · 10−6
2.034684 · 10−6
1.507331 · 10−6
7.485183 · 10−7
2.753645 · 10−7
1.013009 · 10−7
3.726653 · 10−8
1.370959 · 10−8
5.043477 · 10−9

230
234
238
242
246
250
254
258

3.059023 · 10−9
1.125352 · 10−9
6.250621 · 10−10
1.929290 · 10−10
4.189910 · 10−11
9.099382 · 10−12
1.976147 · 10−12
4.291671 · 10−13

231
235
239
243
247
251
255
259

Thermal groups
2.382370 · 10−9
232
1.855391 · 10−9
8.764248 · 10−10
236
8.336811 · 10−10
5.315785 · 10−10
240
4.139938 · 10−10
−10
1.317041 · 10
244
8.990856 · 10−11
−11
2.860266 · 10
248
1.952578 · 10−11
6.211746 · 10−12
252
4.240485 · 10−12
−12
1.349028 · 10
256
9.209218 · 10−13
−13
2.929734 · 10
260
2.000000 · 10−13
−14
lower limit 1.000000 · 10

233
237
241
245
249
253
257

1.444980 · 10−9
6.825603 · 10−10
2.826153 · 10−10
6.137660 · 10−11
1.332938 · 10−11
2.894792 · 10−12
6.286727 · 10−13


Table 10.2: Gamma energy group structure of the 260-group library

<table>
<thead>
<tr>
<th>Gamma group number</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.000000 · 10⁻²</td>
<td>2</td>
<td>3.000000 · 10⁻²</td>
<td>3</td>
<td>2.000000 · 10⁻²</td>
<td>4</td>
<td>1.400000 · 10⁻²</td>
</tr>
<tr>
<td>5</td>
<td>1.200000 · 10⁻²</td>
<td>6</td>
<td>1.000000 · 10⁻²</td>
<td>7</td>
<td>8.000000 · 10⁻³</td>
<td>8</td>
<td>7.500000 · 10⁻³</td>
</tr>
<tr>
<td>9</td>
<td>7.000000 · 10⁻³</td>
<td>10</td>
<td>6.500000 · 10⁻³</td>
<td>11</td>
<td>6.000000 · 10⁻³</td>
<td>12</td>
<td>5.500000 · 10⁻³</td>
</tr>
<tr>
<td>13</td>
<td>5.000000 · 10⁻³</td>
<td>14</td>
<td>4.500000 · 10⁻³</td>
<td>15</td>
<td>4.000000 · 10⁻³</td>
<td>16</td>
<td>3.500000 · 10⁻³</td>
</tr>
<tr>
<td>17</td>
<td>3.000000 · 10⁻³</td>
<td>18</td>
<td>2.500000 · 10⁻³</td>
<td>19</td>
<td>2.000000 · 10⁻³</td>
<td>20</td>
<td>1.660000 · 10⁻³</td>
</tr>
<tr>
<td>21</td>
<td>1.500000 · 10⁻³</td>
<td>22</td>
<td>1.340000 · 10⁻³</td>
<td>23</td>
<td>1.330000 · 10⁻³</td>
<td>24</td>
<td>1.000000 · 10⁻³</td>
</tr>
<tr>
<td>25</td>
<td>8.000000 · 10⁻⁴</td>
<td>26</td>
<td>7.000000 · 10⁻⁴</td>
<td>27</td>
<td>6.000000 · 10⁻⁴</td>
<td>28</td>
<td>5.120000 · 10⁻⁴</td>
</tr>
<tr>
<td>29</td>
<td>5.100000 · 10⁻⁴</td>
<td>30</td>
<td>4.500000 · 10⁻⁴</td>
<td>31</td>
<td>4.000000 · 10⁻⁴</td>
<td>32</td>
<td>3.000000 · 10⁻⁴</td>
</tr>
<tr>
<td>33</td>
<td>2.000000 · 10⁻⁴</td>
<td>34</td>
<td>1.500000 · 10⁻⁴</td>
<td>35</td>
<td>1.000000 · 10⁻⁴</td>
<td>36</td>
<td>7.500000 · 10⁻⁵</td>
</tr>
<tr>
<td>37</td>
<td>7.000000 · 10⁻⁵</td>
<td>38</td>
<td>6.000000 · 10⁻⁵</td>
<td>39</td>
<td>4.500000 · 10⁻⁵</td>
<td>40</td>
<td>3.000000 · 10⁻⁵</td>
</tr>
<tr>
<td>41</td>
<td>2.000000 · 10⁻⁵</td>
<td>42</td>
<td>1.000000 · 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lower limit 1.000000 · 10⁻⁶

10.4.1.2 New library: Available materials

A list of the materials for which cross sections are available in the new 260-group library is reported in Table 10.3. The different columns of the Table contain, in the order:

[1]: the symbol of the nuclide (if the atomic mass number is not present, the cross sections refer to the natural element composition)

[2]: a short description of the material

[3]: the temperature in degrees Kelvin at which the cross sections have been processed

[4]: the evaluated data file (origin) from which the data are derived

[5]: the availability of information on production of residual nuclei

[6]: the name with which FLUKA refers to that material

[7]: the first numerical identifier of the material

[8]: the second numerical identifier of the material

[9]: the third numerical identifier of the material

[10]: the availability of information on gamma production

Table 10.3: Materials for which cross sections are available in the new FLUKA neutron library

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂O bound nat. Hydrogen</td>
<td>K</td>
<td>Origin</td>
<td>Residual nuclei</td>
<td>Name</td>
<td>Identifiers</td>
<td>n,γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROGEN</td>
<td>1</td>
<td>-2</td>
<td>296</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CH₂ bound nat. Hydrogen</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROGEN</td>
<td>1</td>
<td>-3</td>
<td>296</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>Free gas natural Hydrogen</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROGEN</td>
<td>1</td>
<td>-5</td>
<td>296</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>Free gas natural Hydrogen</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROGEN</td>
<td>1</td>
<td>-2</td>
<td>87</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>Free gas natural Hydrogen</td>
<td>4</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROGEN</td>
<td>1</td>
<td>-5</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>Free gas natural Hydrogen</td>
<td>430</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROGEN</td>
<td>1</td>
<td>-5</td>
<td>430</td>
<td>Yes</td>
</tr>
<tr>
<td>1H</td>
<td>H₂O bound Hydrogen 1</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROGEN–I</td>
<td>1</td>
<td>+1</td>
<td>296</td>
<td>Yes</td>
</tr>
</tbody>
</table>

...Continues...
<table>
<thead>
<tr>
<th>Material</th>
<th>K</th>
<th>Origin</th>
<th>Residual nuclei</th>
<th>Name</th>
<th>Identifiers</th>
<th>n,γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂ bound Hydrogen 1</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROG-1</td>
<td>1 +11</td>
<td>296</td>
</tr>
<tr>
<td>Free gas Hydrogen 1</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROG-1</td>
<td>1 +31</td>
<td>296</td>
</tr>
<tr>
<td>Free gas Hydrogen 1</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HYDROG-1</td>
<td>1 +1</td>
<td>87</td>
</tr>
<tr>
<td>D2O bound Deuterium</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>DEUTERIUM</td>
<td>1 +2</td>
<td>296</td>
</tr>
<tr>
<td>Free gas Deuterium</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>DEUTERIUM</td>
<td>1 +32</td>
<td>296</td>
</tr>
<tr>
<td>Free gas Deuterium</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>DEUTERIUM</td>
<td>1 +2</td>
<td>87</td>
</tr>
<tr>
<td>Free gas Tritium</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TRITIUM</td>
<td>1 +4</td>
<td>296</td>
</tr>
<tr>
<td>Free gas Tritium</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TRITIUM</td>
<td>1 +4</td>
<td>87</td>
</tr>
<tr>
<td>Natural Helium</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM</td>
<td>2 -2</td>
<td>296</td>
</tr>
<tr>
<td>Natural Helium</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM</td>
<td>2 -2</td>
<td>87</td>
</tr>
<tr>
<td>Natural Helium</td>
<td>4</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM</td>
<td>2 -2</td>
<td>4</td>
</tr>
<tr>
<td>Helium 3</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM-3</td>
<td>2 +3</td>
<td>296</td>
</tr>
<tr>
<td>Helium 3</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM-3</td>
<td>2 +3</td>
<td>87</td>
</tr>
<tr>
<td>Helium 3</td>
<td>4</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM-3</td>
<td>2 +3</td>
<td>4</td>
</tr>
<tr>
<td>Helium 4</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM-4</td>
<td>2 +4</td>
<td>296</td>
</tr>
<tr>
<td>Helium 4</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM-4</td>
<td>2 +4</td>
<td>87</td>
</tr>
<tr>
<td>Helium 4</td>
<td>4</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>HELIUM-4</td>
<td>2 +4</td>
<td>4</td>
</tr>
<tr>
<td>Natural Lithium</td>
<td>296</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>LITHIUM</td>
<td>3 -2</td>
<td>296</td>
</tr>
<tr>
<td>Natural Lithium</td>
<td>87</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>LITHIUM</td>
<td>3 -2</td>
<td>87</td>
</tr>
<tr>
<td>Lithium 6</td>
<td>296</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>LITHIUM-6</td>
<td>3 +6</td>
<td>296</td>
</tr>
<tr>
<td>Lithium 6</td>
<td>87</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>LITHIUM-6</td>
<td>3 +6</td>
<td>87</td>
</tr>
<tr>
<td>Lithium 7</td>
<td>296</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>LITHIUM-7</td>
<td>3 +7</td>
<td>296</td>
</tr>
<tr>
<td>Lithium 7</td>
<td>87</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>LITHIUM-7</td>
<td>3 +7</td>
<td>87</td>
</tr>
<tr>
<td>Beryllium 9</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>BERYLLIUM</td>
<td>9 +9</td>
<td>296</td>
</tr>
<tr>
<td>Beryllium 9</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>BERYLLIUM</td>
<td>9 +9</td>
<td>87</td>
</tr>
<tr>
<td>Natural Boron</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>BORON</td>
<td>5 -2</td>
<td>296</td>
</tr>
<tr>
<td>Natural Boron</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>BORON</td>
<td>5 -2</td>
<td>87</td>
</tr>
<tr>
<td>Boron 10</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>BORON-10</td>
<td>5 +10</td>
<td>296</td>
</tr>
<tr>
<td>Boron 10</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>BORON-10</td>
<td>5 +10</td>
<td>87</td>
</tr>
<tr>
<td>Boron 11</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>BORON-11</td>
<td>5 +11</td>
<td>296</td>
</tr>
<tr>
<td>Boron 11</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>BORON-11</td>
<td>5 +11</td>
<td>87</td>
</tr>
<tr>
<td>Free gas natural Carbon</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>CARBON</td>
<td>6 -2</td>
<td>296</td>
</tr>
<tr>
<td>Free gas natural Carbon</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>CARBON</td>
<td>6 -2</td>
<td>87</td>
</tr>
<tr>
<td>Free gas natural Carbon</td>
<td>4</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>CARBON</td>
<td>6 -2</td>
<td>4</td>
</tr>
<tr>
<td>Free gas natural Carbon</td>
<td>430</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>CARBON</td>
<td>6 -2</td>
<td>430</td>
</tr>
<tr>
<td>Graphite bound natural Carbon</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>CARBON</td>
<td>6 -3</td>
<td>296</td>
</tr>
<tr>
<td>Natural Nitrogen</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>NITROGEN</td>
<td>7 -2</td>
<td>296</td>
</tr>
<tr>
<td>Natural Nitrogen</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>NITROGEN</td>
<td>7 -2</td>
<td>87</td>
</tr>
<tr>
<td>Oxygen 16</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>OXYGEN</td>
<td>8 +16</td>
<td>296</td>
</tr>
<tr>
<td>Oxygen 16</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>OXYGEN</td>
<td>8 +16</td>
<td>87</td>
</tr>
<tr>
<td>Oxygen 16</td>
<td>4</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>OXYGEN</td>
<td>8 +16</td>
<td>4</td>
</tr>
<tr>
<td>Oxygen 16</td>
<td>430</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>OXYGEN</td>
<td>8 +16</td>
<td>430</td>
</tr>
<tr>
<td>Fluorine 19</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>FLUORINE</td>
<td>9 +19</td>
<td>296</td>
</tr>
<tr>
<td>Fluorine 19</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>FLUORINE</td>
<td>9 +19</td>
<td>87</td>
</tr>
<tr>
<td>Natural Neon</td>
<td>296</td>
<td>TENDL–10</td>
<td>Yes</td>
<td>NEON</td>
<td>10 -2</td>
<td>296</td>
</tr>
<tr>
<td>Sodium 23</td>
<td>296</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>SODIUM</td>
<td>11 +23</td>
<td>296</td>
</tr>
<tr>
<td>Sodium 23</td>
<td>87</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>SODIUM</td>
<td>11 +23</td>
<td>87</td>
</tr>
<tr>
<td>Natural Magnesium</td>
<td>296</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>MANGESIU</td>
<td>12 -2</td>
<td>296</td>
</tr>
<tr>
<td>Natural Magnesium</td>
<td>87</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>MANGESIU</td>
<td>12 -2</td>
<td>87</td>
</tr>
<tr>
<td>Aluminium 27</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ALUMINIUM</td>
<td>13 +27</td>
<td>296</td>
</tr>
<tr>
<td>Aluminium 27</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ALUMINIUM</td>
<td>13 +27</td>
<td>87</td>
</tr>
<tr>
<td>Aluminium 27</td>
<td>4</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ALUMINIUM</td>
<td>13 +27</td>
<td>4</td>
</tr>
<tr>
<td>Aluminium 27</td>
<td>430</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>ALUMINIUM</td>
<td>13 +27</td>
<td>430</td>
</tr>
<tr>
<td>Aluminium 27 SelfShielded</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ALUMINIUM</td>
<td>13 +1027</td>
<td>296</td>
</tr>
<tr>
<td>Aluminium 27 SelfShielded</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ALUMINIUM</td>
<td>13 +1027</td>
<td>87</td>
</tr>
<tr>
<td>Aluminium 27 SelfShielded</td>
<td>4</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ALUMINIUM</td>
<td>13 +1027</td>
<td>4</td>
</tr>
<tr>
<td>Material</td>
<td>K</td>
<td>Origin</td>
<td>Residual nuclei</td>
<td>Name</td>
<td>Identifiers</td>
<td>n,γ</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>27Al Aluminium 27 SelfShielded</td>
<td>430</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ALUMINUM</td>
<td>13 1027 430</td>
<td>Yes</td>
</tr>
<tr>
<td>Si Natural Silicon</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>SILICON</td>
<td>14 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Si Natural Silicon</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>SILICON</td>
<td>14 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>31P Phosphorus 31</td>
<td>296</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>PHOSPHO</td>
<td>15 31 296</td>
<td>Yes</td>
</tr>
<tr>
<td>31P Phosphorus 31</td>
<td>87</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>PHOSPHO</td>
<td>15 31 87</td>
<td>Yes</td>
</tr>
<tr>
<td>S Natural Sulphur</td>
<td>296</td>
<td>JENDL–3.3</td>
<td>Yes</td>
<td>SULFUR</td>
<td>16 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Cl Natural Chlorine</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>CHLORINE</td>
<td>17 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Ar Natural Argon</td>
<td>296</td>
<td>TENDL–13</td>
<td>Yes</td>
<td>ARGON</td>
<td>18 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Ar Natural Argon</td>
<td>87</td>
<td>TENDL–13</td>
<td>Yes</td>
<td>ARGON</td>
<td>18 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Ar Natural Argon SelfShielded</td>
<td>296</td>
<td>TENDL–13</td>
<td>Yes</td>
<td>ARGON</td>
<td>18 -4 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Ar Natural Argon SelfShielded</td>
<td>87</td>
<td>TENDL–13</td>
<td>Yes</td>
<td>ARGON</td>
<td>18 -4 87</td>
<td>Yes</td>
</tr>
<tr>
<td>40Ar Argon 40</td>
<td>296</td>
<td>TENDL–13</td>
<td>Yes</td>
<td>ARGON-40</td>
<td>18 40 296</td>
<td>Yes</td>
</tr>
<tr>
<td>40Ar Argon 40</td>
<td>87</td>
<td>JEFF–3.1</td>
<td>Yes</td>
<td>ARGON-40</td>
<td>18 40 87</td>
<td>Yes</td>
</tr>
<tr>
<td>40Ar Argon 40 SelfShielded</td>
<td>296</td>
<td>TENDL–13</td>
<td>Yes</td>
<td>ARGON-40</td>
<td>18 1040 296</td>
<td>Yes</td>
</tr>
<tr>
<td>40Ar Argon 40</td>
<td>87</td>
<td>JEFF–3.1</td>
<td>Yes</td>
<td>ARGON-40</td>
<td>18 1040 87</td>
<td>Yes</td>
</tr>
<tr>
<td>K Natural Potassium</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>POTASSIU</td>
<td>19 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>K Natural Potassium</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>POTASSIU</td>
<td>19 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Ca Natural Calcium</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>CALCIUM</td>
<td>20 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Ca Natural Calcium</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>CALCIUM</td>
<td>20 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>45Sc Scandium 45 (2)</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>SCANDIUM</td>
<td>21 45 296</td>
<td>Yes</td>
</tr>
<tr>
<td>45Sc Scandium 45 (2)</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>SCANDIUM</td>
<td>21 45 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Ti Natural Titanium</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>TITANIUM</td>
<td>22 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Ti Natural Titanium</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>TITANIUM</td>
<td>22 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>V Natural Vanadium</td>
<td>296</td>
<td>JENDL–4.0</td>
<td>Yes</td>
<td>VANADIUM</td>
<td>23 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>V Natural Vanadium</td>
<td>87</td>
<td>JENDL–4.0</td>
<td>Yes</td>
<td>VANADIUM</td>
<td>23 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Cr Natural Chromium</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>CHROMIUM</td>
<td>24 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Cr Natural Chromium</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>CHROMIUM</td>
<td>24 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Cr Natural Chromium</td>
<td>4</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>CHROMIUM</td>
<td>24 -2 4</td>
<td>Yes</td>
</tr>
<tr>
<td>Cr Natural Chromium</td>
<td>430</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>CHROMIUM</td>
<td>24 -2 430</td>
<td>Yes</td>
</tr>
<tr>
<td>55Mn Manganese 55</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>MANGANES</td>
<td>25 55 296</td>
<td>Yes</td>
</tr>
<tr>
<td>55Mn Manganese 55</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>MANGANES</td>
<td>25 55 87</td>
<td>Yes</td>
</tr>
<tr>
<td>55Mn Manganese 55</td>
<td>4</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>MANGANES</td>
<td>25 55 4</td>
<td>Yes</td>
</tr>
<tr>
<td>55Mn Manganese 55</td>
<td>430</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>MANGANES</td>
<td>25 55 430</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Natural Iron</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Natural Iron</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Natural Iron</td>
<td>4</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -2 4</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Natural Iron</td>
<td>430</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -2 430</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Natural Iron SelfShielded</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -4 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Natural Iron SelfShielded</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -4 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Natural Iron SelfShielded</td>
<td>4</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -4 4</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Natural Iron SelfShielded</td>
<td>430</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -4 430</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Shielding Fe (5% C) SelfShielded</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -8 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Shielding Fe (5% C) SelfShielded</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -8 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Shielding Fe (5% C) SelfShielded</td>
<td>4</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -8 4</td>
<td>Yes</td>
</tr>
<tr>
<td>Fe Shielding Fe (5% C) SelfShielded</td>
<td>430</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>IRON</td>
<td>26 -8 430</td>
<td>Yes</td>
</tr>
<tr>
<td>Co Natural Cobalt</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>COBALT</td>
<td>27 59 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Co Natural Cobalt</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>COBALT</td>
<td>27 59 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Co Natural Cobalt</td>
<td>4</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>COBALT</td>
<td>27 59 4</td>
<td>Yes</td>
</tr>
<tr>
<td>Co Natural Cobalt</td>
<td>430</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>COBALT</td>
<td>27 59 430</td>
<td>Yes</td>
</tr>
<tr>
<td>Ni Natural Nickel</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>NICKEL</td>
<td>28 -2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Ni Natural Nickel</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>NICKEL</td>
<td>28 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Ni Natural Nickel</td>
<td>4</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>NICKEL</td>
<td>28 -2 4</td>
<td>Yes</td>
</tr>
<tr>
<td>Ni Natural Nickel</td>
<td>430</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>NICKEL</td>
<td>28 -2 430</td>
<td>Yes</td>
</tr>
<tr>
<td>Cu Natural Copper</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>COPPER</td>
<td>29 -2 296</td>
<td>Yes</td>
</tr>
</tbody>
</table>
260-group library: Available materials

<table>
<thead>
<tr>
<th>Material</th>
<th>K</th>
<th>Origin</th>
<th>Residual nuclei</th>
<th>Name</th>
<th>Identifiers</th>
<th>n,γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu Natural Copper</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>COPPER</td>
<td>29 –2</td>
<td>87</td>
</tr>
<tr>
<td>Cu Natural Copper</td>
<td>4</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>COPPER</td>
<td>29 –2</td>
<td>4</td>
</tr>
<tr>
<td>Cu Natural Copper</td>
<td>430</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>COPPER</td>
<td>29 –2</td>
<td>430</td>
</tr>
<tr>
<td>Cu Natural Copper SelfShielded</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>COPPER</td>
<td>29 –4</td>
<td>296</td>
</tr>
<tr>
<td>Cu Natural Copper SelfShielded</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>COPPER</td>
<td>29 –4</td>
<td>87</td>
</tr>
<tr>
<td>Cu Natural Copper SelfShielded</td>
<td>4</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>COPPER</td>
<td>29 –4</td>
<td>4</td>
</tr>
<tr>
<td>Cu Natural Copper SelfShielded</td>
<td>430</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>COPPER</td>
<td>29 –4</td>
<td>430</td>
</tr>
<tr>
<td>Zn Natural Zinc</td>
<td>296</td>
<td>JENDL–4.0</td>
<td>Yes</td>
<td>ZINC</td>
<td>30 –2</td>
<td>296</td>
</tr>
<tr>
<td>Zn Natural Zinc</td>
<td>87</td>
<td>JENDL–4.0</td>
<td>No</td>
<td>ZINC</td>
<td>30 –2</td>
<td>87</td>
</tr>
<tr>
<td>Zn Natural Zinc</td>
<td>4</td>
<td>JENDL–4.0</td>
<td>Yes</td>
<td>ZINC</td>
<td>30 –2</td>
<td>4</td>
</tr>
<tr>
<td>Zn Natural Zinc</td>
<td>430</td>
<td>JENDL–4.0</td>
<td>Yes</td>
<td>ZINC</td>
<td>30 –2</td>
<td>430</td>
</tr>
<tr>
<td>Ga Natural Gallium</td>
<td>296</td>
<td>JEFF–3.2</td>
<td>Yes</td>
<td>GALLIUM</td>
<td>31 –2</td>
<td>296</td>
</tr>
<tr>
<td>Ga Natural Gallium</td>
<td>87</td>
<td>JEFF–3.2</td>
<td>Yes</td>
<td>GALLIUM</td>
<td>31 –2</td>
<td>87</td>
</tr>
<tr>
<td>Ge Natural Germanium</td>
<td>296</td>
<td>ENDF/B–VIIR</td>
<td>Yes</td>
<td>GERMANIUM</td>
<td>32 –2</td>
<td>296</td>
</tr>
<tr>
<td>Ge Natural Germanium</td>
<td>87</td>
<td>ENDF/B–VIIR</td>
<td>Yes</td>
<td>GERMANIUM</td>
<td>32 –2</td>
<td>87</td>
</tr>
<tr>
<td>As Arsenic 75</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ARSENIC</td>
<td>33 75</td>
<td>296</td>
</tr>
<tr>
<td>As Arsenic 75</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>ARSENIC</td>
<td>33 75</td>
<td>87</td>
</tr>
<tr>
<td>Br Natural Bromine</td>
<td>296</td>
<td>JEFF–3.2</td>
<td>Yes</td>
<td>BROMINE</td>
<td>35 –2</td>
<td>296</td>
</tr>
<tr>
<td>Br Natural Bromine</td>
<td>87</td>
<td>JEFF–3.2</td>
<td>Yes</td>
<td>BROMINE</td>
<td>35 –2</td>
<td>87</td>
</tr>
<tr>
<td>Kr Natural Krypton</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>KRYPTON</td>
<td>38 –2</td>
<td>296</td>
</tr>
<tr>
<td>Kr Natural Krypton</td>
<td>120</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>KRYPTON</td>
<td>38 –2</td>
<td>120</td>
</tr>
<tr>
<td>Sr Natural Strontium</td>
<td>296</td>
<td>JEFF–3.2</td>
<td>Yes</td>
<td>STRONTIUM</td>
<td>38 –2</td>
<td>296</td>
</tr>
<tr>
<td>Sr Natural Strontium</td>
<td>87</td>
<td>JEFF–3.2</td>
<td>Yes</td>
<td>STRONTIUM</td>
<td>38 –2</td>
<td>87</td>
</tr>
<tr>
<td>Sr Strontium 90</td>
<td>296</td>
<td>JEFF–3.2</td>
<td>Yes</td>
<td>90–SR</td>
<td>38 90</td>
<td>296</td>
</tr>
<tr>
<td>Sr Strontium 90</td>
<td>87</td>
<td>JEFF–3.2</td>
<td>Yes</td>
<td>90–SR</td>
<td>38 90</td>
<td>87</td>
</tr>
<tr>
<td>Zr Natural Zirconium (2)</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>ZIRCONIUM</td>
<td>40 –2</td>
<td>296</td>
</tr>
<tr>
<td>Zr Natural Zirconium (2)</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>ZIRCONIUM</td>
<td>40 –2</td>
<td>87</td>
</tr>
<tr>
<td>Zr Zirconium 90</td>
<td>296K</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>90–ZR</td>
<td>40 90</td>
<td>296</td>
</tr>
<tr>
<td>Zr Zirconium 91 (2)</td>
<td>296K</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>91–ZR</td>
<td>40 91</td>
<td>296</td>
</tr>
<tr>
<td>Zr Zirconium 92 (2)</td>
<td>296K</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>92–ZR</td>
<td>40 92</td>
<td>296</td>
</tr>
<tr>
<td>Zr Zirconium 94 (2)</td>
<td>296K</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>94–ZR</td>
<td>40 94</td>
<td>296</td>
</tr>
<tr>
<td>Zr Zirconium 96 (2)</td>
<td>296K</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>96–ZR</td>
<td>40 96</td>
<td>296</td>
</tr>
<tr>
<td>Nb Niobium 93 (2)</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>NIOBIUM</td>
<td>41 93</td>
<td>296</td>
</tr>
<tr>
<td>Nb Niobium 93 (2)</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>NIOBIUM</td>
<td>41 93</td>
<td>87</td>
</tr>
<tr>
<td>Mo Natural Molybdenum (2)</td>
<td>296</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>MOLYBDENUM</td>
<td>42 –2</td>
<td>296</td>
</tr>
<tr>
<td>Mo Natural Molybdenum (2)</td>
<td>87</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>MOLYBDENUM</td>
<td>42 –2</td>
<td>87</td>
</tr>
<tr>
<td>Mo Molybdenum 92</td>
<td>296K</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>92–MO</td>
<td>42 92</td>
<td>296</td>
</tr>
<tr>
<td>Mo Molybdenum 94</td>
<td>296K</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>94–MO</td>
<td>42 94</td>
<td>296</td>
</tr>
<tr>
<td>Mo Molybdenum 95</td>
<td>296K</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>95–MO</td>
<td>42 95</td>
<td>296</td>
</tr>
<tr>
<td>Mo Molybdenum 96</td>
<td>296K</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>96–MO</td>
<td>42 96</td>
<td>296</td>
</tr>
<tr>
<td>Mo Molybdenum 97</td>
<td>296K</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>97–MO</td>
<td>42 97</td>
<td>296</td>
</tr>
<tr>
<td>Mo Molybdenum 98</td>
<td>296K</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>98–MO</td>
<td>42 98</td>
<td>296</td>
</tr>
<tr>
<td>Mo Molybdenum 100</td>
<td>296K</td>
<td>EFF–2.4</td>
<td>Yes</td>
<td>100–MO</td>
<td>42 100</td>
<td>296</td>
</tr>
<tr>
<td>Tc Technetium 99</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>99–TC</td>
<td>43 99</td>
<td>296</td>
</tr>
<tr>
<td>Tc Technetium 99</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>99–TC</td>
<td>43 99</td>
<td>87</td>
</tr>
<tr>
<td>Pd Natural Palladium</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>PALLADIU</td>
<td>46 –2</td>
<td>296</td>
</tr>
<tr>
<td>Pd Natural Palladium</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>PALLADIU</td>
<td>46 –2</td>
<td>87</td>
</tr>
<tr>
<td>Ag Natural Silver</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>SILVER</td>
<td>47 –2</td>
<td>296</td>
</tr>
<tr>
<td>Ag Natural Silver</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>SILVER</td>
<td>47 –2</td>
<td>87</td>
</tr>
<tr>
<td>Cd Natural Cadmium (2)</td>
<td>296</td>
<td>JENDL–4.0</td>
<td>Yes</td>
<td>CADMIUM</td>
<td>48 –2</td>
<td>296</td>
</tr>
<tr>
<td>Cd Natural Cadmium (2)</td>
<td>87</td>
<td>JENDL–4.0</td>
<td>Yes</td>
<td>CADMIUM</td>
<td>48 –2</td>
<td>87</td>
</tr>
<tr>
<td>In Natural Indium</td>
<td>296</td>
<td>TENDL–14</td>
<td>Yes</td>
<td>INDIUM</td>
<td>49 –2</td>
<td>296</td>
</tr>
<tr>
<td>In Natural Indium</td>
<td>87</td>
<td>TENDL–14</td>
<td>Yes</td>
<td>INDIUM</td>
<td>49 –2</td>
<td>87</td>
</tr>
<tr>
<td>Sn Natural Tin</td>
<td>296</td>
<td>JENDL–4.0</td>
<td>Yes</td>
<td>TIN</td>
<td>50 –2</td>
<td>296</td>
</tr>
</tbody>
</table>

...Continues...

...Continues...
<table>
<thead>
<tr>
<th>Material</th>
<th>K</th>
<th>Origin</th>
<th>Residual nuclei</th>
<th>Name</th>
<th>Identifiers</th>
<th>n,γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn Natural Tin</td>
<td>87</td>
<td>JENDL-4.0</td>
<td>Yes</td>
<td>TIN</td>
<td>50 -2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>ANTIMONY 51 -2 296</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>87</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>ANTIMONY 51 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>I Iodine 127</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>IODINE 53 127 296</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>I Iodine 127</td>
<td>87</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>IODINE 53 127 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>129-I 53 129 296</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>129-I 53 129 87</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Sn Natural Tin</td>
<td>87</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 296</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sn Natural Tin</td>
<td>87</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sn Natural Tin</td>
<td>87</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sb Natural Antimony</td>
<td>296</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Sn Natural Tin</td>
<td>87</td>
<td>ENDF/B-VIIR0</td>
<td>Yes</td>
<td>XENON 54 -2 87</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>K</td>
<td>Origin</td>
<td>Residual nuclei</td>
<td>Name</td>
<td>Identifiers</td>
<td>n,γ</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>181Ta</td>
<td>296</td>
<td>TENDL-13</td>
<td>Yes</td>
<td>TANTALUM</td>
<td>73 181 296</td>
<td>Yes</td>
</tr>
<tr>
<td>181Ta</td>
<td>87</td>
<td>TENDL-13</td>
<td>Yes</td>
<td>TANTALUM</td>
<td>73 181 87</td>
<td>Yes</td>
</tr>
<tr>
<td>181Ta</td>
<td>296</td>
<td>TENDL-13</td>
<td>Yes</td>
<td>TANTALUM</td>
<td>73 1181 296</td>
<td>Yes</td>
</tr>
<tr>
<td>181Ta</td>
<td>87</td>
<td>TENDL-13</td>
<td>Yes</td>
<td>TANTALUM</td>
<td>73 1181 87</td>
<td>Yes</td>
</tr>
<tr>
<td>W Natural Tungsten</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TUNGSTEN</td>
<td>74 –2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>W Natural Tungsten</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TUNGSTEN</td>
<td>74 –2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>W Natural Tungsten</td>
<td>4</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TUNGSTEN</td>
<td>74 –2 4</td>
<td>Yes</td>
</tr>
<tr>
<td>W Natural Tungsten</td>
<td>430</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TUNGSTEN</td>
<td>74 –2 430</td>
<td>Yes</td>
</tr>
<tr>
<td>W Natural Tungsten SelfShielded</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TUNGSTEN</td>
<td>74 –4 296</td>
<td>Yes</td>
</tr>
<tr>
<td>W Natural Tungsten SelfShielded</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TUNGSTEN</td>
<td>74 –4 87</td>
<td>Yes</td>
</tr>
<tr>
<td>W Natural Tungsten SelfShielded</td>
<td>4</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TUNGSTEN</td>
<td>74 –4 4</td>
<td>Yes</td>
</tr>
<tr>
<td>W Natural Tungsten SelfShielded</td>
<td>430</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>TUNGSTEN</td>
<td>74 –4 430</td>
<td>Yes</td>
</tr>
<tr>
<td>Re Natural Rhenium</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>RHENIUM</td>
<td>75 –2 296</td>
<td>No</td>
</tr>
<tr>
<td>Re Natural Rhenium</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>RHENIUM</td>
<td>75 –2 87</td>
<td>No</td>
</tr>
<tr>
<td>Ir Natural Iridium</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>IRIDIUM</td>
<td>77 –2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Ir Natural Iridium</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>IRIDIUM</td>
<td>77 –2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Pt Natural Platinum</td>
<td>296</td>
<td>JEFF–3.2</td>
<td>No</td>
<td>PLATINUM</td>
<td>78 –2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Pt Natural Platinum</td>
<td>87</td>
<td>JEFF–3.2</td>
<td>No</td>
<td>PLATINUM</td>
<td>78 –2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>197Au</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>GOLD</td>
<td>79 197 296</td>
<td>Yes</td>
</tr>
<tr>
<td>197Au</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>GOLD</td>
<td>79 197 87</td>
<td>Yes</td>
</tr>
<tr>
<td>197Au</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>GOLD</td>
<td>79 1197 296</td>
<td>Yes</td>
</tr>
<tr>
<td>197Au</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>GOLD</td>
<td>79 1197 87</td>
<td>Yes</td>
</tr>
<tr>
<td>197Au</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>GOLD</td>
<td>79 2197 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Hg Natural Mercury</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>MERCURY</td>
<td>80–2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Hg Natural Mercury</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>MERCURY</td>
<td>80–2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Pb Natural Lead</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>LEAD</td>
<td>82–2 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Pb Natural Lead</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>LEAD</td>
<td>82–2 87</td>
<td>Yes</td>
</tr>
<tr>
<td>Pb Natural Lead SelfShielded</td>
<td>296</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>LEAD</td>
<td>82–4 296</td>
<td>Yes</td>
</tr>
<tr>
<td>Pb Natural Lead SelfShielded</td>
<td>87</td>
<td>ENDF/B–VIIR8</td>
<td>Yes</td>
<td>LEAD</td>
<td>82–4 87</td>
<td>Yes</td>
</tr>
<tr>
<td>209Bi</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>BISMUTH</td>
<td>83 209 296</td>
<td>Yes</td>
</tr>
<tr>
<td>209Bi</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>BISMUTH</td>
<td>83 209 87</td>
<td>Yes</td>
</tr>
<tr>
<td>209Bi</td>
<td>296</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>BISMUTH</td>
<td>83 1209 296</td>
<td>Yes</td>
</tr>
<tr>
<td>209Bi</td>
<td>87</td>
<td>ENDF/B–VIIR1</td>
<td>Yes</td>
<td>BISMUTH</td>
<td>83 1209 87</td>
<td>Yes</td>
</tr>
<tr>
<td>230Th</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>230–TH</td>
<td>90 230 296</td>
<td>No</td>
</tr>
<tr>
<td>230Th</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>230–TH</td>
<td>90 230 87</td>
<td>No</td>
</tr>
<tr>
<td>232Th</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>232–TH</td>
<td>90 232 296</td>
<td>Yes</td>
</tr>
<tr>
<td>232Th</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>232–TH</td>
<td>90 232 87</td>
<td>Yes</td>
</tr>
<tr>
<td>233U</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>233–U</td>
<td>92 233 296</td>
<td>Yes</td>
</tr>
<tr>
<td>233U</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>233–U</td>
<td>92 233 87</td>
<td>Yes</td>
</tr>
<tr>
<td>234U</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>234–U</td>
<td>92 234 296</td>
<td>Yes</td>
</tr>
<tr>
<td>234U</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>234–U</td>
<td>92 234 87</td>
<td>Yes</td>
</tr>
<tr>
<td>235U</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>235–U</td>
<td>92 235 296</td>
<td>Yes</td>
</tr>
<tr>
<td>235U</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>235–U</td>
<td>92 235 87</td>
<td>Yes</td>
</tr>
<tr>
<td>238U</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>238–U</td>
<td>92 238 296</td>
<td>Yes</td>
</tr>
<tr>
<td>238U</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>238–U</td>
<td>92 238 87</td>
<td>Yes</td>
</tr>
<tr>
<td>239Pu</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>239–PU</td>
<td>94 239 296</td>
<td>Yes</td>
</tr>
<tr>
<td>239Pu</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>239–PU</td>
<td>94 239 87</td>
<td>Yes</td>
</tr>
<tr>
<td>241Am</td>
<td>296</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>241–AK</td>
<td>95 241 296</td>
<td>Yes</td>
</tr>
<tr>
<td>241Am</td>
<td>87</td>
<td>ENDF/B–VIIR0</td>
<td>Yes</td>
<td>241–AK</td>
<td>95 241 87</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(1) Kerma factor not very satisfactory, particularly for 36S
(2) Bad kerma factor
(4) Residual nuclei obtained from ENDF/B–VIIR0
Chapter 11

Collision tape

11.1 What is a collision tape and what is its purpose

A “collision tape” is a file where quantities describing selected events are recorded in the course of a FLUKA run.

This file is the standard output of the MGDRAW user routine, that can be customised by the user to get different and/or more complete output (see description of user routine MGDRAW in 13.2.13).

Note that “event” would be a more appropriate word than “collision”, and “file” better than “tape”. For historical reasons, however, the expression “collision tape” is used in Monte Carlo jargon rather than “event file”. It is true that most interesting events are generally collision events (but also boundary crossings, decays, etc.), and that the large size of the file may require the use of a magnetic tape (or at least, that was often the case in the past). Recently, the expression “phase space file” has also been used.

There are several reasons for which the user might decide to write a collision tape. Some examples are:

1) to perform a non-standard analysis or scoring. In general, this is not recommended because the available FLUKA scoring facilities are reliable, efficient and well tested. However, there may be special cases where a user-written scoring is necessary.

2) to save details of transport for a new independent analysis. In this case, however, the user must make sure that no phase-space region of interest be undersampled because of biasing options in the corresponding run. As a general rule, writing of a collision file is not recommended in non-analogue (biased) calculations.

3) to connect FLUKA to other radiation transport codes (now less likely than in the past, since FLUKA covers most energy ranges and transports most particles which can be of interest).

4) to split the transport problem into two or more sequential phases. A technique used in deep penetration calculations, which can be considered as an extension of splitting, consists in recording all particles crossing a given boundary (with their energy, weight, coordinates and direction cosines at the point of crossing), and to sample repeatedly source particles from that set in a successive run [66]. A special subroutine SOURCE (p. 380) must be written for this purpose. The user must make sure that the final normalisation is done with respect to the total particle weight used in the first step of the procedure, and not to that of the second step. It is also recommended to assign blackhole to all materials immediately beyond the recording boundary, to avoid that backscattered particles be considered twice.

5) to perform some manipulation in an intermediate phase of Monte Carlo transport. An example is a variation of Note 4), in which a user program interpolates some smooth analytical distribution through the recorded quantities, from which source particles are sampled in the next FLUKA run.

6) to trace suspected errors in transport

7) to connect to a graphical display program

FLUKA allows to write a complete dump of each source particle, of each trajectory and of each energy deposition event, possibly under event-driven conditions specified by the user (see description of user routine MGDRAW in 13.2.13).

11.2 How to write a collision tape

To obtain a collision tape, option USERDUMP must be input with WHAT(1) \(\geq 100.0 \).
The user can choose to dump all data concerning

1) particle trajectories,
2) data concerning continuous energy deposition
3) data concerning local (point) energy deposition
4) any combination of the three above

By default, data are written on the collision tape in single precision and unformatted, but it is also possible for the user to modify the MGDRAW subroutine and to obtain a more customised output file (see 13.2.13).

The variables written by the default version of MGDRAW, and their number, differ in the three cases. The sign of the first (integer) variable dumped at an event indicates how to interpret the following ones:

Case 1 (First variable > 0): continuous energy deposition
Case 2 (First variable $= 0$): point energy deposition
Case 2 (First variable < 0): source particles

In Case 1, the following variables are written:

First record:
\[N\text{TRACK}, M\text{TRACK}, J\text{TRACK}, E\text{TRACK}, W\text{TRACK} \] (three integers and two real variables)

Next record:
\[(X\text{TRACK}(I), Y\text{TRACK}(I), Z\text{TRACK}(I), I = 0, N\text{TRACK}),\]
\[(D\text{TRACK}(J), J = 1, M\text{TRACK}), C\text{TRACK} \]

(that is, $N\text{TRACK} + M\text{TRACK} + 1$ real variables)

where:

\[N\text{TRACK} = \text{number of trajectory segments} \]
\[M\text{TRACK} = \text{number of energy deposition events along the trajectory} \]
\[J\text{TRACK} = \text{particle type (see 5.1)} \]
\[E\text{TRACK} = \text{total energy of the particle (rest + kinetic)} \]
\[W\text{TRACK} = \text{particle weight} \]
\[X\text{TRACK}(I), Y\text{TRACK}(I), Z\text{TRACK}(I) = \text{coordinates defining the upstream end of the (I+1)th segment;} \]
\[\text{for I = N\text{TRACK}, the end of the trajectory} \]
\[D\text{TRACK}(J) = \text{energy deposition in the Jth deposition event along the trajectory} \]
\[C\text{TRACK} = \text{total curved path} \]

In Case 2, the following variables are written:

First record:
\[0, I\text{CODE}, J\text{TRACK}, E\text{TRACK}, W\text{TRACK} \] (three integers and two real variables)

Next record:
\[X\text{SCO}, Y\text{SCO}, Z\text{SCO}, R\text{ULL} \] (4 real variables)

where:
How to write a collision tape

`JTRACK`, `ETRACK`, `WTRACK` have the meaning explained above,

`XSCO`, `YSCO`, `ZSCO` = coordinates of the energy deposition point

`RULL` = amount of energy deposited

`ICODE` indicates the type of point event giving rise to energy deposition, as explained below:

ICODE = 1x: call from subroutine KASKAD (hadronic part of FLUKA);
 = 10: elastic interaction recoil
 = 11: inelastic interaction recoil
 = 12: stopping particle
 = 14: escape

ICODE = 2x: call from subroutine EMFSCO (electromagnetic part of FLUKA);
 = 20: local energy deposition (i.e. photoelectric)
 = 21: below user-defined transport cutoff (but larger than EMF production cutoff)
 = 22: below both user-defined transport cutoff and EMF production cutoff
 = 23: escape

ICODE = 3x: call from subroutine KASNEU (low-energy neutron part of FLUKA)
 = 30: target recoil
 = 31: neutron below threshold
 = 32: escape

ICODE = 4x: call from subroutine KASHEA (heavy ion part of FLUKA)
 = 40: escape

ICODE = 5x: call from subroutine KASOPH (optical photon part of FLUKA)
 = 50: optical photon absorption
 = 51: escape

In Case 3, the following variables are written:

First record:
- `NCASE`, `NPFLKA`, `NSTMAX`, `TKESUM`, `WEIPRI`, (three integers and two real variables)

Next record:

\[
(\text{ILOFLK}(I), \text{ETOT}(I), \text{WTFLK}(I), \text{XFLK}(I), \text{YFLK}(I), \text{ZFLK}(I), \text{TXFLK}(I), \text{TYFLK}(I), \text{TZFLK}(I), I = 1, \text{NPFLKA}) \quad \text{(NPFLKA times (that is, one integer + 8 real variables))}
\]

where:

- `NCASE` = number of primaries treated so far (including the current one)
- `NPFLKA` = number of particles in the stack
- `NSTMAX` = maximum number of particles in stack so far
- `TKESUM` = total kinetic energy of the primaries of a user written SOURCE
- `WEIPRI` = total weight of the primaries handled so far
- `ILOFLK(I)` = type of the Ith stack particle (see 5.1)
- `ETOT(I)` = total energy of Ith stack particle
- `XFLK(I)`, `YFLK(I)`, `ZFLK(I)` = source coordinates for the Ith stack particle
- `TXFLK(I)`, `TYFLK(I)`, `TZFLK(I)` = direction cosines of the Ith stack particle
Chapter 12

Generating and propagating optical photons

FLUKA can be used to generate and propagate optical photons of Cherenkov, scintillation and transition radiation light. Light generation is switched off by default and is activated and totally controlled by the user by means of data cards and user routines. This is true also for the optical properties of materials. These include the refraction index as a function of wavelength (or frequency or energy), the reflection coefficient of a given material, etc.

In this respect, the user has the responsibility of issuing the right input directives: the code does not perform any physics check on the assumptions about the light yield and the properties of material.

Optical photons (FLUKA id = -1) are treated according to the laws of geometrical optics and therefore can be reflected and refracted at boundaries between different materials. From the physics point of view, optical photons have a certain energy (sampled according to the generation parameters given by the user) and carry along their polarisation information. Cherenkov photons are produced with their expected polarisation, while scintillation photons are assumed to be unpolarised. At each reflection or refraction, polarisation is assigned or modified according to optics laws derived from Maxwell equations.

At a boundary between two materials with different refraction index, an optical photon is propagated (refracted) or reflected with a relative probability calculated according to the laws of optics.

Furthermore, optical photons can be absorbed in flight (if the user defines a non zero absorption coefficient for the material under consideration) or elastically scattered (Rayleigh scattering) if the user defines a non zero diffusion coefficient for the material under consideration.

In order to deal with optical photon problems, two specific input commands are available to the user:

1) OPT–PROP: to set optical properties of materials.

2) OPT–PROD: to manage light generation.

See p. 189 and 193 for a detailed description of these options and of their parameters.
Some user routines are also available for a more complete representation of the physical problem:

i. RFRNDX: to specify a refraction index as a function of wavelength, frequency or energy

ii. RFLCTV: to specify the reflectivity of a material. This can be activated by card OPT–PROP with SDUM = METAL and WHAT(3) < -99.

iii. OPHBDX: to set optical properties of a boundary surface. The call is activated by card OPT–PROP with SDUM = SPEC–BDX.

iv. FRGHNs: to set a possible degree of surface roughness, in order to have both diffusive and specular reflectivity from a given material surface.

v. QUEFFC: to request a detailed quantum efficiency treatment. This is activated by card OPT–PROP with SDUM = SENSITIV, setting the 0th optical photon sensitivity parameter to a value lesser than -99 (WHAT(1) < -99).

All running values of optical photon tracking are contained in COMMON TRACKR, just as for the other ordinary elementary particles (see 13.1.1, 13.2.13).
12.1 Cherenkov transport and quantum efficiency

In order to use quantum efficiency (via of the QUEFFC routine) the user must input a sensitivity < -100 by means of the OPT–PROP option with SDUM = SENSITIV).

That option sets the quantum efficiency as a function of photon energy overall through the problem and it is not material/region dependent. The reason is that it is applied “a priori” at photon generation time (for obvious time saving reasons). Here below is an explanation taken directly from the code.

a) current particle is at a given position, in a given material
b) Cherenkov (or scintillation) photons are going to be produced
c) the photon generation probability is immediately reduced over the whole energy spectrum according to the maximum quantum efficiency of the problem. The latter, set as WHAT(5) in card OPT–PROD (p. 189), is meaningful even if routine QUEFFC is used, see below
d) the detailed efficiency, set again by the OPT–PROD command with SDUM = SENSITIV or by routine QUEFFC, is used for a further reduction when the actual energy of each individual photon is selected (rejecting it against Q.E.(\(\omega\))/Q.E.\(_{\text{max}}\), where \(\omega\) = photon angular frequency)

Summarising, the yes/no detection check is done at production and not at detection: this in order to substantially cut down CPU time. If one wants all photons to be produced the sensitivity must be set $= 1$. Then it is still possible to apply a quantum efficiency curve at detection, by means of the user weighting routine FLUSCW (see 13.2.6) or by a user-written off-line code.

Since the quantum efficiency curve provided by OPT–PROD with SDUM = SENSITIV is applied at production and not at detection, it is not known which material the photon will eventually end up in.

Furthermore, WHAT(5) must be set anyway equal to the maximum quantum efficiency over the photon energy range under consideration. One cannot use the QUEFFC routine as a way to provide an initial screening on the produced photons, i.e., to use a “safe” initial guess for the quantum efficiency (say, for instance 20%) and then, at detection, refine it through more sophisticated curves, i.e., rejecting against the actual quantum efficiency/0.2 (this again can be done in routine FLUSCW). This makes sense of course if the user has different quantum efficiency curves for different detectors (one should use in QUEFFC the curve that maximises all of them and then refine it by rejection case by case), or if the quantum efficiency is position/angle dependent upon arrival on the photomultiplier (again one should use inside QUEFFC the quantum efficiency for the most efficient position/angle and refine by rejection at detection time.

Optical photons are absorbed in those materials where the user selected properties dictate absorption, i.e., metals or materials with a non zero absorption cross section. These absorption events can be detected in different ways. For instance:

a) through energy deposition by particle -1 (optical photons have always id = -1), photons usually deposit all energy in one step (since only absorption and coherent scattering are implemented). So one can check for JTRACK = -1 and energy deposition (RULL) in a given region (e.g., the photo-cathode of the PMT). One can also apply an extra quantum efficiency selection, e.g., using the COMSCW user routine.

b) through boundary crossing of particles -1 into the given region, however this is correct if and only if absorption is set such that the photon will not survive crossing the region. Again further selections can be performed, e.g., using the FLUSCW user routine.

Several practical examples of handling optical photons are presented in 12.2.

12.2 Handling optical photons

In order to help the user to understand how to deal with optical photons, in the following we describe two input files respectively concerning the production in Liquid Argon of Cherenkov (section 12.2.3) and
Scintillation light (section 12.2.4). A specific user routine, giving the refraction index of Liquid Argon as a function of wavelength is also shown (section 12.2.2).

It is a very simple case, in which muons are generated inside a box filled with Liquid Argon. Notice that at present it is not yet possible to request optical photons as primary particles via the BEAM card. Therefore light must be generated starting from ordinary particles, or by a special user-written SOURCE routine, where optical photons are loaded into their dedicated stack (OPPHST) instead of that of ordinary particles (FLKSTK). An example of such SOURCE is shown in section 12.2.1.

The examples presented here consider 0.5 GeV muons in a box of $4 \times 4 \times 4$ m3. In order to avoid unnecessary complications in the example, secondary particle production by muons is switched off. Of course this is not required in real problems.

As far as the output is concerned, the following example proposes a standard energy spectrum scoring at a boundary (option USRBDX) applied to optical photons, together with a user-specific output built via the MGDRAW user routine (see 13.2.13), where a dump of optical photon tracking is inserted. At the end of this section (in section 12.2.1) we will propose the relevant code lines to be inserted in MGDRAW (activated by the USERDUMP card, p. 255), together with an example of readout (section 12.2.6).

12.2.1 Example of SOURCE routine for optical photons

```fortran
* $ CREATE SOURCE.FOR
* COPY SOURCE
* === source ===========================================================*
* SUBROUTINE SOURCE ( NOMORE )
* INCLUDE ' (DBLPRC)'*
* INCLUDE ' (DIMPAR)'*
* INCLUDE ' (IOUNIT)'
*----------------------------------------------------------------------*
* Copyright (C) 1990-2009 by Alfredo Ferrari & Paola Sala *
* All Rights Reserved.
*----------------------------------------------------------------------*
* INCLUDE ' (BEAMCM)'*
* INCLUDE ' (FHEAVY)'*
* INCLUDE ' (FLKSTK)'*
* INCLUDE ' (IOIOCM)'*
* INCLUDE ' (LTCLCM)'*
* INCLUDE ' (PAPROP)'*
```

This is just an example of a possible user written source routine. note that the beam card still has some meaning - in the scoring the maximum momentum used in deciding the binning is taken from the beam momentum. Other beam card parameters are obsolete.

Output variables:

Nomore = if > 0 the run will be terminated
INCLUDE '(SOURCM)'
INCLUDE '(SUNCOU)'
INCLUDE '(OPPHST)'
INCLUDE '(TRACKR)'

* LOGICAL LFIRST
*
SAVE LFIRST
DATA LFIRST / .TRUE. /

==
* BASIC VERSION
* *==*
*NOMORE = 0
*
| First call initializations:
| IF (LFIRST) THEN
| *** The following 3 cards are mandatory ***
| TKESUM = ZERZER
| LFIRST = .FALSE.
| LUSSRC = .TRUE.
| *** User initialization ***
| END IF
|
* Push one source particle to the stack. Note that you could as well
* push many but this way we reserve a maximum amount of space in the
* stack for the secondaries to be generated
* LSTOPP is the stack counter: of course any time source is called it
* must be =0
* IJBEAM = -1
* LSTOPP = LSTOPP + 1
* Weight of optical photon
* WTOPPH (LSTOPP) = ONEONE
* WEIPRI = WEIPRI + WTOPPH (LSTOPP)
* NUMOPH = NUMOPH + 1
* IF (NUMOPH .GT. 1000000000) THEN
| MUMOPH = MUMOPH + 1
| NUMOPH = NUMOPH - 1000000000
| END IF
* WOPTPH = WOPTPH + ONEONE
* Insert in POPTPH (LSTOPP) the proper energy for optical photon
* POPTPH (LSTOPP) = 4.D-09
* DONEAR (LSTOPP) = ZERZER
* Injection coordinates of optical photon
* XOPTPH (LSTOPP) = XBEAM
* YOPTPH (LSTOPP) = YBEAM
* ZOPTPH (LSTOPP) = ZBEAM
* Initial direction cosines of optical photon
* TXOPPH (LSTOPP) = UBEAM
* TYOPPH (LSTOPP) = VBEAM
* TZOPPH (LSTOPP) = WBEAM
* Set-up the polarization vector
* TXPOPP (LSTOPP) = -TWOTWO
* TYPOPP (LSTOPP) = ZERZER
* TZPOPP (LSTOPP) = ZERZER
* age
* AGOPPH (LSTOPP) = ZERZER
* total path
12.2.2 Routine assigning a continuous Refraction Index as a function of Wavelength

Notice that in this example a check is performed on the material number. In the following problems, the light will be generated on material no. 18. In order to avoid problems a FLUKA abort is generated if the routine is called by mistake for a different material.

```fortran
* === Rfrndx ==============================================================*

DOUBLE PRECISION FUNCTION RFRNDX ( WVLNGT, OMGPHO, MMAT )

INCLUDE '(DBLPRC)'  
INCLUDE '(DIMPAR)'  
INCLUDE '(IOUNIT)'

*==========================================================================*

* user-defined ReFRaction iNDeX: *
* *
* Created on 19 September 1998 by Alfredo Ferrari & Paola Sala *
* Infn - Milan *
* *
* Last change on 25-Oct-02 by Alfredo Ferrari *
* *
*⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬⏬ المنتدى

INCLUDE '(FLKMAT)'

* Check on the material number *
 *
IF ( MMAT .NE. 18 ) THEN  
CALL FLABRT ( 'RFRNDX', 'MMAT IS NOT SCINTILLATOR!' )  
END IF  
 *
WL = WVLNGT * 1.D+07  
RFRNDX = ONEONE
```

handling optical photons
12.2.3 Input Example no. 1: Only Cherenkov light is generated

Cherenkov light generation depends on the refraction index. Among the different possibilities, here we have chosen to give the refraction index by means of the user routine shown above. The relevant data cards are commented. The value inserted for light absorption in this example is arbitrary, while the mean free path for Rayleigh scattering is the result obtained from measurements performed in the framework of the ICARUS collaboration.

TITLE
Test of Cherenkov light production in Liquid Argon
DEFAULTS
...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
BEAM -10.000 MUON+
BEAMPOS 0.0 0.0 190.0 NEGATIVE
DELTARAY -1.0 18.0 18.0
PAIRBREM -3.0 18.0 18.0
MUPHOTON -1.0 18.0 18.0
PHOTONUC -1.0 3.0 100.0
IONTRANS -6.0
DISCARD 27.0 28.0 43.0 44.0 5.0 6.0
GEOBEGIN COMBINAT
* A large box for the blackhole
* A smaller box for for liquid argon
RPP 2 -200.0 +200.0
END

*== Region Definitions ===
* 1) Blackhole
BL1 +1 -2
* 2) Liquid Argon
LG3 +2
END

GEODEND
* Switch off electron and photon transport
EMF EMF-OFF
*
MATERIAL 18.0 0.0 1.400 18.0 ARGON
* Select neutron cross sections at liquid argon temperature
LOW-MAT 18.0 18.0 -2.0 87.0 ARGON
*
ASSIGNMAT 1.0 1.0 500. 1.0 0.0
ASSIGNMAT 18.0 2.0 2.0
*
* Set Light production/transport properties: from 100 to 600 nm in all materials
OPT-PROP 1.000E-05 3.500E-05 6.000E-05 3.0 100.0 WV-LIMIT
* Set all materials to "metal" with 0 reflectivity:
OPT-PROP 1.0 3.0 100.0 METAL
* resets all previous properties for material n. 18 (Liquid Argon)
OPT-PROP 18.0
*
* defines Cherenkov production for material n. 18 (Liq. Argon)
OPT-PROP 18.0 SCIN-OFF
* switches off scintillation light production in material n. 18 (Liq. Argon)

handling optical photons

OPT-PROD 1.100E-05 5.500E-05 18.0 CEREN-WV
* The following card restores the wave-length limits for material n. 18

OPT-PROP 1.000E-05 3.500E-05 6.000E-05 18.0 WV-LIMIT
* The following card, for material n. 18:
* a) calls the RFRNDX user routine (to define the refraction index
* vs wave-length (WHAT(1)< -99)
* b) sets to 1000 cm the mean free path for absorption.
* c) sets to 90 cm the mean free path for Rayleigh scattering.

OPT-PROP -100.0 0.001 0.01111 18.0
* The following card defines the "Sensitivity" in order to introduce the
* maximum Quantum Efficiency at generation level.
* Here 1/10 of photons is actually generated.
* Fluctuations are properly sampled

OPT-PROP 0.1 0.1 SENSITIV

SCORE 208.0 211.0 201.0 210.0

RANDOMIZ 1.0

USRBDX 1.0 -1.0 -55.0 2.0 1.0 Opt.Phot
USRBDX 12.0E-09 0.0 120.0
USERDUMP 111. 2. MGDRAW
START 10000.0
STOP

12.2.4 Input Example no. 2: Only Scintillation light is concerned

Here it is necessary to point out that, at present, Fluka can generate scintillation lines only for monochromatic lines. A maximum number of 3 different lines is possible. The value inserted here (128 nm) is the correct one for Liquid Argon. The fraction of deposited energy going into scintillation light depends on the degree of recombination after ionisation. Again, the value used here is a parameter justified in the framework of the ICARUS collaboration, where about 20000 photons/MeV of deposited energy have been measured for the electric field of 500 V/cm (the field used in ICARUS). A different electric field intensity will change the degree of recombination and therefore the light yield.

TITLE
Test of scintillation light production in Liquid Argon

DEFAULTS
BEAM -0.5000 MUON+
BEAMPOS 0.0 0.0 199.0 NEGATIVE

* DELTARAY -1.0 18.0 18.0
PAIRBREM -3.0 18.0 18.0
MUPHOTON -1.0 18.0 18.0
PHOTONUC -1.0 3.0 100.0
IGNTRANS -6.0
DISCARO 27.0 28.0 43.0 44.0 5.0 6.0

GEOBEGIN COMBINAT
Test
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+
* A large box for the blackhole
* A SMALLER BOX FOR FOR LIQUID ARGON
RPP 2 -200.0 +200.0 -200.0 +200.0 -200.0 +200.0
END

RPP 111. 9. MGDRAW

** Region Definitions===
* 1) Blackhole
BL1 +1 -2
* 2) Liquid Argon
LG3 +2
END
GEOEND
*
EMF

* MATERIAL 18.0 0.0 1.400 18.0 ARGON
LOW-MAT 18.0 18.0 -2.0 87.0 ARGON
ASSIGNMAT 1.0 1.0 500. 1.0 0.0
ASSIGNMAT 18.0 2.0 2.0

* Set Light production/transport properties: from 100 to 600 nm in all materials
OPT-PROP 1.000E-05 1.280E-05 6.000E-05 3.0 100.0 WV-LIMIT

* Set all materials to "metal" with 0 reflectivity:
OPT-PROP 1.0 3.0 100.0 METAL

* resets all previous properties for material n. 18 (Liquid Argon)
OPT-PROP 18.0 RESET

* switches off Cherenkov light production in material n. 18 (Liquid Argon)
OPT-PROP 18.0 CERE-OFF

* defines Scint. light production for material n. 18 (Liq. Argon). Parameters:
 * a) wavelength (cm) of first scintillation line.
 * b) fraction of deposited energy going into scint. light
 (in Liquid Argon ~ 2 10^4 photons/MeV)
OPT-PROP 1.280E-05 1.937E-01 18.0 SCINT-WV

* The following card restores the wave-length limits for material n. 18
OPT-PROP 1.000E-05 1.280E-05 6.000E-05 18.0 WV-LIMIT

* The following card, for material n. 18:
 * a) calls the RFRNDX user routine (to define the refraction index
 * vs wave-length (WHAT(1)< -99)
 * b) sets to 1000 cm the mean free path for absorption.
 * c) sets to 90 cm the mean free path for Rayleigh scattering
OPT-PROP -100.0 0.001 0.01111 18.0

* The following card defines the "Sensitivity" in order to introduce the
* maximum Quantum Efficiency at generation level. Here 1/10 of photons are
* actually generated.
* Fluctuations are properly sampled
OPT-PROP 0.1 0.1 SENSITIV

SCORE 208.0 211.0 201.0 210.0
RANDOMIZ 1.0

* USRBDX 1.0 -1.0 -55.0 2.0 1.0 Opt.Phot
USRBDX 12.0E-09 0.0 120.0 &
USERDUMP 111. 2. MGDRAW
START 10000.
STOP

12.2.5 User output for optical photons from USERDUMP

The user can request any kind of standard FLUKA output for optical photons and also a user specific output, starting for instance from the MGDRAW user routine. Here an example follows, where a few variables are simply recorded in the output “collision tape” (dump file) at each step in the tracking only for particle id = -1 (optical photons).

It can be useful, in order to exploit the flags available in this routine, and explained in the different comments, to know that the FLUKA routine which drives the transport of optical photons is KASOPH.

The content of COMMON TRACKR can be used to take full advantage of the possibilities offered by the MGDRAW routine (see 13.2.13).

Warning: in the present version of FLUKA, there is not yet the possibility of using the User Particle Properties for optical photons (variables SPAUSR, ISPUSR and the STUPRF user routine)
SUBROUTINE MGDRAW (ICODE, MREG)

INCLUDE '(DBLPRC)'
INCLUDE '(DIMPAR)'
INCLUDE '(IOUNIT)'

MaGnetic field trajectory DRAWing: actually this entry manages all trajectory dumping for drawing

Created on 01 march 1990 by Alfredo Ferrari
INFN - Milan
last change 05-may-06 by Alfredo Ferrari
INFN - Milan

DIMENSION DTQUEN (MXTRCK, MAXMG)

CHARACTER*20 FILNAM
LOGICAL LFCOPE
SAVE LFCOPE
DATA LFCOPE / .FALSE. /

Icode = 1: call from Kaskad
Icode = 2: call from Emfsco
Icode = 3: call from Kasneu
Icode = 4: call from Kashea
Icode = 5: call from Kasoph

IF (.NOT. LFCOPE) THEN
LFCOPE = .TRUE.
IF (KOMPUT .EQ. 2) THEN
 FILNAM = '/'//CFDRAW(1:8)//' DUMP A'
ELSE
 FILNAM = CFDRAW
END IF
WRITE(*,*) 'TRAJECTORY OPEN!'
WRITE(*, '(A)') 'FILNAM = ',FILNAM
OPEN (UNIT = IODRAW, FILE = FILNAM, STATUS = 'NEW', FORM = 'UNFORMATTED')
END IF
C Write trajectories of optical photons
C
IF(JTRACK.EQ.-1) THEN
WRITE (IODRAW) NTRACK, MTRACK, JTRACK, SNGL (ETRACK),
& SNGL (WTRACK)
WRITE (IODRAW) (SNGL (XTRACK (I)), SNGL (YTRACK (I)),
& SNGL (ZTRACK (I)), I = 0, NTRACK),
& (SNGL (DTRACK (I)), I = 1, MTRACK),
& SNGL (CTRACK)
WRITE(IODRAW) SNGL(CXTRCK),SNGL(CYTRCK),SNGL(CZTRCK)
ENDIF
RETURN
*
==
* *
* Boundary-(X)crossing DRAWing: *
* *
* Icode = 1x: call from Kaskad *
* 19: boundary crossing *
* Icode = 2x: call from Emfsco *
* 29: boundary crossing *
* Icode = 3x: call from Kasneu *
* 39: boundary crossing *
* Icode = 4x: call from Kashea *
* 49: boundary crossing *
* Icode = 5x: call from Kasoph *
* 59: boundary crossing *
* *
==
* *
ENTRY BXDRAW (ICODE, MREG, NEWREG, XSCO, YSCO, ZSCO)
RETURN
*
==
* *
* Event End DRAWing: *
* *
==
* *
ENTRY EEDRAW (ICODE)
RETURN
*
==
* *
* ENergy deposition DRAWing: *
* *
* Icode = 1x: call from Kaskad *
* 10: elastic interaction recoil *
* 11: inelastic interaction recoil *
* 12: stopping particle *
* 13: pseudo-neutron deposition *
* 14: escape *
* 15: time kill *
* Icode = 2x: call from Emfsco *
* 20: local energy deposition (i.e. photoelectric) *
* 21: below threshold, iarg=1 *
* 22: below threshold, iarg=2 *
* 23: escape *
* 24: time kill *
* Icode = 3x: call from Kasneu *
* 30: target recoil
*
* 31: below threshold *
* 32: escape *
* 33: time kill *
* Icode = 4x: call from Kashea *
* 40: escape *
* 41: time kill *
* 42: delta ray stack overflow *
* Icode = 5x: call from Kasoph *
* 50: optical photon absorption *
* 51: escape *
* 52: time kill *

==

ENTRY ENDRAW (ICODE, MREG, RULL, XSCO, YSCO, ZSCO)
RETURN

==

SOurce particle DRAWing:

==

ENTRY SODRAW

RETURN

==

USer dependent DRAWing:

Icode = 10x: call from Kaskad
* 100: elastic interaction secondaries *
* 101: inelastic interaction secondaries *
* 102: particle decay secondaries *
* 103: delta ray generation secondaries *
* 104: pair production secondaries *
* 105: bremsstrahlung secondaries *
* 110: decay products *

Icode = 20x: call from Emfsco
* 208: bremsstrahlung secondaries *
* 210: Moller secondaries *
* 212: Bhabha secondaries *
* 214: in-flight annihilation secondaries *
* 215: annihilation at rest secondaries *
* 217: pair production secondaries *
* 219: Compton scattering secondaries *
* 221: photoelectric secondaries *
* 225: Rayleigh scattering secondaries *

Icode = 30x: call from Kasneu
* 300: interaction secondaries *

Icode = 40x: call from Kashea
* 400: delta ray generation secondaries *

For all interactions secondaries are put on GENSTK common (kp=1,np)
but for KASHEA delta ray generation where only the secondary elec-
tron is present and stacked on FLKSTK common for kp=npflka

ENTRY USDRAW (ICODE, MREG, XSCO, YSCO, ZSCO)

* No output by default:
12.2.6 Readout of the sample user output

A sample program to readout the output obtained from the previously shown MGDRAW routine is presented here below. In this example the key routine in the one called VXREAD, where some trivial output is sent to logical units 66 and 67. Of course the user must adapt such a readout program to his own needs.

```fortran
PROGRAM MGREAD
   CHARACTER FILE*80
   *
   WRITE (*,*)' Name of the binary file?'
   READ (*, '(A)') FILE
   OPEN ( UNIT = 33, FILE = FILE, STATUS = 'OLD',
            FORM = 'UNFORMATTED' )
1000 CONTINUE
   WRITE (*, *)' Event number?'
   READ (*,*) NCASE
   IF ( NCASE .LE. 0 ) STOP
   CALL VXREAD (NCASE)
   GO TO 1000
END
SUBROUTINE VXREAD (NCASE)
   PARAMETER ( MXH = 2000 )
   PARAMETER ( MXPR = 300 )
   DIMENSION XH (MXH), YH (MXH), ZH (MXH), DH (MXH),
           EPR (MXPR), WPR (MXPR), XPR (MXPR), YPR (MXPR),
           ZPR (MXPR), TXP (MXPR), TYP (MXPR), TZP (MXPR),
           IPR (MXPR)
   *
   LUNSCR = 33
   REWIND (LUNSCR)
   *
   +-------------------------------------------------------------------*
   | +----------------------------------------------------------------*
   | | Real tracking data:
   | +----------------------------------------------------------------*
   IF ( NDUM .GT. 0 ) THEN
      NTRACK=NDUM
      MTRACK=MDUM
      JTRACK=JDUM
      ETRACK=EDUM
      WTRACK=WDUM
      IF(NTRACK.GT.1) WRITE(67,*),' NTRACK = ',NTRACK
      DO 4000 I=1,2000000000
         READ (LUNSCR,END=4100) NDUM,MDUM,JDUM,EDUM,WDUM
         IF(I.EQ.1) WRITE(*,*)'NDUM,MDUM,JDUM,EDUM,WDUM',NDUM,MDUM,JDUM
                                       & ,EDUM,WDUM
         NEVT = NEVT + 1
      NEVT = NEVT + 1
   ELSE
      WRITE(*,*) (XH(J),YH(J),ZH(J),J=1,NTRACK+1),
                   (DH(J),J=1,MTRACK), CTRACK
      READ (LUNSCR) CXX,CYY,CZZ
      IF(I.EQ.1) THEN
         WRITE(67,*),(XH(J),YH(J),ZH(J),J=1,NTRACK+1),
                     (DH(J),J=1,MTRACK), CTRACK
         WRITE(67,*),CXX,CYY,CZZ
      ENDIF
   END
```

RETURN
*** End of subroutine Mgdraw ===*
END

optical photons
DO J=1,NTRACK+1
 WRITE(67,*) XH(J),YH(J),ZH(J),
 & CXX,CYY,CZZ
END DO

IF (NEVT.EQ.NCASE) THEN
 WRITE(66,*) ' New step: '
 WRITE(66,*) ' Part.id.:',JTRACK,' Kin.En.:',ETRACK,
 & ' N.of substep: ', NTRACK
 WRITE(66,*) ' X, Y, Z, i=0, # substep'
 END IF

* | | +--*
* | | Energy deposition data:
* | | +--*
ELSE IF (NDUM .EQ. 0) THEN
 ICODE1=MDUM/10
 ICODE2=MDUM-ICODE1*10
 IJDEPO=JDUM
 ENPART=EDUM
 WDEPOS=WDUM
 READ (LUNS) XSCO, YSCO, ZSCO, EDUM
 IF (NEVT.EQ.NCASE) THEN
 WRITE(66,*) ' En. dep. code n.: MDUM
 WRITE(66,*) IJDEPO,' Tot. en. proj.: ENPART,
 & ' Weight:',WDEPOS
 WRITE(66,*) ' Position:',XSCO,YSCO,ZSCO,
 & ' En. Dep.: EDUM
 END IF
* | | +--*
* | | Source particle:
ELSE
 NEVT =-NDUM
 LPRIMA = MDUM
 NSTMAX = JDUM
 TKESUM = EDUM
 WEIPRI = WDUM
 READ (LUNS) (IPR(J),EPR(J),WPR(J),XPR(J),YPR(J),
 & ZPR(J),TXP(J),TYP(J),TZP(J),J=1,LPRIMA)
 DO J = 1, LPRIMA
 IF (ABS(IPR(J)) .LT. 10000) THEN
 LPTRUE=J
 END IF
 END DO
 LPROJ = LPRIMA - LPTRUE
 LPRIMA = LPTRUE
 IF (NEVT.EQ.NCASE) THEN
 WRITE(66,*)' Event #',NEVT
 IF (LPROJ .GT. 0) THEN
 WRITE(66,*)
 & ' Original projectile(s), n. of: ',LPROJ
 DO IJ = 1, LPROJ
 J=LPRIMA+IJ
 IPR(J) = IPR(J)/10000
 WRITE(66,*) ' Part.id.: ',IPR(J),' Kin.en.: ',
 & EPR(J),' Weight:',WPR(J)
 WRITE(66,*) IPR(J),EPR(J),WPR(J)
 WRITE(66,*) ' Position : ', XPR(J),YPR(J),ZPR(J)
 WRITE(66,*) ' Direction:', TXP(J),TYP(J),TZP(J)
END IF
END ELSE
END IF
WRITE(66,*) ' Source particle(s), n. of:', LPRIMA
DO J = 1, LPRIMA
 WRITE(66,*) ' Part.id.:', IPR(J), ' Kin.en.:', EPR(J), ' Weight:', WPR(J)
 WRITE(66,*) ' Position:', XPR(J), YPR(J), ZPR(J)
 WRITE(66,*) ' Direction:', TXP(J), TYP(J), TZP(J)
 WRITE(67,*) XPR(J)/1.E+05, YPR(J)/1.E+05, ZPR(J)/1.E+05
END DO
END IF
IF (NEVT.GT.NCASE) GO TO 4100
END IF
END
* | | | +---*
4000 CONTINUE
* | | +---*
4100 CONTINUE
RETURN
END
Chapter 13

User routines

Unlike some other Monte Carlo particle transport codes, FLUKA gets its input mainly from a simple file. It offers a rich choice of options for scoring most quantities of possible interest and for applying different variance reduction techniques, without requiring the users to write a single line of code. However, although normally there is no need for any “user code”, there are special cases where this is unavoidable, either because of the complexity of the problem, or because the desired information is too unusual or too problem-specific to be offered as a standard option.

And on the other hand, even when this is not strictly necessary, experienced programmers may like to create customised input/output interfaces. A number of user routines (available on LINUX and UNIX platforms in directory `usermvax`) allow to define non-standard input and output, and in some cases even to modify to a limited extent the normal particle transport. Most of them are already present in the FLUKA library as dummy or template routines, and require a special command in the standard input file to be activated. Users can modify any one of these routines, and even insert into them further calls to their own private ones, or to external packages (at their own risk!). This increased flexibility must be balanced against the advantage of using as far as possible the FLUKA standard facilities, which are known to be reliable and well tested.

13.1 How to write, compile and link a user routine

To implement their own code, users must perform the following steps:

1) make a modified copy of one or more of these routines. It is recommended that each modified routine should always print an informative message when called for the first time, to confirm that it has been successfully activated, for future documentation, and to avoid misinterpretations of the standard output. It is important to remember that when calling modified user routines, the units, titles etc. reported in the normal FLUKA output become often meaningless.

A typical way to do this is:

```fortran
LOGICAL LFIRST
SAVE LFIRST
DATA LFIRST /.TRUE./
* return message from first call
IF (LFIRST) THEN
  WRITE(LUNOUT,*) 'Version xxx of Routine yyy called'
  LFIRST = .FALSE.
ENDIF
```

IMPORTANT: The user should not modify the value of any argument in a routine calling list, except when marked as “returned” in the description of the routine here below.

Similarly, no variable contained in COMMON blocks should be overwritten unless explicitly indicated.

2) compile the modified routines (with the `fff` script on LINUX/UNIX):

```bash
$FLUPRO/flutil/fff yyy.f  (produces a new file yyy.o)
```

3) link them (with the `lfluka` script on LINUX/UNIX) to the FLUKA library and any additional library of interest (for instance CERNLIB):

```bash
$FLUPRO/flutil/lfluka -o myfluka -m fluka yyy.o
```

This will produce a new executable (indicated here as `myfluka`).

To run the new executable, launch the usual `rfluka` script with the option `-e myfluka`.
13.1.1 INCLUDE files

It is recommended that at least the following lines be present at the beginning of each routine:

```c
#include "(DBLPRC)"
#include "(DIMPAR)"
#include "(IOUNIT)"
```

Each INCLUDE file contains a COMMON block, plus related constants. Additional INCLUDEs may be useful, in particular BEAMCM, CASLIM, EMFSTK, SOURCM, EVTFLG, FHEAVY, GENSTK, LTCLCM, FLKMAT, RESNUC, SCOHLPL, SOUEVT, FLKSTK, SUMC0U, TRACKR, USRBIN, USRB0X, USRTRC, USRYLD. Note the parentheses which are an integral part of the Fluka INCLUDE file names.

Files flukaadd.add and emfadd.add, or directory $FLUPRO/flukapro, contain a full documentation about the meaning of the variables of these INCLUDE files.

Here is a summary of their content:

DBLPRC: included in all routines of Fluka, contains the declaration

```
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
```

and sets many mathematical and physical constants. Users are strongly encouraged to adhere to “Fluka style” by using systematically double precision (except for very good reasons such as calling external single precision scoring packages), and to use constants defined in this file for maximum accuracy.

DIMPAR: dimensions of the most important arrays

IOUNIT: logical input and output unit numbers

BEAMCM: properties of primary particles as defined by options BEAM and BEAMPOS

CASLIM: number of primary particles followed (needed for normalisation)

EMFSTK: particle stack for electrons and photons

SOURCM: user variables and information for a user-written source

EVTFLG: event flags

FHEAVY: stack of heavy secondaries created in nuclear evaporation

GENSTK: properties of each secondary created in a hadronic event

LTCLCM: Lattice Cell Common (needed when writing symmetry transformations for Lattice Geometry)

FLKMAT: material properties

FLKSTK: main Fluka particle stack

RESNUC: properties of the current residual nucleus

SCOHLPL: SCOring HeLP (information on current detector and estimator type). It contains a flag ISCRNG, indicating the quantity being scored by the current binning or detector, and one JSCRNG corresponding to the binning/detector number. Binnings and detectors are sequentially numbered according to their order of appearance in standard input. Note that detectors corresponding to different estimators can have the same JSCRNG number (for instance Binning N. 3 and Track-length estimator N. 3). They can be distinguished based on the value of ISCRNG. However, note that the same value of ISCRNG may have different meanings in functions FLUSCW and COMSCW

SOUEVT: SOUrce EVerT (useful when source particles are obtained from an external event generator)

SUMC0U: total numbers and total weights relative to many physical and Monte Carlo events (needed for normalisation, energy balance etc.)

TRACKR: TRACK Recording (properties of the currently transported particle and its path)

USR1BIN, USRB0X, USRSNCT, USRTRC, USRYLD: parameters of the requested estimator detectors and binnings
13.2 Description of available user routines

13.2.1 ABSCFF: user-defined ABSorption Coefficient

<table>
<thead>
<tr>
<th>Argument list (all variables are input only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WVLNGT : photon wavelength (in cm)</td>
</tr>
<tr>
<td>OMGPHO : angular frequency (\omega = 2\pi\nu) of the photon (in (\text{s}^{-1}))</td>
</tr>
<tr>
<td>MMAT : material index</td>
</tr>
</tbody>
</table>

Function ABSCFF returns a user-defined absorption coefficient for optical photons. It is activated by setting WHAT(2) < -99 in command OPT-PROP, with SDUM = blank. See p. 193 and Chap. 12 for more information.

13.2.2 COMSCW: weighting deposited energy or stars

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJ : particle type ((1 = \text{proton}, 8 = \text{neutron}, \text{etc.}: \text{see code in 5.1})). Input only, cannot be modified.</td>
</tr>
<tr>
<td>XA, YA, ZA : current particle position</td>
</tr>
<tr>
<td>MREG : current geometry region</td>
</tr>
<tr>
<td>RULL : amount to be deposited (unweighted)</td>
</tr>
<tr>
<td>LLO : particle generation. Input only, cannot be modified.</td>
</tr>
<tr>
<td>ICALL : internal code calling flag (not for general use)</td>
</tr>
</tbody>
</table>

This function is activated by option USERWEIG, (p. 258) with WHAT(6) > 0.0. Energy and star densities obtained via SCORE (p. 234) and USRBN (p. 263), energy and stars obtained via EVENTBIN (p. 127) and production of residual nuclei obtained via RESNUCLE (p. 225) are multiplied by the value returned by this function. The user can implement any desired logic to differentiate the returned value according to any information contained in the argument list (particle type, position, region, amount deposited, particle generation), or information available in COMMON SCOHLR (binning number, type of scored quantity). The scored quantity is given by the flag ISCRNG (in SCOHLR):

<table>
<thead>
<tr>
<th>ISCRNG</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energy density binning</td>
</tr>
<tr>
<td>2</td>
<td>Star density binning</td>
</tr>
<tr>
<td>3</td>
<td>Residual nuclei scoring</td>
</tr>
</tbody>
</table>

The binning/detector number is given by JSCRNG (in SCOHLR) and is printed in output between the estimator type and the detector name:

```
Res. nuclei n. 3 "any-name" , "high" energy products, region n. 4
R-Phi-Z binning n. 5 "other-name" , generalised particle n. 1
```

Note that an detector of residual nuclei can have the same JSCRNG number as a binning (use the value of ISCRNG to discriminate). Further information can be obtained including COMMON TRACKR (for instance particle’s total energy, direction cosines, age). TRACKR contains also special user variables (both integer and in double precision) which can be used to save information about particles which have undergone some particular event. If data concerning the current material are needed, it can be accessed as MEDIUM(MREG) if file (FLKMAT) is included. Indeed, a common simple application of COMSCW is to score dose according to the local density (especially useful to get the correct average dose in bins straddling a boundary between two different media):

```
..................
INCLUDE '(FLKMAT)'
INCLUDE '(SCOHLP)'
..................
```
* In order to compute doses *

Medium(n) is the material number of region n
Rho(m) is the density of material m (in g/cm³)

IsCRNG = 1 means we are depositing energy (not stars)

IF (ISCRNG .EQ. 1) THEN
 to get dose in Gy (elcmks is the electron charge in C)
 COMSCW = ELCMKS * 1.D12 / RHO (MEDIUM(MREG))
ELSE
 oneone is defined as 1.D0 in include DBLPRC
 COMSCW = ONEONE
ENDIF

Note that the variables in the argument list, with the exception of IJ, LL0 and ICALL, are local copies of those used for particle transport, and therefore can be modified to have an effect on scoring, without affecting transport.

If name-based input is being used, the name corresponding to MREG can be obtained via a call to routine GEOR2N:

CALL GEOR2N (NUMREG, NAMREG, IERR)

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if = 0 the conversion is successful. See example in the description of BXDRAW below.

Note: setting the variable LSCZER = .TRUE. before RETURN (LSCZER is in COMMON SCOHLP), will cause zero scoring whatever the value returned by COMSCW. This is more efficient than returning a zero value.

13.2.3 **DFFCFF: user-defined Diffusion Coefficient**

Argument list (all variables are input only)

WVLNGT : photon wavelength (in cm)
OMGPHO : angular frequency (ω = 2πν) of the photon (in s⁻¹)
MMAT : material!index

Function DFFCFF returns a user-defined diffusion coefficient for optical photons. It is activated by setting WHAT(3) < -99 in command OPT–PROP, with SDUM = blank. See Sec. 7.52 and Chap. 12 for more information.

13.2.4 **ENDSCP: ENergy density DiStributed — Change of Positions**

Argument list

IJ : particle type (input only)
NTRUCK : number of step points (input only)
XTRUCK, YTRUCK, ZTRUCK : particle step points, can be modified by user
MREG : region number (input only)
LL0 : particle generation (input only)
ICALL : internal code calling flag (not for general use)

Subroutine ENDSCP allows to shift by a user-defined distance the energy which is being deposited along a step or several step binning portions, by providing new segment endpoints. A typical application is to simulate an instrument drift.

If name-based input is being used, the name corresponding to MREG can be obtained via a call to routine GEOR2N:
CALL GEOR2N (NUMREG, NAMREG, IERR)

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if $= 0$ the conversion is successful. See example in the description of BXDRAW below.

13.2.5 **FLDSCP: Fluence Distributed — Change of Positions**

Argument list

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJ</td>
<td>particle type (input only)</td>
</tr>
<tr>
<td>PLA</td>
<td>particle momentum (if > 0), or kinetic energy (if < 0) (input only)</td>
</tr>
<tr>
<td>TXX, TYY, TZZ</td>
<td>particle direction cosines, can be modified by user</td>
</tr>
<tr>
<td>NTRUCK</td>
<td>number of step points (input only)</td>
</tr>
<tr>
<td>XTRUCK, YTRUCK, ZTRUCK</td>
<td>particle step points, can be modified by user</td>
</tr>
<tr>
<td>NRGFLK</td>
<td>new region number (input only)</td>
</tr>
<tr>
<td>IOLREG</td>
<td>old region number (input only)</td>
</tr>
<tr>
<td>LLO</td>
<td>particle generation (input only)</td>
</tr>
<tr>
<td>ICALL</td>
<td>internal code calling flag (not for general use)</td>
</tr>
</tbody>
</table>

Subroutine FLDSCP allows to shift by a user-defined distance the track whose length is being scored as fluence along a step or several step binning portions, by providing new segment endpoints. A typical application is to simulate an instrument drift.

If name-based input is being used, the names corresponding to MREG and IOLREG can be obtained via a call to routine GEOR2N:

CALL GEOR2N (NUMREG, NAMREG, IERR)

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if $= 0$ the conversion is successful. See example in the description of BXDRAW below.

13.2.6 **FLUSCW: weighting fluence, current and yield**

Argument list:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJ</td>
<td>particle type (input only, cannot be modified)</td>
</tr>
<tr>
<td>PLA</td>
<td>particle momentum (if > 0.0)</td>
</tr>
<tr>
<td></td>
<td>or $-PLA =$ kinetic energy (if < 0.0)</td>
</tr>
<tr>
<td>TXX, TYY, TZZ</td>
<td>particle current direction cosines</td>
</tr>
<tr>
<td>WEE</td>
<td>particle weight</td>
</tr>
<tr>
<td>XX, YY, ZZ</td>
<td>particle position</td>
</tr>
<tr>
<td>NRGFLK</td>
<td>current region (after boundary crossing)</td>
</tr>
<tr>
<td>IOLREG</td>
<td>previous region (before boundary crossing). Useful only with boundary crossing estimators (for other estimators it has no meaning)</td>
</tr>
<tr>
<td>LLO</td>
<td>particle generation (input only, cannot be modified)</td>
</tr>
<tr>
<td>NSURF</td>
<td>internal code calling flag (not for general use)</td>
</tr>
</tbody>
</table>

Function FLUSCW is activated by option USERWEIG (p. 258), with WHAT(3) > 0.0. Yields obtained via USRYIELD (p. 281), fluences calculated with USRBDX, USRTRACK, USRCOLL, USRBIN (respectively p. 260, 277, 271, 263), and currents calculated with USRBDX are multiplied by the value returned by this function. The user can implement any desired logic to differentiate the returned value according to any information contained in the argument list (particle type, energy, direction, weight, position, region, boundary, particle
generation), or information available in COMMON SCOHLP (binning or detector number, estimator type). The estimator type is given by the flag ISCRNG (in COMMON SCOHLP):

\[\text{ISCRNG } = 1 \rightarrow \text{Boundary crossing estimator} \]
\[\text{ISCRNG } = 2 \rightarrow \text{Track-length binning} \]
\[\text{ISCRNG } = 3 \rightarrow \text{Track-length estimator} \]
\[\text{ISCRNG } = 4 \rightarrow \text{Collision density estimator} \]
\[\text{ISCRNG } = 5 \rightarrow \text{Yield estimator} \]

The binning/detector number is given by JSCRNG (in COMMON SCOHLP) and is printed in output:

\[\text{Bdx n. 2 "bdxname", generalised particle n. 8, from region n. 22 to region n. 78}\]
\[\text{Track n. 6 "trkname", generalised particle n. 14, region n. 9}\]

Note that a track-length detector can have the same JSCRNG number as a boundary crossing one or a binning etc. (use the value of ISCRNG to discriminate the different estimators). Further information can be obtained including COMMON TRACKR (for instance particle age). TRACKR contains also special user variables (both integer and in double precision) which can be used to save information about particles which have undergone some particular event.

Function FLUSCW has many applications. A common one is conditional scoring (score only if within a certain distance from a point, etc.): for instance it is possible to implement a sort of 2-dimensional fluence binning on a plane boundary.

Other interesting applications are based on the fact that FLUSCW is called at every boundary crossing, provided that at least one USRBDX detector has been requested. Although the function has been designed mainly to weight scored quantities, it can be “cheated” to do all sorts of side things, even not directly connected with scoring. Note that the variables in the argument list, with the exception of IJ, LLO and NSURF, are local copies of those used for particle transport, and therefore can be modified to have an effect on scoring, without affecting transport.

If name-based input is being used, the name corresponding to NREG and IOLREG can be obtained via a call to routine GEOR2N:

\[\text{CALL GEOR2N (NUMREG, NAMREG, IERR)}\]

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if = 0 the conversion is successful. See example in the description of BXDRAW below.

Note: setting the variable LSCZER = .TRUE. before RETURN (LSCZER is in COMMON SCOHLP), will cause zero scoring whatever the value returned by COMSCW or FLUSCW. This is more efficient than returning a zero value.

13.2.7 FORMFU: nuclear FORM Factor User-defined

<table>
<thead>
<tr>
<th>Argument list (all variables are input only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJ : particle code, except that it is set to 3 for both (e^+) and (e^-)</td>
</tr>
<tr>
<td>QU2 : squared momentum transfer (GeV/c(^2))</td>
</tr>
<tr>
<td>ZMEDIU : atomic number of target nucleus</td>
</tr>
<tr>
<td>AMEDIU : atomic mass of target nucleus</td>
</tr>
</tbody>
</table>

Function FORMFU can be used to override the standard value of the nuclear charge form factor. It must return the squared value of the nuclear charge form factor for particle IJ. The default version computes the form factor in Born approximation for a medium of given composition, using the simple expression given by Tsai [201], and accounts also for the contribution of incoherent scattering.

The function is called by the multiple and single scattering routines if option MULSOPT (p. 180) has been issued with \(\text{WHAT}(3) < 0.0\) for electrons and positrons, or \(\text{WHAT}(2) < 0.0\) for hadrons and muons. See Note 2 to option MULSOPT, p. 182.
13.2.8 **FRGHNS: material roughness (for optical photons)**

<table>
<thead>
<tr>
<th>Argument list (all variables are input only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXX, TYY, TZZ : particle direction cosines</td>
</tr>
<tr>
<td>UXSRFC, UYSRFC, UZSRFC : direction of the normal to the surface</td>
</tr>
<tr>
<td>MREG : region from which the particle is coming</td>
</tr>
<tr>
<td>NEWREG : region to which the particle is going</td>
</tr>
<tr>
<td>MMAT : material of the region from which the particle is coming</td>
</tr>
<tr>
<td>MMATNW : material of the region to which the particle is going</td>
</tr>
</tbody>
</table>

Function **FRGHNS** can be used to return a non-zero value for the roughness of a boundary between two materials, relevant for optical photon transport (default roughness is zero for all boundaries). Meaningful only if options **OPT–PROP** or **OPT–PROD** (p. 193, 189) have been requested. See Sec. 7.52 and Chap. 12 for more information.

If name-based input is being used, the names corresponding to **MREG** and **NEWREG** can be obtained via a call to routine **GEOR2N**:

```fortran
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where **NUMREG** (input variable) is the region number, and **NAMREG** (returned variable) is the corresponding region name (to be declared as `CHARACTER*8`). **IERR** is a returned error code: if = 0 the conversion is successful. See example in the description of **BXDRAW** below.

13.2.9 **MUSRBR, LUSRBL, FUSRBV: user-defined quantities for special binning**

These three functions are used to define 3-dimensional fluence distributions to be calculated by special user-defined binnings (see option **USRBIN** with **WHAT(1) = 8.0** in the first card).

MUSRBR defines a discrete (integer) variable (by default: region number).

<table>
<thead>
<tr>
<th>Argument list (all variables are input only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJ : particle type</td>
</tr>
<tr>
<td>PCONTR : particle momentum</td>
</tr>
<tr>
<td>XA, YA, ZA : particle position</td>
</tr>
<tr>
<td>MREG : current region</td>
</tr>
<tr>
<td>LATCLL : current lattice cell</td>
</tr>
<tr>
<td>ICALL : internal code calling flag (not for general use)</td>
</tr>
</tbody>
</table>

If name-based input is being used, the name corresponding to **MREG** can be obtained via a call to routine **GEOR2N**:

```fortran
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where **NUMREG** (input variable) is the region number, and **NAMREG** (returned variable) is the corresponding region name (to be declared as `CHARACTER*8`). **IERR** is a returned error code: if = 0 the conversion is successful. See example in the description of **BXDRAW** below.

LUSRBL defines another discrete (integer) variable (by default: lattice number).
The 3 functions are called at track-length events. What is scored is the particle track-length multiplied by the particle’s weight, possibly modified by a user-written FLUSCW user routine (see 13.2.6).

13.2.10 LATTIC: symmetry transformation for lattice geometry

Subroutine LATTIC is activated by one or more LATTICE cards in the geometry input (see 8.2.10). It is expected to transform coordinates and direction cosines from any lattice cell (defined by card LATTICE) to the reference system in which the basic structure has been described.

The user is expected to provide a transformation of coordinates and vector direction cosines from each lattice cell to the corresponding basic structure (in ENTRY LATTIC) and of direction cosines from the basic structure to each corresponding lattice cell (in ENTRY LATNOR).

Entries:

LATTIC (position and direction symmetry transformation from lattice cell to prototype structure)

LATTIC returns the tracking point coordinates (SB) and direction cosines (UB) in the reference prototype geometrical structure, corresponding to real position/direction XB, WB in the actual cell IRLTGG (defined as input region IR by a LATTICE card, see 8.2.10).
When the lattice option is activated, the tracking proceeds in two different systems: the “real” one, and that of the basic symmetry unit. Particle positions and directions are swapped from their real values to their symmetric ones in the basic cell, to perform the physical transport in the regions and materials that form the prototype geometrical structure and back again to the real world. The correspondence between “real” and “basic” position/direction depends on the symmetry transformation and on the lattice cell number.

LATNOR (LATTice cell NORmal transformation from prototype structure to lattice cell)

Argument list

UN(1), UN(2), UN(3) : direction cosines of the vector normal to the surface, in the prototype cell (entry values) and in the lattice cell (returned values)

IRLTNO : present lattice cell number

ENTRY LATNOR transforms the direction cosines stored in the vector UN(3) from the system of the basic prototype unit to that of the real world in lattice cell number IRLTNO. Therefore, this cosine transformation must be the inverse of that performed on the cosines by the LATTIC entry: but while LATTIC maps vector UB to a different vector WB, LATNOR maps the UN vector to itself.

Note that if the transformation implies a rotation, it is necessary to save first the incoming UN cosines to local variables, to avoid overwriting the vector before all transformation statements are executed.

Notes

1) Different symmetry transformations can of course be implemented in the same LATTIC routine (each being activated by a different cell number or range of cell numbers).

2) The advantage of the lattice geometry is to avoid describing in detail the geometry of repetitive multi-modular structures. It must be realised, however, that a penalty is generally paid in computer efficiency.

3) Also, a region contained in the prototype cell and all those “mapped” to it inside lattice cells are treated by the program as if they were connected with “non-overlapping ORs” (see 8.2.7.2, 8.2.7.4) into a single region. Therefore, any region-based scoring (options SCORE, USRTRACK, etc.) can only provide quantities averaged over the whole structure. More detailed information must be obtained by region-independent options such as USRBIN or by user-written routines (MGDRAW, see 13.2.13). The USRBIN and EVENTBIN options (p. 263, 127), with WHAT(1) = 8, can also be used to request a special binning type which activates the MUSRBR, LUSRBL, FUSRBV, user routines to recover lattice information (see 13.2.9).

4) A transformation between a lattice cell and a prototype region can alternatively be defined without resorting to the LATTIC user routine. In this case, the transformation is defined via a ROT-DEFin card (p. 228) and the correspondence is established by giving the transformation index in the SDUM of the LATTICE card (see 8.2.10, p. 314).

13.2.11 **MAGFLD: definition of a magnetic field**

Argument list

X, Y, Z : current position (input only)

BTX, BTY, BTZ : direction cosines of the magnetic field vector (returned)

B : magnetic field intensity in tesla (returned)

NREG : current region (input only)

IDISC : if returned = 1, the particle will be discarded

MAGFLD is activated by option MGNFIELD (p. 178) with WHAT(4–6) = 0.0 and is used to return intensity and direction of a magnetic field based on the current position and region. It is called only if the current region has been flagged as having a non-zero magnetic field by option ASSIGNMAt (p. 68), with WHAT(5) = 1.0.
The magnetic field spatial distribution is often read and interpolated from an external field map. Note that in any case the direction cosines must be properly normalised in double precision (e.g., $BTX = \sqrt{\text{ONEONE} - BTY^2 - BTZ^2}$), even if $B = 0.0$.

Please read carefully the notes on option MGNFIELD (p. 178).

If name-based input is being used, the name corresponding to NREG can be obtained via a call to routine GEOR2N:

```fortran
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if $= 0$ the conversion is successful. See example in the description of BXDRAW below.

13.2.12 MDSTCK: management of the stack of secondaries

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFLAG : type of nuclear interaction which has produced secondaries:</td>
</tr>
<tr>
<td>1: inelastic</td>
</tr>
<tr>
<td>2: elastic</td>
</tr>
<tr>
<td>3: low-energy neutron</td>
</tr>
<tr>
<td>NUMSEC : number of secondary particles produced in the interaction</td>
</tr>
</tbody>
</table>

MDSTCK is called after a nuclear interaction in which at least one secondary particle has been produced, before any biasing is applied, to decide which secondary will be loaded in the main stack for further transport. The properties of the secondaries are stored in the secondary stack (COMMON GENSTK). With MDSTCK, users can analyse those secondaries, write them to a file, or even modify the content of GENSTK (for instance applying their own biasing). In the latter case, however, it is their responsibility to make sure that energy is conserved, the various physical quantities are still consistent, etc.

13.2.13 MGDRAW: general event interface

Subroutine MGDRAW, activated by option USERDUMP (p. 255) with WHAT(1) ≥ 100.0, usually writes a “collision tape”, i.e., a file where all or selected transport events are recorded. The default version (unmodified by the user) offers several possibilities, selected by WHAT(3) in USERDUMP. Details are given in Chap. 11.

Additional flexibility is offered by a user entry USDRAW, interfaced with the most important physical events happening during particle transport. The user can modify of course also any other entry of this subroutine (BXDRAW called at boundary crossings, EEDRAW called at event end, MGDRAW for trajectory drawing, ENDRAW for recording of energy depositions and SODRAW for recording of source events): for instance the format of the output file can be changed, and different combinations of events can be written to file.

No information is written by default at EEDRAW and BXDRAW calls, but the entries are called for any value of WHAT(3) < 7.0 in USERDUMP (EEDRAW also for WHAT(4) ≥ 1).

But the most interesting aspect of the routine is that the six entries (all of which, if desired, can be activated at the same time by setting USERDUMP with WHAT(3) $= 0.0$ and WHAT(4) ≥ 1.0) constitute a complete interface to the whole FLUKA transport. Therefore, MGDRAW can be used not only to write a collision tape,
but to do any kind of complex analysis (for instance studying correlations between events).

Entries:

MGDRAW (trajectory dumping for drawing)

<table>
<thead>
<tr>
<th>Argument list (all variables are input only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICODE : FLUKA physical compartment originating the call</td>
</tr>
<tr>
<td>= 1: call from subroutine KASKAD (hadrons and muons)</td>
</tr>
<tr>
<td>= 2: call from subroutine EMFSCO (e⁻, e⁺ and photons)</td>
</tr>
<tr>
<td>= 3: call from subroutine KASNEU (low-energy neutrons)</td>
</tr>
<tr>
<td>= 4: call from subroutine KASHEA (heavy ions)</td>
</tr>
<tr>
<td>= 5: call from subroutine KASOPH (optical photons)</td>
</tr>
<tr>
<td>MREG : current region</td>
</tr>
</tbody>
</table>

MGDRAW writes by default, for each trajectory, the following variables (contained in **COMMON TRACKR**):

- **NTRACK**: number of track segments
- **MTRACK**: number of continuous energy deposition events along the track. Local energy deposition events, i.e., energy deposition at a point, such as that from heavy recoils, particles below threshold and low energy neutron kerma, are written instead by the entry **ENDRAW** (see below)
- **JTRACK**: type of particle
- **ETRACK**: total energy of the particle
- **WTRACK**: weight of the particle
- **NTRACK** values of **XTRACK**, **YTRACK**, **ZTRACK**: end of each track segment
- **MTRACK** values of **DTRACK**: energy deposited at each deposition event
- **CTRACK**: total length of the curved path

Other variables are available in **TRACKR** (but not written by **MGDRAW** unless the latter is modified by the user: particle momentum, direction cosines, cosines of the polarisation vector, age, generation, etc. (see a full list in the comment in the **INCLUDE** file).

If name-based input is being used, the name corresponding to **MREG** can be obtained via a call to routine **GEOR2N**:

```fortran
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where **NUMREG** (input variable) is the region number, and **NAMREG** (returned variable) is the corresponding region name (to be declared as **CHARACTER*8**). **IERR** is a returned error code: if **IERR** = 0 the conversion is successful. See example in the description of **BXDRAW** below.

BXDRAW (boundary crossing dumping)

<table>
<thead>
<tr>
<th>Argument list (all variables are input only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICODE : physical compartment originating the call, as in the MGDRAW entry</td>
</tr>
<tr>
<td>MREG : region from which the particle is exiting</td>
</tr>
<tr>
<td>NEWREG : region the particle is entering</td>
</tr>
<tr>
<td>XSCO, YSCO, ZSCO : coordinates of crossing point</td>
</tr>
</tbody>
</table>

BXDRAW is called at each boundary crossing (if requested by the user with **USERDUMP, WHAT(3) < 7.0**). There is no default output: any output must be supplied by the user.

If name-based input is being used, the names corresponding to **MREG** and **NEWREG** can be obtained via a call to routine **GEOR2N**:

```fortran
CALL GEOR2N (NUMREG, NAMREG, IERR)
```
where NUMREG (input variable) is a region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if $IERR = 0$ the conversion is successful.

Example:

```fortran
CHARACTER*8 MRGNAM, NRGNAM
ENTRY BXDRAW ( ICODE, MREG, NEWREG, XSCO, YSCO, ZSCO )
CALL GEOR2N ( MREG, MRGNAM, IERR1 )
CALL GEOR2N ( NEWREG, NRGNAM, IERR2 )
IF(IERR1 .NE. 0 .OR. IERR2 .NE. 0) STOP "Error in name conversion"
IF(MRGNAM .EQ. "MyUpsREG" .AND. NRGNAM .EQ. "MyDwnREG") THEN

EEDRAW (event end dumping)

<table>
<thead>
<tr>
<th>Argument list (all variables are input only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICODE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

EEDRAW is called at the end of each event, or primary history, (if requested by the user with USERDUMP, WHAT(3) $\leq 0.0$). There is no default output: any output must be supplied by the user.

ENDRAW (dumping of energy deposition at a point)

```
ENDRAW writes by default, for each energy deposition point:
0: flag identifying ENDRAW output from that of other entries
ICODE: see argument list
JTRACK, ETRACK, WTRACK: see MGDRAW above. Note that for recoils, electrons, positrons and photons below threshold and kerma deposition, JTRACK can be outside the allowed particle ID range, assuming values like:
208: heavy recoil
211: electron, positron or photon below threshold
308: low energy neutron kerma
In those cases the ID of the particle originating the interaction is saved in the TRACKR variable J0TRK (which otherwise has value zero)
XSCO, YSCO, ZSCO, RULL: see argument list.
If name-based input is being used, the name corresponding to MREG can be obtained via a call to routine GEOR2N:

```
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if = 0 the conversion is successful. See example in the description of BXDRAW above.

SODRAW (source particle dumping)

```
SODRAW writes by default, for each source or beam particle:
-NCASE (in COMMON CASLIM, with a minus sign to identify SODRAW output): number of primaries followed so far
NPFLKA (in COMMON FLKSTK): stack pointer
NSTMAX (in COMMON FLKSTK): highest value of the stack pointer encountered so far
TKESUM (in COMMON SOURCM): total kinetic energy of the primaries of a user written source (see user subroutine SOURCE in 13.2.19), if applicable. Otherwise = 0.0
WEIPRI (in COMMON SUMCOU): total weight of the primaries handled so far
```

NPFLKA times:
ILOFLK: type of source particle
TKEFLK * AM: total particle energy (kinetic+mass)
WTFLK: source particle weight
XFLK, YFLK, ZFLK: source particle position
TXFLK, TYFLK, TZFLK: source particle direction cosines

USDRAW (user-defined dumping)
Argument list (all variables are input only)

<table>
<thead>
<tr>
<th>ICODE</th>
<th>Type of event</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICODE = 10x</td>
<td>call from subroutine KASKAD (hadron and muon interactions);</td>
</tr>
<tr>
<td>100</td>
<td>elastic interaction secondaries</td>
</tr>
<tr>
<td>101</td>
<td>inelastic interaction secondaries</td>
</tr>
<tr>
<td>102</td>
<td>particle decay secondaries</td>
</tr>
<tr>
<td>103</td>
<td>delta ray generation secondaries</td>
</tr>
<tr>
<td>104</td>
<td>pair production secondaries</td>
</tr>
<tr>
<td>105</td>
<td>bremsstrahlung secondaries</td>
</tr>
<tr>
<td>110</td>
<td>radioactive decay products</td>
</tr>
<tr>
<td>ICODE = 20x</td>
<td>call from subroutine EMFSCO (electron, positron and photon interactions)</td>
</tr>
<tr>
<td>208</td>
<td>bremsstrahlung secondaries</td>
</tr>
<tr>
<td>210</td>
<td>Møller secondaries</td>
</tr>
<tr>
<td>212</td>
<td>Bhabha secondaries</td>
</tr>
<tr>
<td>214</td>
<td>in-flight annihilation secondaries</td>
</tr>
<tr>
<td>215</td>
<td>annihilation at rest secondaries</td>
</tr>
<tr>
<td>217</td>
<td>pair production secondaries</td>
</tr>
<tr>
<td>219</td>
<td>Compton scattering secondaries</td>
</tr>
<tr>
<td>221</td>
<td>photoelectric secondaries</td>
</tr>
<tr>
<td>225</td>
<td>Rayleigh scattering secondaries</td>
</tr>
<tr>
<td>ICODE = 30x</td>
<td>call from subroutine KASNEU (low-energy neutron interactions)</td>
</tr>
<tr>
<td>300</td>
<td>neutron interaction secondaries</td>
</tr>
<tr>
<td>ICODE = 40x</td>
<td>call from subroutine KASHEA (heavy ion interactions)</td>
</tr>
<tr>
<td>400</td>
<td>delta ray generation secondaries</td>
</tr>
</tbody>
</table>

MREG : current region

XSCO, YSCO, ZSCO : interaction point

USDRAW is called after each particle interaction (if requested by the user with option **USERDUMP**, **WHAT(4) ≥ 1.0**). There is no default output: any output must be supplied by the user.

Information about the secondary particles produced is available in **COMMON GENSTK**, except that concerning delta rays produced by heavy ions (in which case the properties of the single electron produced are available in **COMMON EMFSTK**, with index NP). Another exception is that about heavy evaporation fragments (deuterons, ^3H, ^3He, α, with JTRACK ID equal respectively to -3, -4, -5, -6) and fission/fragmentation products generated in an inelastic interaction (with JTRACK = -7 to -12), which are all stored in **COMMON FHEAVY**, with index NPHEAV. To get the kinetic energy of particles with JTRACK < -6, one must subtract from their total energy (ETRACK in **COMMON TRACKR**) their fully stripped nuclear mass (AMNHEA in **COMMON FHEAVY**).

Information about the interacting particle and its trajectory can be found in **COMMON TRACKR** (see description under the **MGDRAW** entry above). In **TRACKR** there are also some spare variables at the user’s disposal: LLOUSE (integer), ISPUSR (integer array) and SPAUSR (double precision array). Like many other **TRACKR** variables, each of them has a correspondent in the particle stacks, i.e., the **COMMONs** from which the particles are unloaded at the beginning of their transport: FLKSTK, EMFSTK and OPPHST (respectively, the stack of hadrons/muons, electrons/photons, and optical photons). The correspondence with **TRACKR** is shown below under **STUPRF/STUPRE** (13.2.20). When a particle is generated, its properties (weight, momentum, energy, coordinates etc., as well as the values of the user flags) are loaded into one of the stacks. The user can write a **STUPRF** or **STUPRE** subroutine (see description below in 13.2.20) to change anyone of such flags just before it is saved in stack.

When a particle starts to be transported, its stack variables are copied to the corresponding **TRACKR** ones. Unlike the other **TRACKR** variables, which in general become modified during transport due to energy loss, scattering etc., the user flags keep their original value copied from stack until they are changed by the user himself (generally under the **USDRAW** entry).

One common application is the following: after an interaction which has produced secondaries, let **USDRAW** copy some properties of the interacting particle into the **TRACKR** user variables. When **STUPRF** is called next
to load the secondaries into stack, by default it copies the TRACKR user variables to the stack ones. In this way, information about the parent can be still carried by its daughters (and possibly by further descendants). This technique is sometimes referred to as “latching”.

If name-based input is being used, the name corresponding to MREG can be obtained via a call to routine GEOR2N:

```
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if = 0 the conversion is successful. See example in the description of BXDRAW above.

13.2.14 OPHBDX: user-defined Optical Photon Boundary-(X)crossing properties

Argument list (all variables are input only)

- OMGPHO : angular frequency \((\omega = 2\pi\nu)\) of the photon (in \(s^{-1}\))
- WVLNGT : photon wavelength (in cm)
- MREG : old region number
- NEWREG : new region number
- SIGANW : absorption coefficient in the new region (cm\(^{-1}\))
- SIGDNW : diffusion coefficient in the new region (cm\(^{-1}\))
- RFNDPR : refractive index in the new region
- VGRPNW : group velocity in the new region (cm \(s^{-1}\))
- LPHKLL : if .TRUE., the photon will be absorbed on the boundary

Subroutine OPHBDX sets the optical properties of a boundary surface. The call is activated by command OPT–PROP, with SDUM = SPEC–BDX. See Sec. 7.52 and Chap. 12 for more information.

If name-based input is being used, the name corresponding to MREG and NEWREG can be obtained via a call to routine GEOR2N:

```
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if = 0 the conversion is successful. See example in the description of BXDRAW above.

13.2.15 QUEFFC: user-defined Quantum Efficiency

Argument list (all variables are input only)

- WVLNGT : photon wavelength (in cm)
- OMGPHO : angular frequency \((\omega = 2\pi\nu)\) of the photon (in \(s^{-1}\))

Function QUEFFC returns a user-defined quantum efficiency for an optical photon of the given wavelength or frequency. It is activated with option OPT–PROP with SDUM = SENSITIV, by setting the \(0^{th}\) photon sensitivity parameter to a value < -99. See Sec. 7.52 and Chap. 12 for more information.

13.2.16 RFLCTV: user-defined Reflectivity

Argument list (all variables are input only)

- WVLNGT : photon wavelength (in cm)
- OMGPHO : angular frequency \((\omega = 2\pi\nu)\) of the photon (in \(s^{-1}\))
- MMAT : material index
Function **RFLCTV** returns a user-defined of the current material for an optical photon of the given wavelength or frequency.
It is activated by command **OPT–PROP** with SDUM = METAL and WHAT(3) < -99. See Sec. 7.52 and Chap. 12 for more information.

13.2.17 **RFRNDX: user-defined Refraction Index**

Argument list (all variables are input only)
- **WVLNGT**: photon wavelength (in cm)
- **OMGPHO**: angular frequency \(\omega = 2\pi\nu \) of the photon (in \(s^{-1} \))
- **MMAT**: material index

Function **RFRNDX** returns a user-defined refraction index of the current material for an optical photon of the given wavelength or frequency.
It is activated by command **OPT–PROP** with SDUM = blank and WHAT(1) < -99. See Sec. 7.52 and Chap. 12 for more information.

13.2.18 **SOEVSV: Source Event Saving**

Argument list
- No arguments

Subroutine **SOEVSV** is always called after a beam particle is loaded onto stack, but a call to **SOEVSV** can be inserted by the user anywhere in a user routine.

SOEVSV copies the whole **COMMON FLKSTK** to another **COMMON**, **SOUEVT**, which can be included in other user routines. In other words, this routine is used to “take a snapshot” of the particle bank at a particular time for further use (interfacing to independent generators, etc.)

13.2.19 **SOURCE: user-written source**

Argument list
- **NOMORE**: if set = 1, no more calls will occur (the run will be terminated after exhausting the primary particles loaded onto stack in the present call). The history number limit set with option **START** (p. 244) will be overridden

Subroutine **SOURCE** is probably the most frequently used user routine. It is activated by option **SOURCE** (p. 236) and is used to sample primary particle properties from distributions (in space, energy, time, direction or mixture of particles) too complicated to be described with the **BEAM**, **BEAMPOS** and **BEAMAXES** cards alone. For each phase-space variable, a value must be loaded onto **COMMON FLKSTK** (particle bank) before returning control. These values can be read from a file, generated by some sampling algorithm, or just assigned.

13.2.19.1 Reading from a file

Reading from a file is needed, for instance, when the particle data are taken from a collision file, written by **FLUKA** or by another program (see 11). The user must open the file with a unit number > 20.0 (unit numbers lower than 20 are reserved), in one of the following ways:

1) Using option **OPEN** (p. 187), with SDUM = OLD

2) In a user subroutine **USRINI** or **USRGLO** (see 13.2.27 or 13.2.26 below), with a Fortran **OPEN** statement. Option **USRICALL** (p. 275) (resp. **USRGCALL**, p. 274) is needed to activate the call to the routine.
3) With an OPEN statement in the initialisation part of subroutine SOURCE itself.

Then, a READ statement in SOURCE can be used to get the data to load in stack, for instance:

```
READ(21,*) IPART, X, Y, Z, COSX, COSY, COSZ, ENERGY, WEIGHT
ILOFLK (NPFLKA) = IPART
XFLK (NPFLKA) = X
YFLK (NPFLKA) = Y
ZFLK (NPFLKA) = Z
TXFLK (NPFLKA) = COSX
```

...etc...

(NPFLKA is the current stack index).

13.2.19.2 Direct assignment

Direct assignment can be done explicitly, for instance:

```
PMOFLK (NPFLKA) = 305.2D0
```

or implicitly, leaving unmodified values input with BEAM (p. 73) or BEAMPOS (p. 78):

```
PMOFLK (NPFLKA) = PBEAM
```

(PBEAM is the momentum value input as WHAT(1) in option BEAM). A set of direct assignments, one for each of several different stack entries, can be useful, for example, to define a series of RAYS through the geometry (see 14):

```
DO 10 I = 1, 20
NPFLKA = NPFLKA + 1
ILOFLK (NPFLKA) = 0 ! (0 is the RAY particle id number)
XFLK (NPFLKA) = 500.D0 + DBLE(I) * 40.D0
YFLK (NPFLKA) = 200.D0
...etc...
10 CONTINUE
```

13.2.19.3 Sampling from a uniform distribution

To sample from a uniform distribution, the user must use the function FLRNDM(DUMMY), which returns a double precision pseudo-random number uniformly distributed between 0 (included) and 1 (not included). Actually, DUMMY can be any variable name. A simple example of sampling from a uniform distribution is that of a linear source along the Z axis, between \(Z_1 = 10 \) and \(Z_2 = 80 \):

```
Z1 = 10.D0
Z2 = 80.D0
ZFLK (NPFLKA) = 10.D0 + (Z2 - Z1) * FLRNDM(XXX)
```

13.2.19.4 Sampling from a generic distribution

One way to sample a value \(X \) from a generic distribution \(f(x) \) is the following.

First integrate the distribution function, analytically or numerically, and normalise to 1 the obtained cumulative distribution:

\[
F(x) = \frac{\int_{x_{\text{min}}}^{x} f(x) \, dx}{\int_{x_{\text{min}}}^{x_{\text{max}}} f(x) \, dx}
\]

Then, sample a uniform pseudo-random number \(\xi \) using FLRNDM and get the desired result by finding the inverse value \(X = F^{-1}(\xi) \) (analytically or most often by interpolation).

A FLUKA subroutine is available to sample directly from a Gaussian distribution:
or, if two independent Gaussian distributed numbers are needed:

CALL FLNRR2 (RGAUS1, RGAUS2)

(faster than calling FLNRRN twice).

13.2.19.5 Sampling from a biased distribution

The technique for sampling from a generic distribution described above can be extended to modify the probability of sampling in different parts of the interval (importance sampling). We replace \(f(x) \) by a weighted function \(g(x) = f(x)h(x) \), where \(h(x) \) is any appropriate function of \(x \) we like to choose. We normalise \(g(x) \) in the same way as \(f(x) \) before:

\[
G(x) = \frac{\int_{x_{\text{min}}}^{x} g(x) \, dx}{\int_{x_{\text{min}}}^{x_{\text{max}}} g(x) \, dx} = \frac{\int_{x_{\text{min}}}^{x} f(x)h(x) \, dx}{B}
\]

and we need also the integral of \(f(x) \) over the whole interval:

\[
A = \int_{x_{\text{min}}}^{x_{\text{max}}} f(x) \, dx
\]

All the sampling is done using the biased cumulative normalised function \(G \) instead of the original unbiased \(F \): we sample a uniform pseudo-random number \(\xi \) as before, and we get the sampled value \(X \) by inverting \(G(X) \):

\[
X = G^{-1} (\xi)
\]

The particle is assigned a weight \(\frac{B}{Ah(X)} \).

A special case of importance sampling is when the biasing function chosen is the inverse of the unbiased distribution function:

\[
h(x) = \frac{1}{f(x)}
\]

\[
g(x) = f(x)h(x) = 1
\]

\[
B = \int_{x_{\text{min}}}^{x_{\text{max}}} g(x) \, dx = \int_{x_{\text{min}}}^{x_{\text{max}}} \, dx = x_{\text{max}} - x_{\text{min}}
\]

\[
G(x) = \frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}
\]

In this case we sample a uniform pseudo-random number \(t \) using FLRNDM as shown above. The sampled value \(X \) is simply given by:

\[
X = x_{\text{min}} + (x_{\text{max}} - x_{\text{min}}) \, t
\]

and the particle is assigned a weight

\[
\frac{B}{Ah(X)} = f(X) \frac{x_{\text{max}} - x_{\text{min}}}{\int_{x_{\text{min}}}^{x_{\text{max}}} f(x) \, dx}
\]

But since FLUKA normalizes all results per unit primary weight, any constant factor is eliminated in the normalization. Therefore it is sufficient to assign each particle a weight \(f(x) \).

Because \(X \) is sampled with the same probability over all possible values of \(x \), independently of the value \(f(X) \) of the function, this technique is used to ensure that sampling is done uniformly over the whole interval, even though \(f(x) \) might have very small values somewhere. For instance it may be important to avoid undersampling in the high-energy tail of a spectrum, steeply falling with energy but more penetrating, such as that of cosmic rays or synchrotron radiation.

Option SOURCE (p. 236) allows the user to input up to 12 numerical values (WHASOU(1),(2)...(12)) and one 8-character string (SDUSOU) which can be accessed by the subroutine by including the following line:
These values can be used as parameters or switches for a multi-source routine capable to handle several cases, or to identify an external file to be read, etc., without having to compile and link again the routine.

In the SOURCE routine there are a number of mandatory statements, (clearly marked as such in accompanying comments) which must not be removed or modified. The following IF block initialises the total kinetic energy of the primary particles and sets two flags: the first to skip the IF block in all next calls, and the second to remind the program, when writing the final output, that a user source has been used:

```
* +-------------------------------------------------------------------*
* | First call initialisations:                                       *
* | *** The following 3 cards are mandatory ***                      *
* | TKESUM = ZERZER                                                   *
* | LFIRST = .FALSE.                                                  *
* | LUSSRC = .TRUE.                                                   *
* | *** User initialisation ***                                       *
* | END IF                                                             *
* +-------------------------------------------------------------------*
```

The user can insert into the above IF block any other initialisation needed, for instance the preparation of a cumulative spectrum array from which to sample the energy of the source particles. Note that user initialisation can take place also in routines USRINI and USRGLO (activated at input time by input options USRICALL (p. 275) and USRGCALL (p. 274), see 13.2.27 and 13.2.26, and USREIN (called before unloading from stack the first source particle of an event, i.e., just after the call to SOURCE: see 13.2.24)

At the time SOURCE is called, the particle bank FLKSTK is always empty and the stack pointer NPFLKA has value 0.

The user can load onto the FLKSTK stack one or more source particles at each call: for each particle loaded the pointer must be increased by 1. The template version of SOURCE loads only one particle: if several are loaded the following sequence, until the statement CALL SOEVSV not included, must be repeated once for each particle, possibly inside a DO loop:

```
NPFLKA = NPFLKA + 1 ! increases the pointer
```

The following statements assign a value to each of the FLKSTK stack variables concerning the particle being loaded.

\[\text{WTFLK (NPFLKA)} = \text{ONEONE} \]
\[\text{sets the weight of the particle} = 1.0 \]
\[\text{This must be changed if the sampling of one or more of the particle properties are biased. In that case, generally the weight must be set after the sampling, and its value depends on the sampling outcome.} \]

\[\text{WEIPRI} = \text{WEIPRI} + \text{WTFLK (NPFLKA)} \]
\[\text{updates the total weight of the primaries (don’t change)} \]

\[\text{ILOFLK (NPFLKA)} = \text{IJBEAM} \]
\[\text{by default sets the type of particle equal to the one defined by the BEAM card (p. 73). If no BEAM card is given in input, IJBEAM is} = 1 \text{ (proton), but it is strongly recommended to always provide a BEAM command in input (see Note 1) at the end of section 13.2.19).} \]

The above statement is followed by several others that must not be changed or removed. In the template routine, they are encompassed by the comment lines:

```
From this point .... / ... to this point: don’t change anything
```
These statements are:

* From this point

 LOFLK (NPFLKA) = 1 ! Generation is 1 for source particles
 LOUSE (NPFLKA) = 0 ! User variables: the user can set
 DO 100 ISPR = 1, MKBMX1 ! different values in the STUPRF or
 SPAREK (1,NPFLKA) = ZERZER ! STUPRF routine, but it is better

The following statements can be overridden or rewritten by the user, assigning new values or sampling them from problem-dependent distributions.

First three statements which are rarely modified:

 AGESTK (NPFLKA) = +ZERZER ! Particle age is zero by default
 AKNSHR (NPFLKA) = -TWOTWO ! Resets the Kshort component of
 ! K0/K0bar. Usually not to be changed.
 IGROUP (NPFLKA) = 0 ! Group number for low-energy
 ! neutrons: if set to 0, the program
 ! derives it from the kinetic energy

Then the most frequently changed lines: both energy and momentum of the particle must be loaded onto the
FLKSTK stack, but the two cannot be defined independently. Appropriate kinematical (relativistic) relations
must be applied to derive one from the other.

In the template routine, the momentum is assumed to be assigned by BEAM option (its value, PBEAM, is
taken from COMMON BEAMCM, which contains all values defined by options BEAM and BEAMPOS).

 PMOFLK (NPFLKA) = PBEAM

Therefore, the kinetic energy (in GeV) must be derived:

 TKEFLK (NPFLKA) = SQRT (PBEAM**2 + AM (IJBEAM)**2) - AM (IJBEAM)

(where AM is the rest mass, in COMMON PAPROP, and IJBEAM is the particle type, in COMMON BEAMCM).

If instead the energy had been sampled first from some spectrum, and ENSAMP would be the sampled value,
the two statements above would become:

 TKEFLK (NPFLKA) = ENSAMP
 PMOFLK (NPFLKA) = SQRT(ENSAMP * (ENSAMP + TWOTWO * AM(IJBEAM)))

The direction cosines are loaded next:

 TXFLK (NPFLKA) = UBEAM ! Assumed here to be the same as
 TYFLK (NPFLKA) = VBEAM ! defined by option BEAMPOS. UBEAM,
 TZFLK (NPFLKA) = WBEAM ! VBEAM, WBEAM are some among the beam
 ! properties in COMMON BEAMCM

(If BEAMPOS is not given, by default UBEAM = VBEAM = 0.0, WBEAM = 1.0)

Remember to make sure that the cosines are normalised! One could replace the last statement by:

 TZFLK (NPFLKA) = SQRT (ONEONE - TXFLK(NPFLKA)**2 - TYFLK(NPFLKA)**2)

The polarisation cosines are not set by default:

 TXPOL (NPFLKA) = -TWOTWO ! -2 is a flag for "no polarisation"
 TYPOL (NPFLKA) = +ZERZER
 TZPOL (NPFLKA) = +ZERZER
but appropriate values need to be given in some cases, for instance in synchrotron radiation shielding problems.

Finally the particle coordinates, set again by default equal to those input with BEAMPOS:

\[
\begin{align*}
\text{XFLK (NPFLKA)} & = \text{XBEAM} \quad \text{! Assumed here to be the same as} \\
\text{YFLK (NPFLKA)} & = \text{YBEAM} \quad \text{! defined by option BEAMPOS. XBEAM,} \\
\text{ZFLK (NPFLKA)} & = \text{ZBEAM} \quad \text{! YBEAM, ZBEAM are also in COMMON BEAMCM}
\end{align*}
\]

(If BEAMPOS is not given, by default \(\text{XBEAM} = \text{YBEAM} = \text{ZBEAM} = 0.0\).)

If for example our problem required instead a linear source uniformly distributed along \(Z\) between \(Z_1\) and \(Z_2\), we could replace the last statement by:

\[
\text{ZFLK (NPFLKA)} = Z_1 + \text{FLRNDM(UGH)} \times (Z_2 - Z_1)
\]

The following lines in the template SOURCE routine should never be changed. They calculate the total energy of the primary particles, define the remaining properties of the particles (starting region and lattice cell) and do some geometry initialisation. The last line calls the SOEVSV user routine (see description in 13.2.18 above) to save the stack for possible further use.

Important Notes

1) Even though a user-written source is used, it is recommended to issue in input a card BEAM with an energy larger than the maximum energy that can be sampled by the user source. This value is used to set up tables such as stopping powers, cross sections etc., and if not provided, crashes can occur.

2) The values of beam characteristics defined by commands BEAM (p. 73) and POLARIZAti (p. 218) are available in COMMON BEAMCM: the angular divergence (variable DIVBM), beam width (XSPOT and YSPOT), and the polarisation vector (UBMPOL, VBMPOL, WBMPOL) can help to set up a scheme to sample the corresponding quantities from user-defined distributions. But sampling from the distributions pre-defined by BEAM and POLARIZAti is not simply inherited by subroutine SOURCE: it is the responsibility of the user to write such a scheme! For this task, it may be useful to define a “beam reference frame” by means of option BEAMAXES (see more details on p. 76).

13.2.20 STUPRE, STUPRF: Set User Properties for EMF and FLUKA particles

These two functions are used to assign a value to one or more stack user variables when the corresponding particle is loaded onto one of the stacks (FLKSTK for hadrons/muons, and EMFSTK for electrons/photons.

In each of these stacks the user has access to one integer variable, one integer array and one double precision array. Each of them is copied to a correspondent variable or array in COMMON TRACKR at the beginning of transport:

<table>
<thead>
<tr>
<th>Correspondence</th>
<th>FLKSTK</th>
<th>EMFSTK</th>
<th>TRACKR</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer variable:</td>
<td>LOUSE</td>
<td>LOUEMF</td>
<td>LLLOUSE</td>
</tr>
<tr>
<td>integer array:</td>
<td>ISPARK</td>
<td>IESPAK</td>
<td>ISPUSR</td>
</tr>
<tr>
<td>double precision array:</td>
<td>SPAREK</td>
<td>ESPARK</td>
<td>SPAUSR</td>
</tr>
</tbody>
</table>

The user can access and modify the TRACKR variables via subroutine MGDRAW and its entries ENDRAW, SODRAW and especially USDRAW (see description above). STUPRF and STUPRE can be used to do the reverse, namely to copy TRACKR user variables to those of the relevant stack (see USDRAW above).

Note that a stack OPPHST exists also for optical photons, containing similar user variables and arrays LOUOPP, ISPORK and SPAROK. They can be used in user routines, but they are not handled by STUPRE or STUPRF.

STUPRE is called before loading into stack electrons, positrons and photons.

Argument list

| No arguments |
The default version does nothing (the user variables of the parent particle are already set equal to the original projectile by the various electromagnetic interaction routines. Also the region/position etc. are already set inside the stack arrays.

STUPRF is called before loading into stack hadrons, muons, neutrinos and low-energy neutrons

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJ</td>
</tr>
<tr>
<td>MREG</td>
</tr>
<tr>
<td>XX, YY, ZZ</td>
</tr>
<tr>
<td>NPSECN</td>
</tr>
<tr>
<td>NPPRMR</td>
</tr>
</tbody>
</table>

The default version copies to stack the user flags of the parent.

If name-based input is being used, the name corresponding to **MREG** can be obtained via a call to routine **GEOR2N**:

```
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where **NUMREG** (input variable) is the region number, and **NAMREG** (returned variable) is the corresponding region name (to be declared as **CHARACTER*8**). **IERR** is a returned error code: if $=0$ the conversion is successful. See example in the description of **BXDRAW** above.
13.2.21 UBSSET: User Biasing Setting

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
</tr>
<tr>
<td>IRRHADR</td>
</tr>
<tr>
<td>HMPHAD</td>
</tr>
<tr>
<td>HMLOW</td>
</tr>
<tr>
<td>HMPEMF</td>
</tr>
<tr>
<td>IGCUTO</td>
</tr>
<tr>
<td>IGNONA</td>
</tr>
<tr>
<td>PHONAN</td>
</tr>
<tr>
<td>IGDWSC</td>
</tr>
<tr>
<td>FDOWSC</td>
</tr>
<tr>
<td>JWSHPP</td>
</tr>
<tr>
<td>WWLOW</td>
</tr>
<tr>
<td>WWHIG</td>
</tr>
<tr>
<td>WWMUL</td>
</tr>
<tr>
<td>EXPTR</td>
</tr>
<tr>
<td>ELECUT</td>
</tr>
<tr>
<td>GANCUT</td>
</tr>
<tr>
<td>LPEMF</td>
</tr>
<tr>
<td>ELPEMF</td>
</tr>
<tr>
<td>PLPEMF</td>
</tr>
</tbody>
</table>

Subroutine UBSSET does not require a special command to be activated: it is always called several times for each region: (once for every biasing option or suboption) after the end of input reading and before starting the calculations. The default version is a dummy and does nothing. The user can replace it to override any biasing parameters specified in input.

The UBSSET subroutine is used especially in cases with a large number of regions, because it allows to derive the
biasing parameters from simple algorithms instead of entering each input value by hand. Choosing an appropriate numbering scheme for the geometry regions can often facilitate the task.

For instance, assuming a simple slab geometry with an expected exponential hadron attenuation from region 3 to region 20, each region being one half-value-layer thick, one could write the following in order to set importances that would keep the hadron number about constant in all regions:

\[
\text{IF}(\text{IR} \geq 3 \text{ AND } \text{IR} \leq 20) \quad \text{HMPHAD} = \text{ONEONE} \times \text{TWOTWO}^{(\text{IR}-3)}
\]

It is important, however, not to do recursive assignments of the type:

\[
\text{GAMCUT}(5) = \text{GAMCUT}(5) \times \text{HLFHLF}
\]

(\text{HLFHLF} is a FLUKA constant = 0.5D0) because that would halve the value of the photon cutoff for Region 5 at every call, and the number of calls is not known to the user.

If name-based input is being used, the name corresponding to \text{IR} can be obtained via a call to routine \text{GEOR2N}:

\[
\text{CALL GEOR2N (NUMREG, NAMREG, IERR)}
\]

where \text{NUMREG} (input variable) is the region number, and \text{NAMREG} (returned variable) is the corresponding region name (to be declared as \text{CHARACTER*8}). \text{IERR} is a returned error code: if \text{IERR} = 0 the conversion is successful. See example in the description of \text{BXDRAW} above.

13.2.22 UDCDRL: User defined Decay Direction biasing and Lambda (for ν only)

Argument list

- **input:**
 - \text{IJ} : type of decaying particle
 - \text{KPB} : outgoing neutrino, the one direction biasing is asked for
 - \text{NDCY} : number of decay products

- **output:**
 - \text{UDCDR}, \text{VDCDR}, \text{WDCDR} : cosines of the preferential outgoing direction for the neutrino
 - \text{UDCDRL} : width of the distribution around the preferential direction

Function \text{UDCDRL} is used to bias the direction of a neutrino emitted by a decaying particle of type \text{IJ} event by event. The preferential direction axis is returned in the \text{UDCDR}, \text{VDCDR}, \text{WDCDR} variables, and the value returned by \text{UDCDRL} is the λ for direction biasing : the zenith angle around the selected axis is sampled according to $\exp[(1 - \cos(\theta))/\lambda]$.

13.2.23 USIMBS: User defined Importance Biasing

Argument list

- **input:**
 - \text{MREG} : region at the beginning of the step
 - \text{NEWREG} : region at the end of the step

- **output:**
 - \text{FIMP} : returns the user-defined importance ratio between the position at the end and at the beginning of the step

Subroutine \text{USIMBS} is activated by card \text{BIASING} (p. 82) with \text{SDUM} = \text{USER}. The routine is called at every particle step. It can be used to implement any importance biasing scheme based on region number and on phase space coordinates and other information provided by \text{COMMON TRACKR}.

Warning: The user must balance the very effective biasing power offered by the routine with the important demand on CPU time due to the large number of calls.

If name-based input is being used, the names corresponding to \text{MREG} and \text{NEWREG} can be obtained via a call to routine \text{GEOR2N}:

\[
\text{CALL GEOR2N (NUMREG, NAMREG, IERR)}
\]
where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if \(IERR = 0 \) the conversion is successful. See example in the description of BXDRAW above.

13.2.24 **USREIN: USer Event Initialisation** (called before each event)

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>No arguments</td>
</tr>
</tbody>
</table>

Subroutine USREIN is called just before the first source particle of an event is unloaded from stack and begins to be transported. An event is the full history of a group of related particles and their descendants. If primaries are loaded into stack by the input option BEAM (p. 73), there is only one source particle per event; but there can be more if the user routine SOURCE is used to load particles into stack. USREIN does not need any special command to be activated, but the default version of USREIN does nothing: the user can write here any kind of initialisation.

13.2.25 **USREOU: USer Event Output** (called at the end of each event)

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>No arguments</td>
</tr>
</tbody>
</table>

Subroutine USREOU is called at the end of each event, namely after all event primary particles and their descendants have been transported. (See USREIN above for a definition of an event). USREOU does not need any special command to be activated, but the default version of USREOU does nothing: the user can write here any kind of event analysis, output, etc.

13.2.26 **USRGLO: USer Global settings**

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT(1), (2), (3), (4), (5), (6) : user-provided numerical parameters</td>
</tr>
<tr>
<td>SDUM : user-provided character string (8 characters)</td>
</tr>
</tbody>
</table>

Subroutine USRGLO is called before any other initialisation is done by the program, provided a command USRGCALL is present anywhere in the input. It can be used to do any kind of initialisation: reading and manipulating data from one or more files, calling other private routines, etc.

The calling parameters can carry any kind of useful information or can be used as flags to choose between different possible actions to be performed before any particle transport takes place.

13.2.27 **USRINI: USer Initialisation**

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT(1), (2), (3), (4), (5), (6) : user-provided numerical parameters</td>
</tr>
<tr>
<td>SDUM : user-provided character string (8 characters)</td>
</tr>
</tbody>
</table>

Subroutine USRINI is called every time a USRICALL (p. 275) card is read in input. It can be used to do any kind of initialisation: reading and manipulating data from one or more files, calling other private routines, etc.

The calling parameters can carry any kind of useful information or can be used as flags to choose between different possible actions to be performed before any particle transport takes place.
13.2.28 **USRMed: USer MEdition dependent directives**

Argument list

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJ</td>
<td>particle type</td>
</tr>
<tr>
<td>EKSCO</td>
<td>particle kinetic energy (GeV)</td>
</tr>
<tr>
<td>PLA</td>
<td>particle momentum (GeV/c)</td>
</tr>
<tr>
<td>WEE</td>
<td>particle weight</td>
</tr>
<tr>
<td>MREG</td>
<td>previous region number</td>
</tr>
<tr>
<td>NEWREG</td>
<td>current region number</td>
</tr>
<tr>
<td>XX, YY, ZZ</td>
<td>particle position</td>
</tr>
<tr>
<td>TXX, TYY, TZZ</td>
<td>particle direction</td>
</tr>
</tbody>
</table>

Subroutine USRMed is activated by option MAT–PROP (p. 171) with SDUM = USERDIRE, for one or more materials indicated by the user. It is called every time a particle is going to be transported in one of the user-flagged materials.

Two cases are possible:

1. **MREG = NEWREG**: the particle is going to move from a point inside the medium. The user is allowed to change only the particle weight. Typical application: simulating attenuation of optical photons in an absorbing medium by reducing the photon weight.

2. **MREG ≠ NEWREG**: the particle is going to move from a point on a boundary between two different regions. The user may change any of the following: particle weight, current region number, direction cosines.

Typical applications:

- simulating refraction, by changing the direction cosines so that the particle is still inside the same region. To do this, one generally needs the direction cosines of the normal to the surface: TXNOR(NPFLKA), TYNOR(NPFLKA), TZNOR(NPFLKA) (COMMUN FLKSTK must be included).
- simulating reflection (albedo) at a boundary. The direction cosines must be modified according to some reflection law or albedo angular distribution, and NEWREG must be set = MREG.

In both cases the weight can also be reduced to account for surface reflectivity or similar (if the particle is an optical photon, the FRGHNS user function (13.2.8) can be called to establish a surface roughness.) Also, setting the weight WEE to zero is a way to kill the particle.

If name-based input is being used, the names corresponding to MREG and NEWREG can be obtained via a call to routine GEOR2N:

```
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where NUMREG (input variable) is the region number, and NAMREG (returned variable) is the corresponding region name (to be declared as CHARACTER*8). IERR is a returned error code: if = 0 the conversion is successful. See example in the description of BXDRAW above.

13.2.29 **USROut: USer OUTput**

Argument list

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>user-given numerical parameters</td>
</tr>
<tr>
<td>SDUM</td>
<td>user-given character string (8 characters)</td>
</tr>
</tbody>
</table>

Subroutine USROut is called every time a USROCALL (p. 276) card is read in input. It is used to print special user-written output in addition to the standard one provided by default. The calling parameters can carry any kind of useful information or can be used as flags to choose between different possible actions to be performed after all particle transport has taken place.
13.2.30 **USRRNC: USeR Residual NuClei**

<table>
<thead>
<tr>
<th>Argument list</th>
</tr>
</thead>
<tbody>
<tr>
<td>IZ : Atomic number of the residual nucleus</td>
</tr>
<tr>
<td>IA : Mass number of the residual nucleus</td>
</tr>
<tr>
<td>IS : Isomeric state of the residual nucleus</td>
</tr>
<tr>
<td>X, Y, Z : particle position</td>
</tr>
<tr>
<td>MREG : current region</td>
</tr>
<tr>
<td>WEE : particle weight</td>
</tr>
<tr>
<td>ICALL : internal code calling flag (not for general use)</td>
</tr>
</tbody>
</table>

Subroutine **USRRNC** is called every time a residual nucleus is produced, if option **USERWEIG** has been requested with **WHAT(5) > 0**.

If name-based input is being used, the name corresponding to **MREG** can be obtained via a call to routine **GEOR2N**:

```fortran
CALL GEOR2N (NUMREG, NAMREG, IERR)
```

where **NUMREG** (input variable) is the region number, and **NAMREG** (returned variable) is the corresponding region name (to be declared as **CHARACTER*8**). **IERR** is a returned error code: if = 0 the conversion is successful. See example in the description of **BXDRAW** above.
Chapter 14

Use of RAY pseudo-particles

Pseudo-particles are called RAY and have particle number 0. As for real particles, their energy, starting point and direction cosines can be defined by options BEAM (p. 73) and BEAMPOS (p. 78), or by a user-written SOURCE routine (see option SOURCE, p. 236).

A RAY travels in a straight line at the speed of light without any physical interaction. At the starting point, and at each boundary crossing, FLUKA writes information on a binary (unformatted) file. The file logical unit number is parameterised as LUNRAY in INCLUDE file (IOUNIT) (usually LUNRAY = 10).

An example of user program which can be used to retrieve the tracking information from the binary file is given below. The meaning of the variables read is explained at the end:

```fortran
PARAMETER (LUNRAY = 10)
CHARACTER MATNAM*8, FILNAM*80
INTEGER*8 MLATTC, MLATLD
INTEGER NRAYRN, MREG, MMAT, MREGLD, MMATLD, IDISC
REAL EKIN, XX, YY, ZZ, R2, R3, THETAP, PHIPOS, TXX, TYY, TZ2,
 & THETAD, PHIDIR, ETADIR, RCM, ALAMDI, ALAMDP, ALAMD, ALAMDG,
 & ALAMDR, DEKMIP, GMOCM2, DELAGE, RCMOTH, ALITOT, ALPTOT,
 & ALNTOT, ALGOTOT, TCLMIP, SRHTOT, AGEAGE

WRITE (*,*) ' File name?'
READ (*,'(A80)') FILNAM
OPEN (FILE = FILNAM, UNIT = LUNRAY, STATUS = 'OLD', FORM =
 & 'UNFORMATTED')

* loop over several rays
1 CONTINUE
* read info about ray starting point
   READ (LUNRAY, END = 3000, ERR=1000) NRAYRN, MREG, MLATTC,
 & MMAT, EKIN
   READ (LUNRAY, END = 1000) XX, YY, ZZ, R2, R3, THETAP, PHIPOS
   READ (LUNRAY, END = 1000) TXX, TYY, TZ2, THETAD, PHIDIR, ETADIR
* here possible user code to manipulate values read
* loop over further positions along the ray path
2 CONTINUE
* read info about next point
   READ (LUNRAY, END = 2000) MREGLD, MLATLD, MMATLD,
 & MATNAM, IDISC
   READ (LUNRAY, END = 2000) XX, YY, ZZ, R2, R3, THETAP, PHIPOS
   READ (LUNRAY, END = 2000) RCM, ALAMDI, ALAMDP, ALAMD, ALAMDG,
 & ALAMDR, DEKMIP, GMOCM2, DELAGE
   READ (LUNRAY, END = 2000) RCMOTH, ALITOT, ALPTOT, ALNTOT,
 & ALGOTOT, ALITOT, TCLMIP, SRHTOT, AGEAGE
* possible user code to manipulate values read
* possible user code at the end of ray step

IF ( IDISC .EQ. 0 ) THEN
* possible user code at the end of ray step
```

392
RAY pseudo-particles

* ..
 GO TO 2
 END IF
* ..
* possible user code at the end of ray trajectory
* ..
* new ray
 GO TO 1
1000 CONTINUE
 WRITE(*,*) 'Incomplete data on file about ray starting point'
 GO TO 3000
2000 CONTINUE
 WRITE(*,*) 'Incomplete data on file about ray trajectory'
3000 CONTINUE
* ..
* possible user code at the end of analysis
* ..
CLOSE (UNIT = LUNRAY)
END

Meaning of the variables read from the RAY file:

NRAYRN = ray number
MREG = starting region
MLATTC = starting lattice cell
MMAT = material of starting region
EKIN = reference kinetic energy of the ray (GeV)
XX, YY, ZZ = current ray position (the first time: ray starting point)
R2 = distance of current ray position from z-axis (cm)
R3 = distance of current ray position from the origin (cm)
THETAP = polar angle between the current ray position vector and the z-axis (radians)
PHIPOS = azimuthal angle of the current ray position vector around the z-axis (radians)
TXX, TYY, TZZ = ray direction cosines
THETAD = polar angle between the ray and the z-axis (radians)
PHIDIR = azimuthal angle of ray around the z-axis (radians)
ETADIR = pseudo-rapidity of ray direction with respect to the direction defined by option BEAMPOS
MREGLD = number of next region traversed by ray
MLATLD = number of next lattice cell traversed by ray
MMATLD = material of next region
MATNAM = name of material of next region
IDISC = 0 unless next region is blackhole
RCM = distance traversed from last point to the current ray position
ALAMDI = distance traversed from last point to the current ray position, in units of high energy nucleon inelastic mean free paths (at the reference kinetic energy of the ray)
ALAMDNP = distance traversed from last point to the current ray position, in units of high energy pion inelastic mean free paths (i.e., at 200 MeV)
ALAMDN = distance traversed from last point to the current ray position, in units of maximum neutron inelastic mean free paths (i.e., at the so-called Compton minimum). Note: if the EMF option (p. 110) has not been requested, explicitly or implicitly by default, ALAMDG has always zero value
ALAMDG = distance traversed from last point to the current ray position, in units of maximum photon mean free paths (i.e., at the so-called Compton minimum).
DEKMIP = energy lost from last point to the current ray position by a minimum ionising muon
GMOCM2 = distance traversed from last point to the current ray position in g/cm2
DELAGE = time elapsed from last point to the current ray position in sec (i.e., distance divided by speed of light)
RCMTOT = cumulative distance traversed so far in cm
ALITOT = cumulative distance traversed so far, in units of high energy nucleon inelastic mean free paths
ALPTOT = cumulative distance traversed so far, in units of high energy pion inelastic mean free paths
ALNTOT = cumulative distance traversed so far, in units of maximum neutron inelastic mean free paths
\(\text{ALGTOT} = \) cumulative distance traversed so far, in units of maximum photon mean free paths (i.e., at the so-called Compton minimum). Note: if the EMF option has not been requested, explicitly or implicitly by default, \(\text{ALGTOT} \) has always zero value.

\(\text{ALRTOT} = \) cumulative distance traversed so far, in units of radiation lengths. Note: if the EMF option has not been requested, explicitly or implicitly by default, \(\text{ALRTOT} \) is calculated but only in an approximate way.

\(\text{TOTMIP} = \) cumulative energy lost so far by a minimum ionising muon.

\(\text{SRHTOT} = \) cumulative distance traversed so far in g/cm\(^2\).

\(\text{AGEAGE} = \) cumulative time elapsed so far in seconds.
Chapter 15

Special source: colliding beams

Colliding beams as a source can be specified via command SPECSOUR (see p. 238) and SDUM = PPSOURCE or ppsource, CROSSASY or CROSSSYM.

One of the two colliding beams (from now on the “first beam”) is a beam of hadrons (including protons or heavier nuclei), the other one (the “second beam”) is a beam of protons or heavier nuclei but not of other hadrons. The different SDUM values allow to define the two beams in different ways. The first and the second continuation cards are identical for all SDUM options.

For SDUM = PPSOURCE or ppsource:

First card:

WHAT(1) = lab momentum x-component for hadrons or nuclei of the first beam (GeV/c)
WHAT(2) = lab momentum y-component for hadrons or nuclei of the first beam (GeV/c)
WHAT(3) = lab momentum z-component for hadrons or nuclei of the first beam (GeV/c)
WHAT(4) = lab momentum x-component for protons or nuclei of the second beam (GeV/c)
WHAT(5) = lab momentum y-component for protons or nuclei of the second beam (GeV/c)
WHAT(6) = lab momentum z-component for protons or nuclei of the second beam (GeV/c)

SDUM: PPSOURCE or ppsource

First continuation card:

WHAT(1) = σ_x (cm) for the Gaussian sampling of the interaction position around XBEAM (the x position defined in the BEAMPOSit card)
WHAT(2) = σ_y (cm) for the Gaussian sampling of the interaction position around YBEAM (the y position defined in the BEAMPOSit card)
WHAT(3) = σ_z (cm) for the Gaussian sampling of the interaction position around ZBEAM (the z position defined in the BEAMPOSit card)
WHAT(4) = sampling limit, in σ, applying along x, y, and z
≤ 0.0: ignored (no limit)
WHAT(5) = particle id number (or corresponding name) of hadrons of the first beam
Default: as defined by the BEAM card (and by the HI–PROPErt card in case it is a heavy ion)
WHAT(6) = mass number of the nuclei of the second beam
$= 0.0$: it is a proton beam, and WHAT(1) of the second continuation card – if present – is ignored
SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)

Second continuation card:

WHAT(1) = atomic number of the nuclei of the second beam
WHAT(2) : specifies the divergence of the first beam in the crossing plane (in rad):
σ_{thC} for the Gaussian sampling of the angle between the direction of the particle and the most probable direction as defined by WHAT(1–3) of the first card

WHAT(3) : specifies the divergence of the first beam in the orthogonal plane (in rad):
σ_{thO} for the Gaussian sampling of the angle between the direction of the particle and the most probable direction as defined by WHAT(1–3) of the first card

WHAT(4) : specifies the divergence of the second beam in the crossing plane (in rad):
σ_{thC} for the Gaussian sampling of the angle between the direction of the particle and the most probable direction as defined by WHAT(4–6) of the first card

WHAT(5) : specifies the divergence of the second beam in the orthogonal plane (in rad):
σ_{thO} for the Gaussian sampling of the angle between the direction of the particle and the most probable direction as defined by WHAT(4–6) of the first card

WHAT(6) : flag for interactions to be sampled: $i_0 + i_1 \cdot 10 + i_2 \cdot 100$
- i_0: default, nuclear nonelastic + EMD if selected with the physics card otherwise:
- i_1: flag for nuclear nonelastic interactions
- i_2: flag for electromagnetic dissociation interactions

SDUM = “&&” in any position in column 71 to 78 (or in the last field if free format is used)

For SDUM = CROSSASY (asymmetric crossing):

First card:

WHAT(1) = lab momentum of hadrons or nuclei of the first beam (GeV/c)
WHAT(2) = polar angle (rad) between the momentum of hadrons or nuclei of the first beam and the z (positive) direction (must be between 0 and $\pi/2$)
WHAT(3) = azimuthal angle (deg) defining the crossing plane (see Note 2) below
WHAT(4) = lab momentum of protons or nuclei of the second beam (GeV/c)
WHAT(5) = polar angle (rad) between the momentum of protons or nuclei of the second beam and the -z (negative) direction (must be between 0 and $\pi/2$)
WHAT(6) : not used

SDUM : CROSSASY or crossasy

First and second continuation cards: as for SDUM = PPSOURCE (see above)

For SDUM = CROSSSYM (symmetric crossing):

First card:

WHAT(1) = lab momentum of protons or nuclei of both beams (GeV/c) (see Note 3)
WHAT(2) = half crossing angle (rad) (must be between 0 and $\pi/2$)
WHAT(3) = azimuthal angle (deg) defining the crossing plane (see Note 2)
WHAT(4) – WHAT(6): not used
First and second continuation cards: as for $\text{SDUM} = \text{PPSOURCE}$ (see above)

Notes

1) When SPECSOUR is used to define two colliding beams ($\text{SDUM} = \text{PPSOURCE}$, \text{CROSSASY} or \text{CROSSSYM}) \text{DPMJET}$ must be linked through the script $\text{FLUPRO/}flutil/ldpmqmd$. A card \text{PHYSICS} with $\text{SDUM} = \text{LIMITS}$ sets the maximum CMS momentum (GeV/c) in \text{WHAT(1)} for \text{DPMJET} initialization purposes.

2) With $\text{SDUM} = \text{CROSSASY}$ and \text{CROSSSYM}, the half plane containing the two proton momenta at the sampled interaction point (XXX, YYY, ZZZ) is assumed to be limited by an axis z' passing through (XXX, YYY) and parallel to the z-axis. Polar and azimuthal angles are defined with respect to z', with $\text{WHAT(3)} = 0$ corresponding to the xz' half plane towards positive x, $\text{WHAT(3)} = 90$ corresponding to the yz' half plane towards positive y, $\text{WHAT(3)} = 180$ corresponding to the xz' half plane towards negative x, $\text{WHAT(3)} = 270$ corresponding to the yz' half plane towards negative y.

3) With $\text{SDUM} = \text{CROSSSYM}$, the particles of the two beams are identical and have the same momentum. They can only be protons or nuclei: other hadrons are excluded.

4) The particles produced in the interaction of two beams have generation number 1 (i.e., they are considered as primary particles)

5) All the scores in a run where the source consists of two colliding beams are normalised per beam interaction
Chapter 16

Special source: cosmic rays

Cosmic ray calculations can be done with FLUKA using the input commands GCR–SPE (for initialisation purposes) and SPECSOUR. In addition, several auxiliary stand-alone programs need to be used to prepare the geometry and material cards to be inserted into the input file.

Command SPECSOUR does not define only cosmic ray sources, but also a number of other pre-defined complex sources that cannot be described by the simple keywords BEAM, BEAMPOSit, BEAMAXES and HI–PROPErt. To avoid confusion, SPECSOUR input related to cosmic rays is described separately in this Chapter, in Sec. 16.3.

A complete calculation to determine particle fluxes in the atmosphere requires:

- the determination of the spectrum and composition of cosmic rays at the local interstellar medium,
- the determination of changing conditions in the solar wind magnetic field and the resulting interaction with the inward flow of galactic cosmic rays from the local interstellar medium,
- the determination of the trajectories of cosmic rays through the Earth’s geomagnetic field,
- the transport of the surviving incident cosmic rays through the Earth’s atmosphere to various depths.

The following options are available concerning the simulation of cosmic ray interactions in FLUKA:

- Superposition model. In this approach primary nuclei are split into equivalent independent nucleons. See card PHYSICS with SDUM = IONSPLITti.
- DPMJET interaction model [172,180]. This model simulates the nucleus-nucleus collision above 5 GeV/nucleon. In case DPMJET is chosen for cosmic ray application, it is suggested to avoid the otherwise recommended DPMJET-III choice and to use instead the DPMJET-II.5 version (linking with the script $FLUPRO/flutil/ldpm2qmd).

The DPMJET and the superposition model can also be used together, by setting the respective energy ranges with the PHYSICS card.

A number of tools and packages have been developed for the FLUKA environment to simulate the production of secondary particles by primary cosmic rays interacting with the Earth’s atmosphere. These tools, in different stand-alone versions, have already been successfully used for fundamental physics research [22, 24].

The set of FLUKA tools for cosmic ray simulation includes a set of core routines to manage event generation, geomagnetic effects and particle scoring, and the following stand-alone data files and programs :

- file atmonat.cards: it contains the material definitions for the density profile of the U.S. Standard Atmosphere. These cards must be inserted (or the file included with the #include directive) into the FLUKA input file.
- file atmgeo.cards: it contains an example of a 3D geometrical description of the Earth atmosphere, generated in accordance with the previous data cards (and corresponding density profile). This geometry includes the whole Earth.
- program atmloc2011.f: it prepares the description of the local atmosphere geometry with the atmospheric shells initialised by option GCR–SPE. This geometry includes only a slice of the Earth geometry, centered around the geomagnetic latitude input by the user
- files \langleiz\ranglephi<MV>.spc: GCR All-Particle-Spectra for the \langleiz\rangleth ion species (\langleiz $\rangle = 1, \ldots, 28$), modulated for the solar activity corresponding to a ϕ parameter \langleMV\rangle MegaVolt. $\phi = 500$ MV roughly corresponds to solar minimum, while $\phi = 1400$ MV roughly corresponds to solar maximum.
- file allnucok.dat: GCR All-Nucleon Spectra

16.1 Primary spectrum

The Galactic Cosmic Ray (GCR) component of the cosmic ray flux can be simulated up to 30 TeV/nucleon (or 500 TeV/n when DPMJET is linked). Two options are available: with the first one the actual ion composition of the flux is used (All-Particle Spectrum), while with the second option the primary flux is treated as a sum of nucleons (All-Nucleon Spectrum).
16.1.1 The All-Particle Spectrum

The ion composition of the galactic flux is derived from a code [17] which considers all elemental groups from $Z = 1$ to $Z = 28$. The spectrum is modified to follow recent data sets (AMS [9, 10] and BESS [184] data of 1998) up to 100 GeV according to the so-called ICRC2001 fit [94]. The spectrum components are written into 28 files. The name of the files has the form $(Z\phi+\langle \PhiMV \rangle+.spc)$. The first two characters of each file name are the atomic number of a different primary spectrum ion (e.g., 01: protons, 02: alpha...). They are followed by the solar modulation parameter used for generating the spectrum (7 characters) and by an extension .spc.

The .spc files are spectra without geomagnetic cutoff. The .spc files are used together with an analytical calculation of the rigidity cutoff, according to a centered dipole approximation of the Earth geomagnetic field, adapted to result in the vertical cutoff inserted into the input file (SPECSOUR command, SDUM = GCR–IONF, WHAT(2) of the continuation card), at the geomagnetic latitude and longitude of interest.

16.1.2 The High Energy All-Nucleon Spectrum

The All-Nucleon Spectrum is obtained modifying the fit of the All-Nucleon flux proposed by the Bartol group [7], using the All-Particle Spectrum (16.1.1) up to 100 GeV and data published in ICRC 2003. Fluxes are read from a file named allnucok.dat giving the total energy (GeV), the fluxes $(E \times dN/dE)$ and the neutron/proton ratios. This option ("All Nucleon Flux") is chosen with command SPECSOUR and SDUM = GCR–ALLF (see details in 16.3). The user can decide whether to sample neutrons and protons from the file and to transport them using the superposition model, or to consider all neutrons as being bound in alpha particles and to transport protons and alphas. This latter choice has the advantage of taking better into account the magnetic field, which has no effect on the neutrons.

For the proton component at energies larger than 100 GeV, using the normalization obtained at 100 GeV, a spectral index $\gamma = -2.71$ is assumed. A spectral index $\gamma = -3.11$ is assumed above the knee at 3000 TeV. For what concerns the He component, $\gamma = -2.59$ is used above 100 GeV and a charge-dependent knee is assumed according to the rule: $E_{\text{nucleon}} = Z \times 3000$ TeV/A. Higher Z components have been grouped in CNO, MgSi and Fe sets and treated using an All-Particle Spectrum with the above mentioned charge-dependent knee parameterisation.

16.1.3 Solar modulation

The deviation from the power law, observed below 10 GeV, is a consequence of the influence of the solar wind called solar modulation [96]. Flux intensity in this energy range is anti-correlated to the solar activity and follows the sun-spot 11-year cycle. The correlation between the solar activity and the modulation of the cosmic rays flux has been studied by monitoring the flux of atmospheric neutrons. In fact, a flux of low energy neutrons $(E < 10^8 - 10^9$ eV) is produced in the interaction of primary CRs with the atmosphere and it is mostly due to low energy primaries (1–20 GeV), due to the rapid fall of the primary flux intensity with energy. One assumes that far from the solar system there exists an unmodified flux called Local Interstellar Spectrum, which is modified within the solar system (1–20 GeV), due to the rapid fall of the primary flux intensity with energy. One assumes that far from the solar system there exists an unmodified flux called Local Interstellar Spectrum, which is modified within the solar system by the interaction with the solar wind. This interaction is well described by the Fokker-Planck diffusion equation. Describing the solar wind by a set of magnetic irregularities, and considering these irregularities as perfect elastic scattering centres, one obtains the Fokker-Planck diffusion equation. For energies above 100 MeV this equation can be solved using the "Force Field Approximation" [42]. According to this approximation, at a given distance from the Sun, for example at 1 a.u., the population of CRs at energy $E_{\text{interstellar}}$ is shifted at the energy E_0 as an energy loss mechanism due to a potential V:

$$E_0 = E_{\text{interstellar}} + Z \times V_{\text{solarwind}}(t)$$ \hspace{1cm} (16.1)

The solar wind potential at a given distance from the Sun depends on only one parameter, the time: $V = V(t)$. So it doesn't matter what the interstellar flux is: given a flux on the Earth at a time t, one can find the flux at another time just from the relative variation of the solar wind potential ϕ. This variation can be derived from the neutron monitor counts [17]. In the case of the fit used by FLUKA, an offline code [17] makes use of an algorithm which takes into account a specific ϕ value, or the counting rate of the CLIMAX neutron monitor [54] to provide the prediction for the flux at a specific date or for a given value of the potential which expresses the effect of the interplanetary modulation of the local interstellar spectrum. Even if the model is not a description of the processes and of the manner in which they occur, it reasonably predicts the GCR modulation at Earth.

16.1.4 Atmospheric model: geometry

16.1.4.1 Earth atmosphere model

The geometrical setup is a 3-dimensional spherical representation of the whole Earth and of the surrounding atmosphere. This is described by a medium composed by a proper mixture of N, O and Ar, arranged in 100 concentric shells, extending up to about 70 km of altitude and possibly cut by a truncated cone centred on the geographical
location.

The FLUKA package makes use of a density vs. height profile of atmosphere. An external program containing a functional fit to this profile has been used to generate at the same time an input geometry file, together with the data cards for material description (each atmospheric layer, having its proper density, needs to be assigned a different FLUKA material). The geometry produced, and distributed with the name `atmogeo.cards` is a spherical representation of the whole Earth atmosphere. The material definitions and assignment contained in the file `atmomat.cards` correspond to the density profile of the U.S. Standard atmosphere. The cards contained in `atmomat.cards` shall be included by the user in her/his input file. In addition, the user can specialize this geometry to a given geomagnetic latitude and longitude with the help of the `atmloc2011.f` auxiliary program. In this way, the geometry will contain only a slice of the atmosphere, centered on the given position. The local geometry file produced by `atmloc2011.f` is named `atmloc.geo`. The user shall rename this geometry file for further use. More auxiliary files are produced by `atmloc2011.f`: the file `atmlocmat.cards` contains additional material assignments to be included in the input together with the ones from `atmogeo.cards`; the file `atmloc.sur` contains data used by FLUKA runtime, and normalization areas.

16.1.4.2 Local atmosphere model

The geometry (see Fig. 16.1) is built using two truncated cones (TRC) whose vertex is in the centre of the Earth, the base is out of the atmosphere and the altitude (considering a geographical location in the northern hemisphere) is in the direction of the Earth radius which passes through the North Pole. The angular span between the two cones contains the atmosphere of interest for the latitude of interest. In addition there is a third cone placed in the opposite direction: its vertex is where the other two cones have the base, its base is out of the atmosphere and its height is in the direction of the Earth radius which passes through the South Pole. A similar geometry can be built for a requested latitude in the southern hemisphere.

![Fig. 16.1: Geometry of a given latitude on the Earth](image)

So the complete geometry of the local model, built with the auxiliary program `atmloc2011.f`, is made of:

- a main series of layers made from the part of the atmospheric shells between the two cones (this is the part where the scoring takes place),
- two series of side layers made from the part of the atmospheric shells between one of the two cones and the third one. These additional layers are needed to take into account the primary and secondary particles which don’t come from the vertical direction but can anyway reach the region of interest.

16.1.5 Atmospheric model: density

The atmosphere can be roughly characterized as the region from sea level to about 1000 km altitude around the globe, where neutral gases can be detected. Below 50 km the atmosphere can be assumed to be homogeneously mixed and can be treated as a perfect gas. Above 80 km the hydrostatic equilibrium gradually breaks down as diffusion and vertical transport become important.
Table 16.1 shows the U.S. Standard Atmosphere depth vs. altitude and vs. FLUKA atmospheric layer.

Table 16.1: Number of region related to the atmospheric layer in FLUKA, altitude in km of the lower radius of the atmospheric layer, U.S. Standard Atmosphere depth in g/cm^2.

<table>
<thead>
<tr>
<th>Fluka region s.l. Depth (g/cm²)</th>
<th>Fluka region s.l. Depth (g/cm²)</th>
<th>Fluka region s.l. Depth (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 70.0 0.092</td>
<td>35.0 31.6 9.367</td>
<td>69.0 10.7 242.777</td>
</tr>
<tr>
<td>2.0 68.5 0.108</td>
<td>36.0 30.8 10.540</td>
<td>70.0 10.2 260.107</td>
</tr>
<tr>
<td>3.0 67.1 0.126</td>
<td>37.0 30.0 11.849</td>
<td>71.0 9.8 278.093</td>
</tr>
<tr>
<td>4.0 65.6 0.146</td>
<td>38.0 29.2 13.309</td>
<td>72.0 9.4 296.729</td>
</tr>
<tr>
<td>5.0 64.2 0.170</td>
<td>39.0 28.4 14.937</td>
<td>73.0 8.9 316.007</td>
</tr>
<tr>
<td>6.0 62.8 0.198</td>
<td>40.0 27.7 16.748</td>
<td>74.0 8.5 335.921</td>
</tr>
<tr>
<td>7.0 61.5 0.230</td>
<td>41.0 26.9 18.763</td>
<td>75.0 8.1 356.460</td>
</tr>
<tr>
<td>8.0 60.1 0.266</td>
<td>42.0 26.2 21.004</td>
<td>76.0 7.7 377.615</td>
</tr>
<tr>
<td>9.0 58.8 0.308</td>
<td>43.0 25.5 23.492</td>
<td>77.0 7.3 399.374</td>
</tr>
<tr>
<td>10.0 57.5 0.356</td>
<td>44.0 24.8 26.255</td>
<td>78.0 6.9 421.727</td>
</tr>
<tr>
<td>11.0 56.2 0.411</td>
<td>45.0 24.1 29.290</td>
<td>79.0 6.6 444.661</td>
</tr>
<tr>
<td>12.0 55.0 0.474</td>
<td>46.0 23.4 32.613</td>
<td>80.0 6.2 468.163</td>
</tr>
<tr>
<td>13.0 53.8 0.546</td>
<td>47.0 22.7 36.244</td>
<td>81.0 5.8 492.219</td>
</tr>
<tr>
<td>14.0 52.5 0.628</td>
<td>48.0 22.1 40.205</td>
<td>82.0 5.5 516.815</td>
</tr>
<tr>
<td>15.0 51.4 0.722</td>
<td>49.0 21.4 44.516</td>
<td>83.0 5.1 541.936</td>
</tr>
<tr>
<td>16.0 50.2 0.828</td>
<td>50.0 20.8 49.201</td>
<td>84.0 4.8 567.566</td>
</tr>
<tr>
<td>17.0 49.1 0.950</td>
<td>51.0 20.2 54.283</td>
<td>85.0 4.4 593.691</td>
</tr>
<tr>
<td>18.0 47.9 1.088</td>
<td>52.0 19.6 59.785</td>
<td>86.0 4.1 620.295</td>
</tr>
<tr>
<td>19.0 46.8 1.245</td>
<td>53.0 19.0 65.733</td>
<td>87.0 3.8 647.359</td>
</tr>
<tr>
<td>20.0 45.7 1.423</td>
<td>54.0 18.4 72.152</td>
<td>88.0 3.4 674.569</td>
</tr>
<tr>
<td>21.0 44.7 1.625</td>
<td>55.0 17.8 79.068</td>
<td>89.0 3.1 702.807</td>
</tr>
<tr>
<td>22.0 43.6 1.854</td>
<td>56.0 17.2 86.506</td>
<td>90.0 2.8 731.155</td>
</tr>
<tr>
<td>23.0 42.6 2.112</td>
<td>57.0 16.7 94.493</td>
<td>91.0 2.5 759.898</td>
</tr>
<tr>
<td>24.0 41.6 2.404</td>
<td>58.0 16.1 103.057</td>
<td>92.0 2.2 789.016</td>
</tr>
<tr>
<td>25.0 40.6 2.734</td>
<td>59.0 15.6 112.224</td>
<td>93.0 1.9 818.493</td>
</tr>
<tr>
<td>26.0 39.6 3.106</td>
<td>60.0 15.0 122.023</td>
<td>94.0 1.6 848.311</td>
</tr>
<tr>
<td>27.0 38.7 3.525</td>
<td>61.0 14.5 132.482</td>
<td>95.0 1.3 878.453</td>
</tr>
<tr>
<td>28.0 37.7 3.996</td>
<td>62.0 14.0 143.628</td>
<td>96.0 1.1 908.900</td>
</tr>
<tr>
<td>29.0 36.8 4.526</td>
<td>63.0 13.5 155.489</td>
<td>97.0 0.8 939.636</td>
</tr>
<tr>
<td>30.0 35.9 5.121</td>
<td>64.0 13.0 168.094</td>
<td>98.0 0.5 970.643</td>
</tr>
<tr>
<td>31.0 35.0 5.789</td>
<td>65.0 12.5 181.471</td>
<td>99.0 0.3 1001.903</td>
</tr>
<tr>
<td>32.0 34.1 6.538</td>
<td>66.0 12.0 195.646</td>
<td>100.0 0.0 1033.400</td>
</tr>
<tr>
<td>33.0 33.3 7.378</td>
<td>67.0 11.6 210.649</td>
<td></td>
</tr>
<tr>
<td>34.0 32.4 8.317</td>
<td>68.0 11.1 226.507</td>
<td></td>
</tr>
</tbody>
</table>

16.1.6 Geomagnetic field

In the last 50 years measurements of the geomagnetic field configuration have been performed regularly with increasing precision, revealing a yearly weakening of the field intensity of 0.07% and a westward drift of ≈ 0.2 degrees per year over the Earth’s surface.

This field can be described, to first order, as a magnetic dipole tilted with respect to the rotation axis by $\approx 11.5^\circ$, displaced by ≈ 400 km with respect to the Earth’s center and with a magnetic moment $M = 8.1 \times 10^{25}$ G cm3. The dipole orientation is such that the magnetic South pole is located near the geographic North pole, in the Greenland, at a latitude of 75° N and a longitude of 291°. The magnetic North pole is instead near the geographic South pole, on the border of the Antarctica. The intensity at the Earth’s surface varies from a maximum of ≈ 0.6 G near the magnetic poles to a minimum of ≈ 0.2 G in the region of the South Atlantic Anomaly (SAA), between Brazil and South Africa. The complex behavior of the equipotential field lines is mainly a consequence of the offset and tilt.

In Fluka the geomagnetic field is taken into account in two different stages of the simulation chain.
1) Effect of geomagnetic cutoff which modulates the primary spectrum: at a given location (point of first interaction of primary particles) and for a given direction a threshold in magnetic rigidity exists. The closer the injection point is to the geomagnetic equator, the higher will be the vertical rigidity threshold. The standard possibility offered to the user is to evaluate the geomagnetic cutoff making use of a dipolar field centered with respect to the centre of the Earth, adapted to give the “correct” vertical rigidity cutoff for the geographic location under examination.

Under this approximation, an analytical calculation of the cutoff can be performed and the FLUKA source routine for galactic cosmic rays can apply the resulting geomagnetic cutoff. In case an off-set dipole (not provided at present) or more sophisticated approaches are deemed necessary, a spherical harmonic expansion model like the IGRF model is available [54]. However no default mean is provided for making use of these higher order approximations for computing geomagnetic cutoff’s, since no analytical calculation is possible, and a numerical (back)tracking of the primary particle from/to infinity is required.

Please note that activating these more realistic options for the earth geomagnetic field by means of the GCR–SPE card has only the effect of using the resulting field while showering in the atmosphere (see next point), a minimal correction with respect to the dominant effect of the geomagnetic cutoff.

2) The local geomagnetic field can be taken into account during shower development in the atmosphere. The field is automatically provided by the default MAGFLD FLUKA user routine, in accordance to the option selected in the GCR–SPE card. For local problems, provided the coordinate system is consistently used (that is, geomagnetic coordinates for the dipolar field, geographic ones for the multipolar field) there is no need to provide any orientation or intensity information about the field.

16.2 Scoring

The usual scoring options (USRBDX, USRYIELD...) can be used to define detectors to calculate the fluence of different radiation fields.

16.3 The various SDUM options available with command SPECSOUR

For SDUM = GCR–ALLF: All-nucleon flux

All-nucleon flux as explained in 16.1.2.

Three different options (average, maximum and minimum flux) are available. The program reads fluxes from a file named allnucok.dat in which are given the total energy (GeV), the fluxes ($E \times dN/dE$) and the neutron/proton ratios. It is possible to give an energy interval and to choose a starting radius (radius of the emission sphere in case of spherical geometry) or starting height (the emission height in case of flat geometry). It is possible to activate the vertical geomagnetic cutoff and to give the cutoff value at the central latitude, otherwise the geomagnetic cutoff will be not taken into account. Ions are treated like separate nucleons, or as alphas and protons.

WHAT(1) = 1.0: central value
 = 2.0: minimum value
 = 3.0: maximum value

WHAT(2) ≥ 0.0: starting radius (cm)
 < 0.0: starting height (cm)

WHAT(3) = Minimum energy
WHAT(4) = Maximum energy
WHAT(5) = Spectral index for sampling (below transition energy)
WHAT(6) = Transition energy for sampling (above it, sample from $1/E$)

SDUM : not used

Continuation card:

WHAT(1) = 0.0: no geomagnetic cutoff
 = 1.0: geomagnetic cutoff is requested
 = 2.0: the vertical geomagnetic cutoff is read as WHAT(2)
WHAT(2) = vertical geomagnetic cutoff at central latitude for WHAT(1) = 2.0, no meaning otherwise

WHAT(3) = WHAT(5): no meaning

WHAT(6) ≤ 0.0: nucleons are transported separately
> 0.0: transport as many αs as can be built by neutrons, and the remaining protons

SDUM = “&” in any position in column 71 to 78 (or in the last field if free format is used)

For SDUM = GCR-IONF: All-particle flux

All-particle flux (ion flux), as explained in 16.1.1.

The particle composition of the flux can be modified by choosing the minimum and maximum atomic number (1 ≤ Z ≤ 28). The spectrum components have been produced by the modified Badhwar code for various modulation parameters and written on “.spc” files (Z+<PhiMV>+.spc). It is possible to give an energy interval and to choose a starting radius (radius of the emission sphere in case of spherical geometry) or starting height (the emission height in case of flat geometry). It is possible to activate the geomagnetic cutoff (WHAT(7) in SPECSOUR) and to input optionally the vertical cutoff value at the central latitude. Ions are treated like real ions or can be splitted.

The optimized value for spectral index for sampling (below transition energy) is γ = 1.75 (WHAT(5)). Above transition energy, the spectrum will be assumed to have a 1/E shape.

For SDUM = SPE–SPEC, SPE–2003 or SPE–2005: the source is a Solar Particle Event

The input parameters are the same for the three SDUM values.

For SDUM = SPE–SPEC or SPE–2005, the spectrum is read from a file sep20jan2005.spc.
For SDUM = SPE–2003, the spectrum is read from a file sep28oct2003.spc.

WHAT(1) = Z_{max} + 100 \times Z_{min} (Z_{min} = 1 if none is defined)
WHAT(2) = Starting radius (cm)
WHAT(3) = Minimum energy
WHAT(4) = Maximum energy
 If maximum and minimum energy differ by less than 5% then a fixed energy (= Maximum energy) is sampled
WHAT(5) = Spectral index for sampling (below transition energy)
WHAT(6) = Transition energy for sampling (above it, sample from 1/E)
SDUM : not used

Continuation card:

WHAT(1) = 0.0: no geomagnetic cutoff
 = 1.0: geomagnetic cutoff is requested
 = 2.0: the vertical geomagnetic cutoff is read from WHAT(2)
WHAT(2) = vertical geomagnetic cutoff at central latitude for WHAT(1) = 2.0, no meaning otherwise

WHAT(3) = number of energy point in the spectra
 Default = 50.0
WHAT(4) : if > 0.0: vertical run
WHAT(5) : if > 0.0: probabilities 1/(2 \times Z) are used for the various ions (1 for Z = 1)
WHAT(6) ≤ 0.0: ions are split
 > 0.0: ions are treated like real ions
16.4 Example of input data cards

An example of user data cards to run a FLUKA cosmic ray problem is shown in the following, with some comments on the relevant points. The example refers to the simulation at geographical coordinates of 36.0 degrees North Latitude and 140.0 degrees East Longitude, using the solar modulation of Dec. 23rd 1995.

TITLE
Ion flux at Tsukuba, 36N 140E. Year 1995, 23 December.

```c
#define dpmjet
DEFAULTS PRECISION

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
BEAM 3.D+04 PROTON

* In the following, GCR-IONF is the option to generate the all-particles flux.
* Maximum energy is 30000 GeV.
* 
#if dpmjet
*** Dpmjet:
SPECSOUR 28.0 6.449D+08 0.3 30000.0 1.75 500.0 GCR-IONF
SPECSOUR 2.0 11.4 &

* IONTRANS -2.0
*** End Dpmjet
#else
*** No Dpmjet:
SPECSOUR 28.0 6.449D+08 0.3 3000.0 1.75 500.0 GCR-IONF
SPECSOUR 2.0 11.4 &

* IONTRANS 4-HELIUM
* The following to split the ions:
*MAT-PROP 1.0 8.0 8.0 1.0 USERDIRE
*PHYSICS 1.0 0.1 1000000. IONSPLIT
*** End no Dpmjet
#endif

*
LAM-BIAS -1000000.0 10.0 39.0 GDECAY

* Next card calls the initialization routine. The string 23dec95 refers
* to the names of input files prepared by the modified Badhwar code specifically
* considering the solar modulation of Dec 23th 1995
* 
GCR-SPE 101000.0 0.0 0.0 23dec95
* 
* In the following the geometry file (specifically prepared for the
* required geographical coordinates) is invoked.
* 
GEOBEGIN 0.1 53.0 54.0 COMBINAT
36n140e.geo
36n140e.scr
GEOEND
* 
MATERIAL 7.0 0.0 0.001251 5.0 NITROGEN
MATERIAL 8.0 0.0 0.001429 6.0 OXYGEN
MATERIAL 18.0 0.0 0.00178 7.0 ARGON
* 
* Here the 100 different material specifications for all atmospheric layers
* follow

* MATERIAL 8.781E-08 8.0 AIR001
COMPOUND -.9256E-03 5.0 -.2837E-03 6.0 -.01572E-3 7.0 AIR001
MATERIAL 1.036E-07 9.0 AIR002
COMPOUND -.9256E-03 5.0 -.2837E-03 6.0 -.01572E-3 7.0 AIR002

* Idem: Mat-prop cards:

MAT-PROP 7.168E-05 8.0 8.0 1.0
MAT-PROP 8.453E-05 9.0 9.0 1.0
MAT-PROP 9.957E-05 10.0 10.0 1.0

cards to Assign a different material to each region

ASSIGNMAT 8.0 1.0 103.0 102.0 1.0
ASSIGNMAT 9.0 2.0 104.0 102.0 1.0
ASSIGNMAT 10.0 3.0 105.0 102.0 1.0

* Internal Vacuum: black hole in this case
ASSIGNMAT 1.0 101.0 0.0 0.0

* External Vacuum
ASSIGNMAT 2.0 102.0 1.0 0.0

* Internal vacuum black hole:
ASSIGNMAT 1.0 203.0 0.0 0.0

* Atmospheric black hole:
ASSIGNMAT 1.0 204.0 0.0 0.0

* External black hole:
ASSIGNMAT 1.0 205.0 0.0 0.0
ASSIGNMAT 1.0 206.0 0.0 0.0

MGNFIELD 20. 100. 30. 0.0 0.0 0.0

* STEPSIZE -100. 100000. 1.0 206.0
PHYSICS +1. 1.0 39.0 DECAYS

* The following cards deactivate/activate the electromagnetic
* interactions. If ON, cuts on e+/- & gamma have to be defined in the
* EMFCUT cards.

EMF EMF-OFF

EMFCUT -0.001 +0.0005 1.0 205.0
EMFCUT -0.001 +0.0005 1.0 1.0 205.0

SCORE 208.0 210.0 201.0 229.0

* The following cards activate the scoring of double differential flux
* (energy * and angle) at the boundaries of some atmospheric layers

* Mu -
USRYIELD 2398.0 11.0 -21.0 98.0 99.0 1.0 970.6g/cm2
USRYIELD 20.552 0.576 48.0 11.47834 0.0 6.0 h
USRYIELD 2398.0 11.0 -21.0 99.0 100.0 1.0 1001.0g/cm2
USRYIELD 20.552 0.576 48.0 11.47834 0.0 6.0 h
USRYIELD 2398.0 11.0 -21.0 100.0 101.0 1.0 1033.0g/cm2
USRYIELD 20.552 0.576 48.0 11.47834 0.0 6.0 h

* Mu +
USRYIELD 2398.0 10.0 -22.0 98.0 99.0 1.0 970.6g/cm2
USRYIELD 20.552 0.576 48.0 11.47834 0.0 6.0 h
USRYIELD 2398.0 10.0 -22.0 99.0 100.0 1.0 1001.0g/cm2
USRYIELD 20.552 0.576 48.0 11.47834 0.0 6.0 h
USRYIELD 2398.0 10.0 -22.0 100.0 101.0 1.0 1033.0g/cm2
USRYIELD 20.552 0.576 48.0 11.47834 0.0 6.0 h

... RANDOMIZ 1.0
START 100000.
USRROCALL
Special source: cosmic rays

STOP
Chapter 17

Special source: synchrotron radiation

Synchrotron radiation as a source can be specified via command SPECSOUR (see p. 238) and SDUM = SYNC–RAD or SYNC–RDN.

Synchrotron radiation photons are assumed to be emitted by a particle (most commonly an electron or a positron, but any charged particle is allowed), moving along one or two circular arcs or helical paths. The emitting particle is not transported. The bending is assumed to be due to a magnetic field of intensity and direction specified by the user, but no magnet needs necessarily to be described in the geometry, and the magnetic field must not be declared with command MGNFIELD nor assigned to any region with command ASSIGNMA.

The program samples energy and direction of the synchrotron radiation photons from the proper energy and angular distributions. Polarisation is implemented as a function of emitted photon energy. The emitting particle can have any direction with respect to that of the magnetic field. Therefore, photon emission can occur along arcs (if the particle direction is perpendicular to the magnetic field) or helical paths in the more general case.

The user must specify several parameters:

- the emitting particle type and energy (or momentum)
- the particle direction, at the beginning of the first and possibly of the second arc or helical path
- the magnetic field intensity (or alternatively the curvature radius of the particle trajectory)
- the direction of the magnetic field
- the lower limit of the photon energy spectrum
- the length of one of the trajectory arcs or helical paths (the other path, if present, having the same length)
- the starting points of the first path, and if present, of the second path

The SPECSOUR command for synchrotron radiation extends over two cards. The input parameters are:

First card:

**WHAT(1)** = particle emitting the radiation

Default = 3.0 (electron)

**WHAT(2)** > 0.0: emitting particle momentum (GeV/c)
< 0.0: kinetic energy of the emitting particle (GeV)

**WHAT(3)** > 0.0: curvature radius of the emitting particle trajectory (cm)
< 0.0: absolute value of the bending magnetic field (T)

**WHAT(4)** = lower limit of the photon energy spectrum (GeV)

Default = $10^{-7}$ GeV

**WHAT(5)** = x-component of the magnetic field versor

**WHAT(6)** = y-component of the magnetic field versor

SDUM : SYNC–RAD if the z-component of the magnetic field versor is $> 0.0$.
SYNC–RDN if the z-component of the magnetic field versor is $< 0.0$

Continuation card:

**WHAT(1)** = length of the emission arc or helical path (cm)

**WHAT(2)** = x-coordinate of the starting point of a possible second path of same length (see Note 1)
**WHAT(3) =** y-coordinate of the starting point of the second path (see Note 1))

**WHAT(4) =** z-coordinate of the starting point of the second path (see Note 1))

**WHAT(5) =** x-component of the emitting particle direction versor at the beginning of the second path (see Note 1) and 2))

**WHAT(6) =** y-component of the emitting particle direction versor at the beginning of the second path (see Note 1) and 2))

**SDUM =** “&” in any position in columns 71–78 (or in last field if free format is used)

**Note**

1) The starting point of the first arc or helical path as well as the initial direction of the emitting particle must be defined in the BEAMPOS card.

2) The z-component of the emitting particle direction versor for the 2nd arc takes the same sign as the one of the 1st arc.
Chapter 18

History of FLUKA

18.1 Introduction

The history of FLUKA goes back to 1962-1967. During that period, Johannes Ranft was at CERN doing work on hadron cascades under the guide of Hans Geibel and Lothar Hoffmann, and wrote the first high-energy Monte Carlo transport codes.

Starting from those early pioneer attempts, according to a personal recollection of Ranft himself [173], it is possible to distinguish three different generation of “FLUKA” codes along the years, which can be roughly identified as the FLUKA of the ’70s (main authors J. Ranft and J. Routti), the FLUKA of the ’80s (P. Aarnio, A. Fassò, H.-J. Möhring, J. Ranft, G.R. Stevenson), and the FLUKA of today (A. Fassò, A. Ferrari, J. Ranft and P.R. Sala).

These codes stem from the same root and of course every new “generation” originated from the previous one. However, each new “generation” represented not only an improvement of the existing program, but rather a quantum jump in the code physics, design and goals. The same name “FLUKA” has been preserved as a reminder of this historical development — mainly as a homage to J. Ranft who has been involved in it as an author and mentor from the beginning until the present days — but the present code is completely different from the versions which were released before 1990, and far more powerful than them.

18.2 First generation (the CERN SPS Project, 1962-1978)

The first codes of Ranft [95,149–152,155] were originally non-analogue and were used as a tool for designing shielding of high energy proton accelerators. The first analogue cascade code was written and published at Rutherford High Energy Lab, where Ranft worked from 1967 to 1969. His work was supported by Leo Hobbis of RHEL, who at the time was the radiation study group leader for the CERN 300 GeV project. The analogue code was called FLUKA (FLUktuerierende KAkskade), and was used to evaluate the performances of NaI crystals used as hadron calorimeters [152].

Around 1970, J. Ranft got a position at Leipzig University. During the SPS construction phase in the Seventies he was frequently invited by the CERN-Lab-II radiation group, leader Klaus Goebel, to collaborate in the evaluation of radiation problems at the SPS on the basis of his hadron cascade codes. These codes were FLUKA and versions with different geometries and slightly differing names [187]. Jorma Routti, of Helsinki University of Technology, collaborated with Ranft in setting up several of such versions [156, 157]. The particles considered were protons, neutrons and charged pions.

At that time, FLUKA was used mainly for radiation studies connected with the 300 GeV project [65, 97, 98]. During that time, the development of FLUKA was entirely managed by Ranft, although many suggestions for various improvements came from Klaus Goebel, partly from Jorma Routti and later from Graham Stevenson (CERN). In that version of FLUKA, inelastic hadronic interactions were described by means of an inclusive event generator [157,160]. In addition to nucleons and charged pions, the generator could now sample also neutral pions, kaons and antiprotons.

Ionisation energy losses and multiple Coulomb scattering were implemented only in a crude way, and a transport cutoff was set at 50 MeV for all particles. The only quantities scored were star density and energy deposited. The electromagnetic cascade and the transport of low-energy particles were not simulated in detail but the corresponding energy deposition was sampled from “typical” space distributions.

18.3 Second generation (development of new hadron generators, 1978-1988)

After the SPS construction phase, a complete re-design of the code was started in 1978 on the initiative of Graham Stevenson (CERN), with the support of Klaus Goebel, then leader of the CERN Radiation Protection Group, and of Jorma Routti, Chairman of the Department of Technical Physics at the Helsinki University of Technology (HUT), in the form of a collaboration between CERN, HUT and Leipzig University [1,2,128,165]. The goal was to make FLUKA a more user friendly hadron cascade code with flexible geometry and with a modern formulation of the hadron interaction model. The new FLUKA code was started to be written by visitors from Leipzig University (H.-J. Möhring) and Helsinki University of Technology (Jorma Sandberg). The project was finished by Pertti Aarnio, also visitor from Helsinki. Other contributions came from Jukka Lindgren (Helsinki) and by Stevenson himself, who was acting...
Fluka history

as a coordinator.

The existing versions of Ranft's programs (at least 14) were unified into a single code under the name Fluka. The new code was capable to perform multi-material calculations in different geometries and to score energy deposition, star density and differential "fluxes" (actually, angular yields around a target).

This second generation resulted in the release of several versions. In Fluka81 [128] only one geometry was available (cylindrical). High-energy hadronic events were still sampled from inclusive distributions, but the low-energy generators Hadrin [100,105] and Nucrin [101,106] were introduced for the first time.

In Fluka82 [1,165], Cartesian and spherical geometries were added, and in principle Combinatorial Geometry too (but the latter option was rarely used, since there was no scoring associated with it and it did not support charged particle multiple scattering and/or magnetic fields). After a first release with the old inclusive hadron generator, an update [2] was released soon in which a new quark-chain generator developed by Ranft and his collaborators was introduced in a tentative way [161,163,164]. At least four Ph.D. projects at Leipzig University did contribute to this new generator, based on the Dual Parton Model, known as Eventq. The model soon turned out to be superior by far to all those used before in hadron Monte Carlo, and various versions of it were later adopted also in other codes (Hetc [12,13], Hermes [55], Calor [93], and the simulation codes used for the H1 and ZEUS experiments).

The link to the EGS4 program [140] was introduced in the Fluka86 version by G.R. Stevenson and A. Fassò, as an alternative to the parameterised electromagnetic cascade used before. The link was working both ways, allowing to transport gammas issued from $\pi^0$ decay, and also photihadrons. Production of the latter was implemented only for energies larger than the $\Delta$ resonance, in the frame of the Vector Meson Dominance model, by J. Ranft and W.R. Nelson [168].

The possibility to work with complex composite materials was introduced in the Fluka81 version by Möhring and Sandberg. P. Aarnio restructured the code by encapsulating all COMMON blocks into INCLUDE files. In that version, and in Fluka87 which soon followed [4], several other new features were introduced. A first attempt at simulating ionisation fluctuations (with the Landau approach) was contributed by P. Aarnio, and a rudimentary transport of particles in magnetic fields was provided by J. Lindgren (for charged hadrons only). Some fluence estimators (boundary crossing, collision, track-length) were added in a preliminary form by Alberto Fassò, based on the same algorithms he had written for the Morse code [66]. J. Ranft and his group improved the Eventq hadron generator with the inclusion of diffractive events and Fermi momentum and provided a first model (later abandoned) of nucleus-nucleus collisions.

Practically none of these features, however, is surviving today in same form: in all cases, with the exception of the hadron event generator, even the basic approach is now completely different.

18.4 Third generation (the modern multiparticle/multipurpose code, 1989 to present)

At about the time when the last version was frozen (1987), a new generation of proton colliders, with large luminosities and energies of the order of several TeV, started to be planned. Because of its superior high-energy hadron generator, FLUKA became the object of a great interest and began to be employed for shielding calculations and especially to predict radiation damage to the components of the machines and of the experiments. But soon many limitations of the code became evident: the design of the new accelerators (SSC and LHC) and associated experiments needed a capability to handle large multiplicities, strong magnetic fields, energy deposition in very small volumes, high-energy effects, low-energy neutron interactions, which the code was lacking. A. Ferrari (INFN) and A. Fassò set up a plan to transform FLUKA from a high-energy code mostly devoted to radiation shielding and beam heating into a code which could handle most particles of practical interest and their interactions over the widest possible energy range. This plan was entirely supported by INFN, since after the retirement of K. Goebel, the CERN Radiation Protection Group had decided to stop support to any further FLUKA development. The Leipzig group was dissolved following Germany reunification, but J. Ranft continued to contribute, especially during three 6-months stays in different INFN labs.

Over a period of six years, FLUKA evolved from a code specialised in high energy accelerator shielding, into a multipurpose multiparticle code successfully applied in a very wide range of fields and energies, going much beyond what was originally intended in the initial development reworking plan of Fassò and Ferrari. Just as examples, a few of the fields where the modern FLUKA has been successfully applied are listed in the following:

- Neutrino physics and Cosmic Ray studies: initiated within ICARUS
- Neutrino physics: ICARUS, CNGS, NOMAD, CHORUS
Code structure

– Cosmic Rays: First 3D neutrino flux simulation, Bartol, MACRO, Notre-Dame, AMS, Karlsruhe (Corsika)
– Neutron background in underground experiments (MACRO, Palo Verde)

– Accelerators and shielding: the very first FLUKA application field
  – Beam-machine interactions: CERN, NLC, LCLS, IGNITOR
  – Radiation Protection: CERN, INFN, SLAC, Rossendorf, DESY, GSI, TERA, APS
  – Waste Management and environment: LEP dismantling, SLAC
– Synchrotron radiation shielding: SLAC
– Background and radiation damage in experiments: Pioneering work for ATLAS
  – all LHC experiments, NLC
– Dosimetry, radiobiology and therapy:
  – Dose to Commercial Flights: E.U., NASA, AIR project (USA)
  – Dosimetry: INFN, ENEA, GSF, NASA
  – Radiotherapy: Already applied to real situations (Optis at PSI, Clatterbridge, Rossendorf/GSI)
  – Dose and radiation damage to Space flights: NASA, ASI
– Calorimetry:
  – ATLAS test beams
  – ICARUS
– ADS, spallation sources (FLUKA+EA-MC, C. Rubbia et al.)
  – Energy Amplifier
  – Waste transmutation with hybrid systems
  – Pivotal experiments on ADS (TARC, FEAT)
  – nTOF

This effort, mostly done in Milan by Ferrari and Paola Sala (also of INFN), started in 1989 and went off immediately in many directions: a new structure of the code, a new transport package including in particular an original multiple Coulomb scattering algorithm for all charged particles, a complete remake of the electromagnetic part, an improvement and extension of the hadronic part, a new module for the transport of low-energy neutrons, an extension of Combinatorial Geometry and new scoring and biasing facilities. At the end of 1990, most of these goals had been achieved, although only in a preliminary form. All the new features were further improved and refined in the following years.

18.4.1 Code structure

One of the first changes which led to the modern FLUKA was a complete redesign of the code structure. The main change was a general dynamical allocation scheme allowing to obtain a great flexibility while keeping the global memory size requirements within reasonable limits. Other improvements were a re-arrangement of COMMON blocks to optimise variable alignment, a parameterisation of constants making the program easier to maintain and update, the possibility to insert freely comments in input, and a special attention devoted to portability (FLUKA87 could run only on IBM under VM-CMS).

The greatest importance was attached to numerical accuracy: the whole code was converted to double precision (but the new allocation scheme allowed for implementation also in single precision on 64-bit computers). As a result, energy conservation was ensured within $10^{-10}$.

A decision was also made to take systematically maximum advantage from the available machine precision, avoiding all unnecessary rounding and using consistently the latest recommended set of the physical constant values [142]. Such an effort succeeded in strongly reducing the number of errors in energy and momentum conservation and especially the number of geometry errors.

A double precision random number generator was also adopted, kindly provided by Fred James (CERN) [113], and based on the algorithm of RANMAR by Marsaglia and Zaman of Florida State University [123,124]. The possibility to initialise different independent random number sequences was introduced in 2001. In 2005, the newly proposed double-precision generator proposed by Marsaglia and Tsang [125] has been implemented.

A deliberate choice was made at an early stage to give preference to table look-up over analytical parameterisations or rejection sampling. The burden of large file management was more than compensated by the better
accuracy and increased efficiency. Cumulative tabulations optimised for fast sampling were initialised at run-time for the materials of the problem on hand, and were obtained mainly from complete binary data libraries stored in external files.

The concern for self-consistency was and still is the main guiding principle in the design of the code structure. The same attention has been devoted to each component of the hadronic and of the electromagnetic cascade, with the aim of obtaining a uniform degree of accuracy. For this reason, FLUKA can now be used just as well to solve problems where only a single component is present (pure hadron, neutron, muon or electromagnetic problems). It has also been tried to give a complete description of the mutual interaction between the different components, preserving the possible correlations.

A set of default settings recommended for several applications (shielding, radiotherapy, calorimetry etc.) was introduced in 1996 to help the user in a difficult task, but essential to get reliable results.

18.4.2 Geometry

The original Combinatorial Geometry (CG) package from MAGI [99, 121] was adopted and extensively improved by Fassò and Ferrari, starting from the one used in their improved version of the MORSE code [60]. In 1990, new bodies were added (infinite planes and cylinders) which made the task of writing geometry input much easier and allowed more accurate and faster tracking.

CG had originally been designed for neutral particles, but charged particles definitely required a fully new treatment near boundaries, especially when magnetic fields were present. Previous attempts to use CG to track charged particles, in FLUKA87, EGS4 and other codes, had always resulted in a large number of particle rejections, due to rounding errors and to the “pathological” behaviour of charged particles scattering near boundaries and in the practical impossibility to use CG for these purposes.

The tracking algorithm was thoroughly redesigned attaining a complete elimination of rejections. A new tracking strategy brought about large speed improvements for complex geometries, and the so-called DNEAR facility (minimum distance from any boundary) was implemented for most geometry bodies and all particles. A sophisticated algorithm was written to ensure a smooth approach of charged particles to boundaries by progressively shortening the length of the step as the particle gets closer to a boundary. Boundary crossing points could now be identified precisely even in the presence of very thin layers. The combined effect of multiple scattering and magnetic/electric fields was taken into account.

In 1994, the Plotgeom program, written by R. Jaarsma and H. Rief in Ispra and adapted as a FLUKA subroutine by G.R. Stevenson in 1990, was modified by replacing its huge fixed dimension arrays with others, dynamically allocated. The same year, a repetitive (lattice) geometry capability was introduced in CG by Ferrari, and a powerful debugger facility was made available.

In 1997-1998, following a request from the ATLAS experiment, INFN hired a fellow, S. Vanini, who, together with Sala, developed an interface called FLUGG which allows to use FLUKA using the GEANT4 geometry routines for detector description [43, 44]. This interface was further improved by Sala and in recent times I. Gonzalez and F. Carminati from ALICE.

In 2001-2002, in the framework of a collaboration between INFN-Milan and GSF (Germany), Ferrari developed a generalised voxel geometry model for FLUKA. This algorithm was originally developed to allow to use inside FLUKA the human phantoms developed at GSF out of real person whole body CT scans. It was general enough to be coupled with generic CT scans, and it is already used in Rossendorf (Germany) for hadron therapy applications.

18.4.3 Particle transport

The number of particles which can be transported by FLUKA was 25 in 1990; after the muon (anti)neutrinos and several hyperons were added, the number increased to 36. In 1992, transport of light ions (deuterons, tritons, $^3$He, $^4$He, $^6$He, $^8$He) was introduced, without nuclear interactions. In 1996 $\tau$ leptons and neutrino transport (and in some cases interactions) were added. In 1999 the transport of optical photons was set up. The same year charmed hadrons brought the total number of transported particles to 63, plus all kinds of heavy ions.

The transport threshold, originally fixed at 50 MeV has been lowered since 1991 to the energy of the Coulomb barrier. Below that value, charged particles were ranged out to rest.
18.4.4 Particle decays

The old FLUKA allowed for two and three body phase-space like particle decays with no account for possible matrix element, particle polarisations and higher multiplicities. Starting since 1995, particle decays have been rewritten from scratch by Ferrari allowing for more than 3 body decays, implementing polarised decays for $\pi$‘s, kaons, $\tau$‘s and muons when relevant, and introducing proper matrix elements for kaon and muon decays. Among these features, polarised muon decays with the proper $V-A$ matrix element were developed by G. Battistoni (INFN-Milan) and $K_{\mu 3}$ and $K_{l3}$ decays of $K^\pm/K_{Long}$ with the proper matrix element were based on the KL3DCAY code kindly provided by Vincenzo Patera (INFN-Frascati).

Various methods of particle decay biasing were also introduced by Ferrari (described later in 18.4.14).

18.4.5 Magnetic fields

Transport in magnetic fields was extended to electrons and positrons in 1990 by Ferrari. In 1992 and again in 1994, the magnetic field tracking algorithm was completely reworked by Ferrari and Sala in order to overcome the many limitations of the previous one. The new algorithm was much more precise and fast, it supported complex particle/boundary interactions typical of multiple scattering, allowed for charged particle polarisation and did no longer miss by construction any geometrical feature, even if small, met along the curved path.

18.4.6 Multiple Coulomb scattering

The version of EGS4 which had been linked to FLUKA87 was an early one, which did not include the PRESTA algorithm for the control of the multiple scattering step and was therefore very sensitive to the step length chosen. In 1989, Ferrari and Sala developed and implemented in FLUKA an independent model which had several advantages even with respect to PRESTA: it was accounting for several correlations, it sampled the path length correction accounting for the first and second moment of its distribution, it allowed the introduction of high-energy effects (nuclear form factors) and could be easily integrated within the Combinatorial Geometry package. The algorithm, which included also higher order Born approximations, was very efficient and was taking care also of special high-energy effects, very grazing angles, correlations between angular, lateral and longitudinal displacements, backscattering near a boundary etc.

The Ferrari-Sala model, which has proved very robust and has been shown to reproduce with good accuracy even backscattering experiments, was applied to both electrons and heavier charged particles. The final revision and update of the algorithm were made in 1991. In 1995, the Fano correction for multiple scattering of heavy charged particles [64] was introduced.

18.4.7 Ionisation losses

The treatment of ionisation losses was completely re-written in 1991-1992 by Fassò and Ferrari to eliminate many crude approximations, and delta-ray production was added. Ranging of stopping charged particle was also changed. Quenching according to the Birks law was introduced to calculate the response of scintillators.

Application of FLUKA to proton therapy called for further refinements of stopping power routines in 1995, with the inclusion of tabulated data of effective ionisation potentials and density effect parameters. Shell corrections were added. The new treatment was fully compliant with ICRU recommended formulae and parameters and included all corrections, including low-energy shell corrections as worked out by Ziegler et al..

In 1996, a new formalism for energy loss fluctuations by Ferrari [73] replaced the old treatment of Landau fluctuations. This formalism, based on the statistical properties of the cumulants of a distribution, was applied to both heavy charged particles and $e^+e^-$, and was fully compatible with any user-defined threshold for delta ray emission.

Other improvements concerned the possibility to define materials with local density different from average (porous substances), and the ranging out of particles with energies lower than the transport cutoff.

In 1999-2000, heavy ion $dE/dx$ was improved by the inclusion of effective $Z$ and straggling (Ferrari).

High-energy energy loss mechanisms for heavy charged particles were implemented by Ferrari both as a continuous and as an explicit treatment: bremsstrahlung and pair production in 1992, nuclear interaction via virtual photons in 1993.
18.4.8 Time dependence

Time-dependent calculations were made available in FLUKA for all particles since 1991. Time cutoffs could be set by the user for both transport and scoring.

18.4.9 Nuclear data and cross sections

All the nuclear data used by the original evaporation routines by Dresner [59] (see below), were replaced by Ferrari at an early stage with the most recent ones available from the NNDC database, thanks to the help of Federico Carminati. In 1990, the isotopic composition of elements was included, taken from modern evaluations.

In 1991, the proton and neutron inelastic cross sections between 10 and 200 MeV were updated by Ferrari and Sala with fits to experimental data. An accurate treatment of cross section energy dependence for all charged particles, independent of the step size, was introduced at that stage through the fictitious-σ method.

Hadron-nucleus cross sections underwent further extensive reworking starting from 1994 by Ferrari and Sala. The present treatment is based on a novel approach blending experimental data, data driven theoretical approaches, PDG fits and phase shift analysis when available.

Elastic scattering on hydrogen of protons, neutrons, and pions was rewritten from scratch in 1994 by Ferrari and Sala. The same work was done for kaons in 1997.

18.4.10 Electron and photon transport (EMF)

The original Egs4 implementation in FLUKA was progressively modified, substituted with new algorithms and increasingly integrated with the hadronic and the muon components of FLUKA, giving rise to a very different code, called EMF (Electro-Magnetic-Fluka). In 2005, the last remaining Egs routine has been eliminated, although some of the structures still remind of the original Egs4 implementation.

The main developments were made according to the following sequence.

The Ferrari-Sala multiple scattering algorithm was the first major addition in 1989. It has already been described elsewhere since it was applied to hadrons and muons as well. Following its implementation, the whole electron/positron transport algorithm had to be reworked from scratch in order to comply with the features (initial and final step deflections, complex boundary crossing algorithm) of the new model.

In 1990, the treatment of photoelectric effect was completely changed. Shell-by-shell cross sections were implemented, the photoelectron angular distribution [186] was added, taking into account the fine structure of the edges, and production of fluorescence X-rays was implemented.

Many new features were added in 1991. The emission angle of pair-produced electron and positrons and that of bremsstrahlung photons, which were only crudely approximated in the original Egs4 code, were now sampled from the actual physical distributions.

The full set of the electron-nucleus and electron-electron bremsstrahlung cross sections, differential in photon energy and angle, published by Seltzer and Berger for all elements up to 10 GeV [189] was tabulated in extended form and introduced into the code together with a brand new sampling scheme by Fassò and Ferrari. The energy mesh was concentrated, especially near the photon spectrum tip, and the maximum energy was extended to higher energies. The Landau-Pomeranchuk-Migdal effect [119, 120, 126, 127] for bremsstrahlung and the Ter-Mikaelyan polarisation effect [198] (suppressing soft photon emission) were implemented.

Positron bremsstrahlung was treated separately, using below 50 MeV the scaling function for the radiation integral given by Kim [114] and differential cross sections obtained by fitting proper analytical formulae to numerical results of Feng et al. [80]. The photon angular distribution was obtained by sampling the emission angle from the double differential formula reported by Koch and Motz [115], fully correlated with the photon energy sampled from the Seltzer-Berger distributions.

The Compton effect routines were rewritten in 1993 by Ferrari and Luca Cozzi (University of Milan), including binding effects. At the end of the same year, the effect of photon polarisation was introduced for Compton, Rayleigh and photoelectric interactions by Ferrari.

In 1993 and 1994, A. Fassò and A. Ferrari implemented photonuclear reactions over the whole energy range,
opening the way to the use of Monte Carlo in the design of electron accelerator shielding [70]. Giant Dipole Resonance, Delta Resonance and high-energy photonuclear total cross sections were compiled from published data [74] (further updated in 2000 and 2002), while the quasi-deuteron cross section was calculated according to the Levinger model, with the Levinger’s constant taken from Tavares et al. [197], and the damping factor according to Chadwick et al. [53]. The photon interaction with the nucleus was handled in the frame of the FLUKA hadronic event generators PEANUT and DPM (see below).

In 1995, a single Coulomb scattering option was made available for electrons and positrons by Ferrari and Sala. The aim of this option was mainly to eliminate some artefacts which affected the angular distributions of charged particles crossing a boundary, but it turned out very useful also to solve some problems at very low electron energy or with materials of low density (gases). In the same year, the electron transport algorithm was reworked once more by Ferrari and Sala introducing an adaptive scheme which “senses” close boundaries in advance and automatically adapts the step length depending on their distance. Also in 1995 Ferrari discovered that the EGS4 implementation of Møller and Bhabha scattering, still used at that time in FLUKA, was flawed. The bug was duly reported to the EGS4 authors who took corrective actions on their own code, while Ferrari developed a new algorithm for Møller and Bhabha scattering for FLUKA.

In 1995, a single Coulomb scattering option was made available for electrons and positrons by Ferrari and Sala. The aim of this option was mainly to eliminate some artefacts which affected the angular distributions of charged particles crossing a boundary, but it turned out very useful also to solve some problems at very low electron energy or with materials of low density (gases). In the same year, the electron transport algorithm was reworked once more by Ferrari and Sala introducing an adaptive scheme which “senses” close boundaries in advance and automatically adapts the step length depending on their distance. Also in 1995 Ferrari discovered that the EGS4 implementation of Møller and Bhabha scattering, still used at that time in FLUKA, was flawed. The bug was duly reported to the EGS4 authors who took corrective actions on their own code, while Ferrari developed a new algorithm for Møller and Bhabha scattering for FLUKA.

In 1995, a single Coulomb scattering option was made available for electrons and positrons by Ferrari and Sala. The aim of this option was mainly to eliminate some artefacts which affected the angular distributions of charged particles crossing a boundary, but it turned out very useful also to solve some problems at very low electron energy or with materials of low density (gases). In the same year, the electron transport algorithm was reworked once more by Ferrari and Sala introducing an adaptive scheme which “senses” close boundaries in advance and automatically adapts the step length depending on their distance. Also in 1995 Ferrari discovered that the EGS4 implementation of Møller and Bhabha scattering, still used at that time in FLUKA, was flawed. The bug was duly reported to the EGS4 authors who took corrective actions on their own code, while Ferrari developed a new algorithm for Møller and Bhabha scattering for FLUKA.

In 1997 mutual polarisation of photons emitted in positron annihilation at rest was introduced by Ferrari.

Cherenkov photon production and optical photon transport was implemented in 1999 by Ferrari. In 2002 scintillation photon production was added as well.

In 2005, new implementations of the pair production and Rayleigh scattering processes have been finalized.

In 1998-2001 an improved version of the Ferrari-Sala multiple scattering model was developed, introducing further refinements and the so called “polygonal” step approach. This version is presently fully tested offline and will be soon introduced into the production code.

In 2005, the need for an external data preprocessor has been eliminated, integrating all the needed functionalities into the FLUKA initialisation stage. At the same time, data from the EPDL97 [63] photon data library have become the source for pair production, photoelectric and total coherent cross section tabulations, as well as for atomic form factor data.

At the same time, Rayleigh scattering has been reworked from scratch by Ferrari with a novel approach, and the photoelectric interaction model has been further improved with respect to the 1993 Ferrari-Sala approach, extending it, among the other modifications, down to a few eV.

Finally the energy sampling for pair production has been completely reworked by Ferrari using a vastly superior approach, which can distinguish between interactions in the nuclear or electron field, and properly samples the element in a compound or mixture on which the interaction is going to occur. Thew algorithm is also capable of producing meaningful results for photon energies close to thresholds where several corrections are important and the symmetry electron/positron is broken, in similar fashion to the bremsstrahlung case.

### 18.4.11 Low-energy neutrons

The 50 MeV energy cutoff was one of the most important limitations of the FLUKA87 version. The cutoff concerned muons and all hadrons, but it was the absence of neutron transport below 50 MeV which constituted the most serious drawback for many applications. The limitations stemmed from the increasing inadequacy of the hadron interaction models in dealing with interactions below 1 GeV and with the lack of any detailed nuclear physics treatment, i.e., the lack of an evaporation model and low-energy particle production, at all energies.

Actually, several early attempts to overcome these weaknesses of the code had been made by H.-J. Möhring, H. Kowalski and T. Tymieniecka (code NEUKA [116, 202], for Uranium/Lead scintillator only) and J. Zazula (code FLUNEV [207, 208]), with mixed results. The most promising approach was that of Jan Zazula, of the Institute of Nuclear Physics in Cracow: he had coupled FLUKA87 with the EVAR-5 evaporation module which he had extracted from the HETC/KFA code, and then interfaced the code with the only available multi-group neutron cross section library extending to 50 MeV and beyond, the HILO library.

The main limitations of these approaches was their inability to address the real deficiencies of the FLUKA87 hadron interaction model, their lack of nuclear physics details and therefore the unreliability of their excitation energy predictions, which indeed were never intended by the original authors for any real use.
Furthermore, it became apparent that HILO had several weaknesses: the cross section set had been put together by extending a low-energy one of rather coarse structure based on evaluated experimental data with the addition of much less accurate data calculated with an intranuclear cascade code (HETC); for the same reason the library did not contain any information on \((n,\gamma)\) generation above 20 MeV and was based on a different Legendre angular expansion below and above that energy. And because the library contained a very small number of materials, the possibilities of application were rather limited.

The approach followed by Ferrari and Sala to overcome those shortcomings was two-fold:

- improve/substitute the hadronic interaction models in order to describe with reasonable accuracy low-energy particle production and medium-low energy particle interactions
- develop an ad-hoc neutron cross section library for FLUKA extending up to 20 MeV (in collaboration with G.C. Panini and M. Frisoni of ENEA-Bologna [57])

The former point is discussed in detail in the section on hadronic models, the latter in the following.

Since Ferrari and Sala had started to work on a preequilibrium model (later known as PEANUT, see next section) which was expected to cover intermediate energies more accurately than the traditional intranuclear cascade codes, it was decided to lower the FLUKA energy cutoff to 20 MeV (thus making HILO unnecessary) and to create a dedicated multigroup neutron cross section library to be used with FLUKA, with the more usual upper energy limit of 20 MeV. The task was carried out with the essential collaboration of G.C. Panini, an expert of an ENEA laboratory in Bologna specialised in nuclear data processing for reactor and fusion applications. Several neutron cross section libraries have been produced for FLUKA over the years as a result of a contract between INFN-Milan and ENEA [57].

These libraries, designed by Ferrari, had a format which was similar to the ANISN one [62] used for example by MORSE [60], but which was modified to include partial cross sections and kerma factors for dose calculations (critically revised). Because at that time there was still a US embargo on the most recent ENDF/B evaluated file, the cross sections were originally derived from the European compilations JEF–1 and JEF–2. (Later, they were regularly updated with the best ones available from JEF, ENDF, JENDL and others). The choice of materials was particularly tailored on detector and machine applications for high-energy colliders, including also cryogenic liquids at various temperatures, and was much wider than in most other libraries: it contained initially about 40 different materials (elements or isotopes), which became soon 70 (in 1991) and are now more than 130. Hydrogen cross sections were also provided for different H molecular bonds (H gas, water, polyethylene). Doppler reduced broadening was implemented for a few materials at liquid argon (87 K) and liquid helium (approximately 0 K) temperatures.

The incorporation of the neutron multigroup transport module into FLUKA by Ferrari was loosely based on the approach followed in the MORSE and other multigroup codes, Ferrari and Fassò had a deep expertise about. The low-energy neutron transport and interaction routines were rewritten from scratch progressively introducing many extra features which are detailed in the following. Capture and inelastic gamma generation was still implemented in the multigroup framework, but gamma transport was taken care of by the EMF part of FLUKA. Survival biasing was left as an option to the user with the possibility to replace it by analogue survival.

Energy deposition computed via kerma factors was preserved, but in the case of hydrogen the recoiling protons were explicitly generated and transported. The same was done with protons from the \(^{14}\text{N}(n,p)^{14}\text{C}\) reaction due to its importance for tissue dosimetry, and later for all reaction on \(^{6}\text{Li}\).

The new low-energy neutron transport was ready at the end of 1990 [82]. The corresponding FLUKA version was called FLUKAN for a while to underline the neutron aspect, but the name was soon abandoned.

At the beginning of 1997, the possibility to score residual nuclei produced by low-energy neutrons was introduced. Many improvements were made in that same year. Federico Carminati, who was using FLUKA for calculations related to C. Rubbia’s energy amplifier, added to the program a few routines and nuclear data necessary to score low-energy fission products. Pointwise cross sections were introduced for the neutron interactions with hydrogen, Ferrari and Sala also developed a model to sample gammas from neutron capture in cadmium, an important reaction for which no data were available in evaluated cross section files. Similar schemes for capture photon generation were established in 2001 for other nuclei (Ar, Xe) [77]. Pointwise neutron transport and interactions for \(^{6}\text{Li}\) were also provided.

18.4.12 Hadron event generators

The two Leipzig event generators developed in the 80’s, one for intermediate energies and the other for high energies (> 5 GeV), were a remarkable achievement with great potentialities. In particular the high energy model was among
the first developed in the world based on partonic ideas and quark degrees of freedom (specifically on the so called Dual Parton Model [45, 46]).

The part of the code concerning hadron-nucleus primary interactions at energies above 4 GeV has been extensively extended and updated since 1987 and is now virtually a new model, even though the physics foundations are still essentially the same. Several bugs and approximations have been removed too. The intermediate energy resonance model has also been deeply modified and its use is currently restricted to few particles over a small energy range. The newly developed preequilibrium-cascade model PEANUT has progressively replaced this model.

The main lines of the work developed mostly in Milan by Ferrari and Sala starting from 1990 can be summarised as follow [56, 87]:

- further develop and improve the high energy DPM-based part of the models. This was performed in 4 main stages, which eventually led to an almost completely new code still based on the same physics foundations with some extensions.
- introduce a self-consistent nuclear environment in both the medium and high energy models, allowing for a physically meaningful excitation energy and excited residual A and Z calculations.
- develop a state-of-the-art evaporation/fission/break-up/deexcitation stage to describe the “slow” part of nuclear interactions. These actually took place in two major steps.
- develop a completely new model (PEANUT) based on a novel approach for describing the low-to-intermediate (up to a few GeV) energy range, while progressively phasing out the improved version of the intermediate energy Leipzig code. This effort took also place in two main steps.

### 18.4.12.1 High energy model improvements

In all the developments described in this section and also in some other sections, J. Ranft always acted as the main mentor and source of theoretical and often practical support. Even when he did not contributed to the code directly, his ideas, help and suggestions were essential part of its development.

The two models developed by the Leipzig group were initially improved by removing a number of known bugs and approximations (mainly, but not only, in the kinematics). In the years 1990-1991 all hyperons and anti-hyperons were added as possible projectiles, and most important, nuclear effects, previously restricted to Fermi momentum, were expanded and treated more accurately, with an explicit treatment of the nuclear well potential, the inclusion of detailed tables of nuclear masses to account for nuclear binding energy, a consistent exact determination of nuclear excitation energy and an overall “exact” conservation of energy and momentum on an event-by-event basis. These changes were the minimal modifications required for introducing a sensible evaporation module and related low-energy particle production: they made up the first stage of upgrade of the intermediate and high energy event generator and were performed by Ferrari and Sala.

In the following years, Negative Binomial multiplicity distribution, correlations between primary interactions and cascade particles and better energy-angle distributions were implemented. Sea quark distributions were updated, new distributions were used for the number of primary collisions using an improved Glauber cascade approach, and reggeon mediated interactions (single chains) were introduced at the lower energy end of the application range of the Dual Parton Model. An initial improvement of the diffraction treatment as well of the hadronisation algorithm were performed. These developments ended up in the 1993 version, which represented the second stage of the high energy generator development (and which was made available to GEANT3 users, see later).

Several major changes were performed on both the intermediate and high energy hadron generator in the years 1994-1996 by Ferrari and Sala. The latter was extensively improved, bringing its results into much better agreement with available experimental data from as low as 4 GeV up to several hundreds of GeV. A fully new treatment of transverse momentum and of all DPM in general was developed, including a substantially improved version of the hadronisation code and a new driver model for managing two-chain events. The existing treatment of high-energy photonuclear reactions, previously already based on the VMD model but in an approximate way, was improved by implementing the contribution of all different vector mesons, as well as the quasi-elastic contribution. The simulation of diffractive events was completely reworked distinguishing between resonant, single-chain and two-chain events, and a smeared mass distributions for resonance was introduced. This version of the model was completed in 1996 and performed very well together with the new “sophisticated” PEANUT when applied to a variety of problems, ranging from radiation protection, to cosmic ray showers in the atmosphere and to the test beam of the ATLAS calorimeters.

The latest round of improvements originated by the new interest of Ferrari and Sala for neutrino physics, triggered by their participation in the ICARUS experiment and resulted in several improvements in the high-energy interaction model. In 1998, a new chain fragmentation/hadronisation scheme was put to use, and a new diffrac-
There were two main steps in the development of the **FLUKA** preequilibrium cascade model (**PEANUT**) by Ferrari and Sala:

- The so called “linear” preequilibrium cascade model
- The full preequilibrium cascade model

The first implementation of the **FLUKA** cascade-preequilibrium model, the “linear” one was finalised in July 1991 [83]. The model, loosely based for the preequilibrium part on the exciton formalism of M. Blann and coworkers called Geometry Dependent Hybrid Model (GDH) [32,33] now cast in a Monte Carlo form, was able to treat nucleon interactions at energies between the Coulomb barrier (for protons) or 10-20 MeV (for neutrons) and 260 MeV (the pion threshold). The model featured a very innovative concept, coupling a preequilibrium approach with a classical intranuclear cascade model supplemented with modern quantistic corrections. This approach was adopted for the first time by **FLUKA** and independently by the LAHET code [145] at LANL. Capture of stopping negative pions, previously very crudely handled (the available alternatives being forced decay or energy deposited on the spot) was also introduced in this framework. This first implementation was called “linear” since in the cascade part refraction and reflection in the nuclear mean field were not yet taken into account, resulting in straight (“linear”) paths of particles through the nuclear medium. First order corrections for these effects were anyway implemented on the final state angular distributions. This model immediately demonstrated superb performances when compared with nucleon induced particle production data. Its implementation into **FLUKA** allowed to overcome some of the most striking limitations of the code and permitted the use of the new neutron cross section library through its ability to produce sound results down to 20 MeV: in this way it opened a huge range of new application fields for the code.

However, despite its nice performances, the “linear” cascade-preequilibrium model was always felt by Ferrari and Sala as a temporary solution for the low end side of particle interactions, while waiting for something even more sophisticated. The work on the “full” cascade-preequilibrium, which in the meantime had been called **PEANUT** (Pre-Equilibrium Approach to Nuclear Thermalisation) started at the end of 1991 and produced the first fully working version by mid-1993. Despite its improved quality this version was not included into any of the general use **FLUKA** versions until 1995, due to its complexity and the overall satisfactory results of the “linear” one for most applications. Till 1995, the full version was in use only by a few selected groups, including the EET group led by Carlo Rubbia at CERN, which meanwhile decided to adopt **FLUKA** as their standard simulation tools above 20 MeV, mostly due to the superior performances of **PEANUT** full version.

It would be too long to describe in details all features of this model, which represented a quantum jump in the **FLUKA** performances and a significant development in the field. Actually, **PEANUT** combines an intranuclear part and a preequilibrium part (very similar in the “linear” and full versions), with a smooth transition around 50 MeV for secondary nucleons and 30 MeV for primary ones. It included nuclear potential effects (refraction and reflection), as well as quantal effects such as Pauli blocking, nucleon-nucleon correlations, fermion antisymmetrisation, formation zone and coherence length (a new concept introduced by Ferrari-Sala which generalises to low energy and two body scattering the formation zone concept). The model featured a sophisticated pion complex optical potential approach, together with 2 and 3 nucleon absorption processes and took into account the modifications due to the nuclear medium on the pion resonant amplitudes. For all elementary hadron-hadron scatterings (elastic, charge and strangeness exchanges) extensive use was made of available phase-shift analysis. Particle production was described in the framework of the isobar model and DPM at higher energies, using a much extended version of the original HADRIN code from Leipzig, and the **FLUKA** DPM model at higher energies.

In 1995, distinct neutron and proton nuclear densities were adopted and shell model density distributions were introduced for light nuclei. The initial model extended the energy range of the original “linear” one from 260 MeV to about 1 GeV in 1994, with the inclusion of pion interactions. Giant Resonance and Quasi-deuteron photnuclear reactions were added in 1994 and improved in 2000. In 1996-1997 the emission of energetic light fragments (up to
\( \alpha \)'s) in the GINC (Generalised IntraNuclear Cascade) stage emission has been described through the coalescence mechanism.

The upper limit of PEANUT was further increased in 1996 to 1.8 GeV for nucleons and pions, and to 0.6 GeV for \( K^+/K^0 \); then again one year later (2.4 GeV for nucleons and 1.6 GeV for pions), and in 2000 (3.5 GeV for both pions and nucleons). In 1998, PEANUT was extended to \( K^- \) and \( \bar{K}^0 \)'s induced interactions. In the 2005 version, all nucleon and pion reactions below 5 GeV/c of momentum are treated by PEANUT, while for kaons and hyperons the upper threshold is around 1.5 GeV (kinetic energy). Since 2005 also antinucleon interactions are treated in the PEANUT framework. It is planned to progressively extend PEANUT up to the highest energies by incorporating into its sophisticated nuclear framework the Glauber cascade and DPM part of the high energy model.

One of the fall-outs of the work done for ICARUS was the introduction of nucleon decays and neutrino nuclear interactions in 1997 [50], which prompted improvements in PEANUT, for instance concerning Fermi momentum and coherence length. Quasi-elastic neutrino interactions can be dealt with by PEANUT natively; in 1999, the code was coupled with the NUON neutrino-nucleon interaction code developed by André Rubbia at ETH Zurich to produce full on-line neutrino-nucleus interactions, including resonance production and deep inelastic scattering. The combined FLUKA(PEANUT)+NUON model gave outstanding results when compared with NOMAD data, therefore giving support to all predictions done for ICARUS.

Negative muon capture was also introduced in 1997 due to ICARUS needs. To much surprise, it turned out to be a key factor in the understanding of the unexpected background at the nTOF facility during its initial operation phase in 2001.

### 18.4.12.3 Evaporation/Fission and Fermi Break-Up

Evaporation was initially implemented in FLUKA in 1990-1991 by Ferrari and Sala through an extensively modified version of the original Dressner’s model based on Weisskopf’s theory [59]. Relativistic kinematics was substituted to the original one; fragmentation of small nuclei was also introduced, although initially only in a rough manner. The mass scale was changed to a modern one and the atomic masses were updated from a recent compilation. Improvements included also a more sophisticated treatment of nuclear level densities, now tabulated both with A and Z dependence and with the high temperature behaviour suggested by Ignatyuk [110]. A brand new model for gamma production from nuclear deexcitation was added, with a statistical treatment of E1, E2 and M1 transitions and accounting for yrast line and pairing energy. This “initial capability” evaporation was used together with the first stage improved high energy hadron generator and the HILO library for the very first calculations carried out in 1990 for the LHC detector radiation environment. Later, in 1991, with the introduction of the “linear” preequilibrium model, a full model coverage down to 20 MeV was available and the new neutron cross section library developed together with ENEA-Bologna [57] started to be used.

In 1993 the RAL high-energy fission model by Atchison [16], kindly provided by R.E. Prael as implemented in the LHBET code, was included after some extensive modifications to remove some unphysical patches which the presence of a preequilibrium stage had now made unnecessary. The model was further developed and improved along the years and little is now left of the original implementation. Competition between evaporation and fission in heavy materials was implemented. This development was set off by a collaboration on energy amplifiers with C. Rubbia’s group at CERN. Eventually, Ferrari joined that group in 1998.

In 1995, a newly developed Fermi Break-up model, with a maximum of 6 bodies in the exit channel, was introduced by Ferrari and Sala to describe the deexcitation of light nuclei (\( A \leq 17 \)). This development provided better multiplicities of evaporated neutrons and distributions of residual nuclei. The deexcitation gamma generation model was improved and benchmarked in the following year.

A completely new evaporation treatment was developed by Ferrari and Sala in 1996 and 1997 in substitution of the improved Dressner model. This new algorithm adopted a sampling scheme for the emitted particle spectra which no longer made any Maxwellian approximation, included sub-barrier effects and took the full energy dependence of the nuclear level densities into account. Gamma competition was introduced too. These physics improvements allowed a much more accurate description of the production of residual nuclei. A refinement of this new package took place in 2000/2001. The production of fragments up to mass 24 has been tentatively included around 2003 and subsequently developed and benchmarked [18] and is now available in the distributed version as an option to be activated by the user.
18.4.13 Radioactivity

FLUKA is capable of making predictions about residual nuclei produced in hadronic and electromagnetic showers since late 1994. The accuracy of these predictions steadily improved along the years, in particular after the introduction of the new evaporation/fragmentation and the improvements and extensions of the PEANUT model: versions before the end of 1996 were unlikely to give satisfactory results. Of course, all FLUKA versions prior to 1989 were totally unable to formulate predictions on this issue. Since 1995, an offline code by Ferrari was distributed together with FLUKA, which allowed to compute offline the time evolution of a radionuclide inventory computed with FLUKA, for arbitrary irradiation profiles and decay times. In 2004–2005, this capability has been brought on line by Ferrari and Sala, with an exact analytical implementation (Bateman equations) of the activity evolution during irradiation and cooling down, for arbitrary irradiation conditions. Furthermore, the generation and transport of decay radiation (limited to $\gamma$, $\beta^-$, and $\beta^+$ emissions for the time being) is now possible. A dedicated database of decay emissions has been created by Ferrari and Sala, using mostly informations obtained from NNDC, sometimes supplemented with other data and checked for consistency. As a consequence, results for production of residuals, their time evolution and residual doses due to their decays can now be obtained in the same run, for an arbitrary number of decay times and for a given, arbitrarily complex, irradiation profile.

18.4.14 Biasing

Variance reduction techniques, a speciality of modern FLUKA, have been progressively introduced along the years. Transport biasing under user control is a common feature of low-energy codes, but in the high energy field biasing has generally been restricted to built-in weighted sampling in event generators, not tunable by the user. In addition, Monte Carlo codes are in general either weighted or analogue, but not both. In the modern FLUKA, the user can decide in which mode to run the code, and has the possibility to adjust the degree of biasing by region, particle and energy.

Many different biasing options have been made available. Multiplicity reduction in high-energy hadron-nucleus interactions was the first one to be introduced by Fassò (in 1987), to manage the huge number of secondaries produced by the 20 TeV proton beams of SSC. Ferrari made possible for the user to tune it on a region dependent basis. In 1990 Ferrari added also geometry splitting and Russian Roulette for all particles based on user-defined region importances and several biasing options for low-energy neutrons, inspired by MORSE, but adapted to the FLUKA structure.

Region, energy and particle dependent weight windows were introduced by Fassò and Ferrari in 1992. In this case the implementation was different from that of MORSE (two biasing levels instead of three), and the technique was not applied only to neutrons but to all FLUKA particles. Decay length biasing was also introduced by Ferrari (useful for instance to improve statistics of muons or other decay products, or to amplify the effect of rare short-lived particles surviving at some distance from the production point). Inelastic length biasing, similar to the previous option, and also implemented by Ferrari, makes possible to modify the interaction length of some hadrons (and of photons) in one or all materials. It can be used to force a larger frequency of interactions in a low-density medium, and it is essential in all shielding calculations for electron accelerators.

Two biasing techniques were implemented by Fassò and Ferrari, which are applicable only to low-energy neutrons.

- Neutron Non Analogue Absorption (or survival biasing) was derived from MORSE where it was systematically applied and out of user control. In FLUKA it was generalised to give full freedom to the user to fix the ratio between scattering and absorption probability in selected regions and within a chosen energy range. While it is mandatory in some problems in order to keep neutron slowing down under control, it is also possible to switch it off completely to get an analogue simulation.

- Neutron Biased Downscttering, also for low-energy neutrons, gives the possibility to accelerate or slow down the moderating process in selected regions. It is an option not easily managed by the average user, since it requires a good familiarity with neutronics.

Leading particle biasing, which existed already in EGS4, was deeply modified in 1994 by Fassò and Ferrari, by tuning it by region, particle, interaction type and energy. A special treatment was made for positrons, to account for the penetrating power of annihilation photons.

In 1997, in the framework of his work for ICARUS and CNGS, Ferrari implemented biasing of the direction of decay neutrinos.
18.4.15 Scoring

The stress put on built-in generalised scoring options is another aspect of FLUKA “philosophy” which differentiates it from many other programs where users are supposed to write their own ad-hoc scoring routines for each problem. This characteristic, which was already typical of the old Ranft codes, has allowed to develop in the modern FLUKA some rather sophisticated scoring algorithms that would have been too complex for a generic user to program. For instance the “track-length apportioning” technique, introduced in 1990 by Fassò and Ferrari, used in dose and fluence binning, which computes the exact length of segment travelled by the particle in each bin of a geometry independent grid. This technique ensures fast convergence even when the scoring mesh is much smaller than the charged particle step.

Different kinds of fluence estimators (track-length, collision, boundary crossing) were implemented in 1990-1992, replacing the corresponding old ones. The dimension limitations (number of energy intervals) were removed and replaced by a much larger flexibility due to dynamical memory allocation. Scoring as a function of angle with respect to the normal to a surface at the point of crossing was also introduced. Facilities were made available to score event by event energy deposition and coincidences or anti-coincidences between energy deposition signals in different regions, and to study fluctuations between different particle histories.

In 1991, time gates became applicable to most scoring facilities, allowing to ignore delayed radiation components such as multiply scattered low-energy neutrons.

In 1994, two new options were added: residual nuclei scoring and scoring of particle yields as a function of angle with respect to a fixed direction. In the latter case, several new quantities can be scored, such as rapidity, various kinematical quantities in the lab and in the centre-of-mass frame, Feynman-x etc.

In 2004–2005, as explained above, the possibility to follow on-line the radiation from unstable residual nuclei has been implemented, together with an exact analytical calculation (Bateman equations) of activity evolution during irradiation and cooling down. As a consequence, results for production of residuals and their effects as a function of time can now be obtained in the same run.

18.4.16 Heavy ions

Heavy ion transport (energy loss, effective charge and associated fluctuations, multiple scattering) was developed by Ferrari as early as 1998 largely based on already existing tools in FLUKA.

There was an increasing demand for extending the FLUKA interaction models to heavy ions, both for basic and applied physics applications (cosmic rays, hadrotherapy, radiation problems in space). A long standing collaboration has been going on since 1997 with Prof. L. Pinsky, chair of the Physics Department at the University of Houston. This collaboration became formal in 2000 with the issue of a NASA Grant covering three years of FLUKA developments in the field of heavy ion transport and interactions, as well as the development of user friendly tools based on ROOT for a better management of the code (project FLEUR). Further support came from ASI, as a grant to a collaborating group in Milan for hiring a person for one year devoted to these issues.

The DPMJET code has been interfaced to cover the high (> 5 GeV/n) energy range, and an extensively modified version of the RQMD-2.4 code is used at lower energies.

At very low energy, below \( \approx 0.1 \text{ GeV/n} \), a treatment based on the Boltzmann Master Equation (BME) has been implemented [49,51,52].

In 2004, a model for electromagnetic dissociation of ions in ion-ion interactions has been implemented [18].

18.4.16.1 DPMJET interface

DPMJET is a high energy hadron-hadron, hadron-nucleus and nucleus-nucleus interaction model developed by J. Ranft, S. Roesler and R. Engel, capable to describe interactions from several GeV per nucleon up to the highest cosmic ray energies. There are strong ties between the FLUKA and the DPMJET teams (with J. Ranft being author of both) and the collaboration is going on since the mid 90’s. An interface with DPMJET-2.5 was developed by Toni Empl (Houston), Ferrari and Ranft [61]. The interface allows to treat arbitrary ion interactions in FLUKA at any energy in excess of 5 GeV/n. The excited projectile and target residual leftovers are passed back to the FLUKA evaporation/fission/break-up routines for the final deexcitation and “low” (in the excited residual rest frame) energy particle production. As part of the interface work a new fast multiion/multienergy initialisation scheme has been developed for DPMJET and a new cross section algorithm has been worked out for runtime calculations based on a
fine mesh of DPMJET runs with various ions and energies.

An interface with the DPMJET-3 [180] has been developed in collaboration with Stefan Roesler (CERN) and is now available.

18.4.16.2 RQMD interface

A very similar interface has been developed by Francesco Cerutti (University of Milan and INFN), Toni Empl (University of Houston), Alfredo Ferrari, Maria Vittoria Garzelli (University of Milan and INFN) and Johannes Ranft, with the Relativistic Quantum Molecular Dynamics code (RQMD) of H. Sorge [191–193]. Also in this case the evaporation and deexcitation of the excited residuals is performed by FLUKA. Significant interventions on the original code were necessary to bring under control the energy/momentum balance of each interaction to allow for a meaningful calculation of excitation energy. This brand new development allows FLUKA to be used for ions from roughly 100 MeV/n up to cosmic ray energies. The results of this modified model can be found in [8, 14, 79]. Work is in progress to develop a new original code to replace this RQMD interface.

18.4.17 Neutrino interactions

Quasi Elastic neutrino interactions have been implemented in FLUKA in 1997. Between 1998 and 2008, an interface to an external neutrino generator has been used, although not distributed. This interface was embedded into the PEANUT model, and allowed interesting studies of nuclear effects in neutrino interactions.

In 2008, a new generator for neutrino interactions on nucleons and nuclei has been developed and implemented in FLUKA. The neutrino-nucleon event generator handles Deep Inelastic Scattering (NUNDIS, mainly developed by Mattias Lantz) and production of delta resonances (NUNRES). Hadronisation after DIS is handled by the same hadronisation model used in hadron-hadron interactions. NUNDIS and NUNRES are embedded in PEANUT to simulate neutrino-nucleus reactions.

18.4.18 Code size

The present FLUKA alone totals about 540,000 lines of Fortran code (25 MBytes of source code), plus some 60,000 lines (2 MBytes) of ancillary codes used offline to generate and/or test the various data files required for running. Out of these, roughly 1/3 are associated with PEANUT.

As a term of comparison, the latest release of the previous FLUKA generation, FLUKA87, contained roughly 30,000 lines (1.2 MBytes), out of which very few survive in the present code, mostly in the high energy generator and in the old intermediate energy one.
References

A long writeup of the FLUKA82 program

First update of FLUKA82, including particle production with a multi-chain fragmentation model (EVENTQ)

FLUKA86 user’s guide

Enhancements to the FLUKA86 program (FLUKA87)

FLUKA: hadronic benchmarks and applications

Electron-photon transport: always so good as we think? Experience with FLUKA

Atmospheric neutrino flux above 1 GeV

The FLUKA code: new developments and application to 1 GeV/n Iron beams

[9] J. Alcaraz et al. (AMS Coll.)
Cosmic protons

[10] J. Alcaraz et al. (AMS Coll.)
Helium in near Earth orbit

Neutron-photon multigroup cross sections for neutron energies ≤ 400 MeV (Revision 1)

Inclusion of correlations in the empirical selection of intranuclear cascade nucleons from high energy hadron-nucleus collisions

The high-energy transport code HETC88 and comparisons with experimental data

The FLUKA code for space applications: recent developments

[15] M. Antonelli, G. Battistoni, A. Ferrari, P.R. Sala
Study of radiative muon interactions at 300 GeV
Proc. VI Int. Conf. on Calorimetry in High Energy Physics (Calor 96), Frascati (Italy), 8–14 June 1996. Ed. A. Antonelli, S. Bianco, A. Calcettera, F.L. Fabbri

[16] F. Atchison
Spallation and fission in heavy metal nuclei under medium energy proton bombardment

Galactic cosmic radiation model and its applications

Nuclear Models in FLUKA: Present Capabilities, Open Problems, and Future Improvements

Mass-ratio method applied to the measurement of L-meson masses and the energy balance in pion decay

Resolution of the $\Sigma^–$-mass anomaly

[21] V.S. Barashenkov, V.D. Toneev
Interactions of High Energy Particles and Nuclei with Nuclei (in Russian)
Atomizdat, Moscow (1972)

[22] G. Battistoni, A. Ferrari, P. Lipari, T. Montaruli, P.R. Sala and T. Rancati
A 3-dimensional calculation of the atmospheric neutrino fluxes

The FLUKA code: Present applications and future developments

The FLUKA atmospheric neutrino flux calculation

The hadronic properties of the photon in high-energy interactions

[26] M.J. Berger
Monte Carlo calculation of the penetration and diffusion of fast charged particles
In: B. Alder, S. Fernbach and M. Rotenberg (Eds.), Methods in Computational Physics \textbf{1}, 135–215 (1963)

[27] H.A. Bethe
Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie
Ann. Physik \textbf{5}, 325–400 (1930)

[28] H.A. Bethe
Bremsformel für Elektronen relativistischer Geschwindigkeit
Z. Phys. \textbf{76}, 293–299 (1932)

[29] H.A. Bethe and W. Heitler
On the stopping of fast particles and on the creation of positive electrons

[30] H.A. Bethe
Molière’s theory of multiple scattering

[31] F. Biggs, L.B. Mendelsohn and J.B. Mann
Hartree-Fock Compton profiles for the elements
At. Data Nucl. Data Tables \textbf{16}, 201–309 (1975)

[32] M. Blann
Hybrid Model for Pre-Equilibrium Decay in Nuclear Reactions

[33] M. Blann
Importance of the Nuclear Density Distribution on Pre-equilibrium Decay

[34] M. Blann
Preequilibrium decay
References


[35] M. Blann and H.K. Vonach
Global test of modified precompound decay models

[36] M. Blann
Precompound analyses of spectra and yields following nuclear capture of stopped π−

[37] M. Blann, H. Gruppelaar, P. Nagel and J. Rodens (eds.)
International Code Comparison for Intermediate Energy Nuclear Data

[38] F. Bloch
Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie

[39] F. Bloch
Bremsvermögen von Atomen mit mehreren Elektronen
Z. Phys. 81, 363–376 (1933)

[40] J.B. Birks
The theory and practice of scintillation counting
Pergamon Press, Oxford, 1964

The FLUKA Code: Developments and Challenges for High Energy and Medical Applications
Nuclear Data Sheets 120, 211–214 (2014)

Limitations of the force field equation to describe cosmic ray modulation

[43] M. Campanella, A. Ferrari, P.R. Sala and S. Vanini
Reusing Code from FLUKA and GEANT4 geometry

[44] M. Campanella, A. Ferrari, P.R. Sala and S. Vanini,
First Calorimeter Simulation with the FLUGG Prototype

Soft multihadron production from partonic structure and fragmentation functions

[46] A. Capella, J. Tran Thanh Van
A new parton model description of soft hadron-nucleus collisions

Dual Parton Model

[48] L.L. Carter and E.D. Cashwell
Particle-transport simulation with the Monte Carlo method

Monte Carlo calculations using the Boltzmann Master Equation theory of nuclear reactions

[50] D. Cavalli, A. Ferrari, P.R. Sala
Simulation of nuclear effects in neutrino interactions

Monte Carlo calculations of heavy ion cross-sections based on the Boltzmann Master equation theory

Low energy nucleus-nucleus reactions: the BME approach and its interface with FLUKA
Proc. 11th International Conference on Nuclear Reaction Mechanisms, Varenna (Italy) June 12–16, 2006

[53] M.B. Chadwick, P. Obložinský, P.E. Hodgson and G. Reffo
Pauli-blocking in the quasideuteron model of photoabsorption
References

[54] http://ulysses.sr.unh.edu/NeutronMonitor/Misc/neutron2.html

HERMES, a Monte Carlo program system for beam-materials interaction studies

[56] G. Collazuol, A. Ferrari, A. Guglielmi, and P.R. Sala
Hadronic models and experimental data for the neutrino beam production

[57] E. Cuccoli, A. Ferrari, G.C. Panini
A group library from JEF 1.1 for flux calculations in the LHC machine detectors

[58] H. Daniel
Formation of Mesonic Atoms in Condensed Matter

[59] L. Dresner
EVAP — A Fortran program for calculating the evaporation of various particles from excited compound nuclei

[60] M.B. Emmett
The MORSE Monte Carlo radiation transport system
Oak Ridge National Laboratory report ORNL–4972 (1975)
Revision: ORNL–4972/R1 (1983)

[61] A. Empl, A. Fassò, A. Ferrari, J. Ranft and P.R. Sala,
Progress and Applications of FLUKA

A User’s Manual for ANISN, A One-Dimensional Discrete Ordinate Transport Code with Anisotropic Scattering
Oak Ridge Report K–1693 (1967)

[63] D.E. Cullen, J.H. Hubbell and L. Kissel
EPDL97: the Evaluated Photon Data Library, ’97 Version
UCRL–50400, Vol. 6, Rev. 5 (1997)

[64] U. Fano
Inelastic collisions and the Molière theory of multiple scattering

[65] A. Fassò, G.R. Stevenson
Air activity in the NAHIF complex

[66] A. Fassò
The CERN version of MORSE and its application to strong-attenuation shielding problems

[67] A. Fassò, A. Ferrari, J. Ranft, P.R. Sala, G.R. Stevenson, J.M. Zazula
FLUKA92

[68] A. Fassò, A. Ferrari, J. Ranft, P.R. Sala
FLUKA: present status and future developments

[69] A. Fassò, A. Ferrari, J. Ranft, P.R. Sala, G.R. Stevenson, J.M. Zazula
A comparison of FLUKA simulations with measurements of fluence and dose in calorimeter structures

[70] A. Fassò, A. Ferrari, P.R. Sala
Designing electron accelerator shielding with FLUKA

[71] A. Fassò, A. Ferrari, J. Ranft and P.R. Sala
FLUKA: performances and applications in the intermediate energy range
Proc. of an AEN/NEA Specialists’ Meeting on Shielding Aspects of Accelerators, Targets and Irradiation
References

[72] A. Fassò, A. Ferrari, J. Ranft, P.R. Sala
An update about FLUKA

[73] A. Fassò, A. Ferrari, J. Ranft, P.R. Sala
New developments in FLUKA modelling hadronic and EM interactions
Proc. 3rd Workshop on Simulating Accelerator Radiation Environments (SARE 3), 7–9 May 1997, KEK, Tsukuba (Japan). Ed. H. Hirayama

[74] A. Fassò, A. Ferrari, P.R. Scala,
Total giant resonance photonuclear cross sections for light nuclei: a database for the FLUKA Monte Carlo transport code

[75] A. Fassò, A. Ferrari, P.R. Sala
Electron-photon transport in FLUKA: status
Presented at the Int. Conf. on Radiation Physics, Dubrovnik, 1991

[76] A. Fassò, A. Ferrari, P.R. Sala
Physics of showers induced by accelerator beams

[77] A. Ferrari, P.R. Sala
The production of residual nuclei in peripheral high energy nucleus–nucleus interactions

[78] A. Ferrari, P.R. Sala, A. Fassò, G.R. Stevenson
A new model for hadronic interactions at intermediate energies for the FLUKA code
Cascade particles, nuclear evaporation, and residual nuclei in high energy hadron-nucleus interactions
[87] A. Ferrari, and P.R. Sala
The Physics of High Energy Reactions

[88] A. Ferrari, and P.R. Sala
Intermediate and high energy models in FLUKA: improvements, benchmarks and applications

A. Ferrari, T. Rancati, and P.R. Sala
FLUKA applications in high energy problems: from LHC to ICARUS and atmospheric showers
Proc. 3rd Workshop on Simulating Accelerator Radiation Environments (SARE 3), 7–9 May 1997, KEK, Tsukuba (Japan). Ed. H. Hirayama

[90] A. Ferrari, and P.R. Sala
Treating high energy showers
In: Training course on the use of MCNP in Radiation Protection and Dosimetry, ENEA, Roma (1998), p. 233–264

[91] A. Ferrari, P.R. Sala, A. Fassò, and J. Ranft
FLUKA: a multi-particle transport code
CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773

[92] V. Vlachoudis
FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA
Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York, 2009

[93] T.A. Gabriel, J.E. Brau and B.L. Bishop
The Physics of Compensating Calorimetry and the New CALOR89 Code System

[94] T.K. Gaisser, M. Honda, P. Lipari and T. Stanev
Primary spectrum to 1 TeV and beyond

[95] J.A. Geibel, J. Ranft
Part VI: Monte Carlo calculation of the nucleon meson cascade in shielding materials
Nucl. Instr. Meth. 32, 65–69 (1965)

Solar Modulation of Galactic Cosmic Rays

[97] K. Goebel, Ed.
Radiation problems encountered in the design of multi-GeV research facilities:
E. Freytag, J. Ranft, “Hadronic and electromagnetic cascades”
K. Goebel, L. Hoffmann, J. Ranft, G.R. Stevenson, “Estimate of the hadronic cascade initiated by high-energy particles”
K. Goebel, J. Ranft, G.R. Stevenson, “Induced radioactivity”
J. Ranft, “The interaction of protons in machine components and beam loss distributions”
CERN Yellow Report 71–21 (1971)

Estimation of remanent dose rates from induced radioactivity in the SPS ring and target areas
CERN LABII–RA/73–5 (1973)

[99] W. Guber, J. Nagel, R. Goldstein, P.S. Mettelman, and M.H. Kalos
A geometric description technique suitable for computer analysis of both nuclear and conventional vulnerability of armored military vehicles

[100] K. Hänssgen, R. Kirschner, J. Ranft, H. Wetzig
Monte Carlo simulation of inelastic hadron-hadron reactions in the medium energy range (\sqrt{s} \lesssim 3 \text{ GeV}). De-
scription of the model used and of the Monte Carlo code HADRIN
University of Leipzig report KMU–HEP–79–07 (1979)

[101] K. Hänsig, R. Kirschner, J. Ranft, H. Wetzig
Monte-Carlo simulation of inelastic hadron nucleus reactions. Description of the model and computer code
NUCRIN

[102] K. Hänsig, J. Ranft
Hadronic event generation for hadron cascade calculations and detector simulation I. Inelastic hadron nucleus
 collisions at energies below 5 GeV

[103] K. Hänsig, H-J. Möhring, J. Ranft
Hadronic event generation for hadron cascade calculations and detector simulation II. Inelastic hadron-nucleus
 collisions at energies below 5 GeV

[104] K. Hänsig, S. Ritter
The Monte Carlo code DECAY to simulate the decay of baryon and meson resonances
University of Leipzig report KMU–HEP–79–14 (1979)

[105] K. Hänsig, J. Ranft
The Monte Carlo code HADRIN to simulate inelastic hadron-nucleon interactions at laboratory energies below
5 GeV

[106] K. Hänsig, J. Ranft
The Monte Carlo code NUCRIN to simulate inelastic hadron-nucleus interactions at laboratory energies below
5 GeV

[107] M. Höffert, F. Coninckx, J.M. Hanon, Ch. Steinbach
The prediction of radiation levels from induced radioactivity: discussion of an internal dump target in the PS
CERN Divisional Report DI/HP/185 (1975)

[108] M. Höffert, A. Bonifas
Measurement of radiation parameters for the prediction of dose-rates from induced radioactivity
CERN Internal Report HP–75–148 (1975)

[109] ICRU
Stopping powers for electrons and positrons

[110] A.V. Ignatyuk, G.N. Smirenkin and A.S. Tishin
Phenomenological Description of the Energy Dependence of the Level Density Parameter
Yad. Fiz. 21, 485–490 (1975)

[111] Insoo Jun, Wousik Kim and R. Evans
Electron Nonionizing Energy Loss for Device Applications

[112] R. Jaarsma and H. Rief
TIMOC 72 code manual
Ispra report EUR 5016e (1973)

[113] F. James
A review of pseudorandom number generators

[114] L. Kim, R.H. Pratt, S.M. Seltzer, M.J. Berger
Ratio of positron to electron bremsstrahlung energy loss: an approximate scaling law

[115] H.W. Koch and J.W. Motz
Bremsstrahlung Cross-Section Formulas and Related Data
Rev. Mod. Phys. 314, 920–955 (1959)

[116] H. Kowalski, H.-J. Möhring, T. Tymieniecka
High speed Monte Carlo with neutron component — NEUKA
DESY 87–170 (1987)

[117] M. Krell and T.E.O. Ericson
Energy levels and wave functions of pionic atoms
[118] L.D. Landau
On the energy loss of fast particles by ionisation (In Russian)

The limits of applicability of the theory of bremsstrahlung by electrons and of creation of pairs at large energies
(In Russian)

Electron-cascade processes at ultra-high energies (In Russian)

[121] H. Lichtenstein, M.O. Cohen, H.A. Steinberg, E.S. Troubetzkoy, M. Beer
The SAM-CE Monte Carlo system for radiation transport and criticality calculations in complex configurations
(Revision 7.0)
RSIC Computer Code Collection CCC–187 (1979)–/Lic79

[122] I. Lux and L. Koblinger
Monte Carlo particle transport methods: neutron and photon calculations
CRC Press, Boca Raton 1991

[123] G. Marsaglia and A. Zaman
Toward a universal random number generator

[124] G. Marsaglia and A. Zaman
A new class of random number generators

[125] G. Marsaglia and W.W Tsang,
The 64-bit universal RNG

[126] A.B. Migdal
Bremsstrahlung and pair production in condensed media at high energies
Phys. Rev. 103, 1811–1820 (1956)

[127] A.B. Migdal
Bremsstrahlung and pair production at high energies in condensed media
Sov. Phys. JETP 5, 527–536 (1957)

FLUKA81 — A new version of the hadron cascade code

[129] H.-J. Möhring
Hadron-nucleus inelastic cross-sections for use in hadron cascade calculations at high energies

[130] H.-J. Möhring and J. Ranft
Hadronic event generation for hadron cascade calculations and detector simulation III. Application of the model
to hadron cascade calculations

Particle production in high energy nucleus-nucleus collisions in dual Monte-Carlo multi-chain fragmentation model

[132] H.-J. Möhring
On the contribution of electroproduction off nuclei to the generation of energetic hadrons in electromagnetic showers
DESY 89–150 (1989)

[133] H.-J. Möhring and J. Ranft
DTUNUC — Sampling of hadron-nucleus and nucleus-nucleus interactions according to the dual parton model.
Version 1.00
University of Leipzig report UL–HEP 92–02 (1992)

[134] H.-J. Möhring, J. Ranft, A. Capella and J. Tran Thanh Van
Strangeness production in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions in the Dual Parton
References

String fusion in the Dual Parton Model and the production of antihyperons in heavy ion collisions
University of Leipzig report UL–HEP 92–09 (1992)

[136] G.Z. Molière
Theorie der Streuung schneller geladener Teilchen I–Einzelstreuung am abgeschirmten Coulomb-Feld
Z. Naturforsch. 2a, 133–145 (1947)

[137] G.Z. Molière
Theorie der Streuung schneller geladener Teilchen II — Mehrfach und Vielfachstreuung
Z. Naturforsch. 3a, 78–97 (1948)

[138] G.Z. Molière
Theorie der Streuung schneller geladener Teilchen III — Die Vielfachstreuung von Bahnpuren unter
Berücksichtigung der statistischen Kopplung
Z. Naturforsch. 10a, 177–211 (1955)

[139] N.F. Mott
The scattering of fast electrons by atomic nuclei

The Egs4 code system
SLAC–265 (1985)

[141] R.E. MacFarlane and A.C. Kahler
Methods for Processing ENDF/B-VII with NJOY
http://t2.lanl.gov/codes/

[142] K. Nakamura et al. (Particle Data Group)
Review of particle physics
http://pdg.lbl.gov/

[143] M. Pelliccioni
Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high
energy radiation calculated using the FLUKA code

[144] L.I. Ponomarev
Molecular Structure Effects on Atomic and Nuclear Capture of Mesons

[145] R.E. Prael and H. Lichtenstein
User Guide to LCS: the LAHET Code System

Comparison of nucleon cross section parameterization methods for medium and high energies
Proc. 4th Workshop on Simulating Accelerator Radiation Environments (SARE4), 14–16 September 1998,
Knoxville (Tenn.), p. 171–181

Plots supplemental to: “Comparison of nucleon cross section parameterization methods for medium and high
energies”

[148] S. Qian and A. Van Ginneken
Characteristics of inelastic interactions of high energy hadrons with atomic electrons

[149] J. Ranft
Monte Carlo calculation of the nucleon-meson cascade in shielding materials initiated by incoming proton beams
with energies between 10 and 1000 GeV
CERN Yellow Report 64–47 (1964)

[150] J. Ranft
Improved Monte-Carlo calculations of the nucleon-meson cascade in shielding materials

[151] J. Ranft
Improved Monte-Carlo calculation of the nucleon-meson cascade in shielding material I. Description of the
method of calculation
[152] J. Ranft
Monte Carlo calculation of energy deposition by the nucleon-meson cascade and total-absorption-nuclear-cascade (TANC) counters
Nucl. Instr. Meth. 48, 133–140 (1967)

Estimation of induced radioactivity around high energy accelerators from hadronic cascade star densities obtained from Monte carlo calculations

[154] J. Ranft
The interaction of protons in machine components and beam loss distributions
Chap. II in [97]

[155] J. Ranft
Estimation of radiation problems around high energy accelerators using calculations of the hadronic cascade in matter
Part. Accel. 3, 129–161 (1972)

[156] J. Ranft, J.T. Routti
Hadronic cascade calculations of angular distributions of integrated secondary particle fluxes from external targets and new empirical formulae describing particle production in proton-nucleus collisions
Part. Accel. 4, 101–110 (1972)

Monte-Carlo programs for calculating three-dimensional high-energy (50 MeV–500 GeV) hadron cascades in matter

Monte Carlo calculation of photon, electron and positron production from primary proton beams

[159] J. Ranft
Particle production models. Sampling high-energy multiparticle events from inclusive single particle distributions

[160] J. Ranft
The FLUKA and KASPRO hadronic cascade codes

Particle production in hadron-nucleus collisions in a multi-chain fragmentation model

The Monte-Carlo codes NUCEVT and HADEVT to simulate hadron production in hadron-nucleus and hadron-hadron collisions

Rapidity ratios, Feynman-x distributions and forward-backward correlations in hadron-nucleus collisions in a dual Monte-Carlo multi-chain fragmentation model

Particle production and correlations in hadron-hadron collisions in the dual Monte-Carlo chain fragmentation model

FLUKA82
Presented at the Workshop on Shower Simulation for LEP Experiments, CERN, Geneva (Switzerland), 29–31 January 1985
CERN TIS–RP/156/CF (1985)

[166] J. Ranft
Transverse energy distributions in nucleus-nucleus collisions in the dual Monte-Carlo multi-chain fragmentation model
[167] J. Ranft
The diffractive component of particle production in the dual multistring fragmentation model

Hadron cascades induced by electron and photon beams in the GeV energy range

[169] J. Ranft
Hadron production in hadron-nucleus and nucleus-nucleus collisions in the dual Monte Carlo multichain fragmentation model

[170] J. Ranft
Hadron production in hadron-nucleus and nucleus-nucleus collisions in a dual parton model modified by a formation zone intranuclear cascade

[171] J. Ranft and S. Roesler
Single diffractive hadron-nucleus interactions within the Dual Parton Model

[172] J. Ranft
Dual parton model at cosmic ray energies

[173] J. Ranft
33 years of high energy radiation Monte Carlo calculations in Europe as seen from CERN
Proc. 2nd Workshop on Simulating Accelerator Radiation Environments (SARE2), CERN, Geneva, 9–11 October 1995

[174] R. Ribberfors
Relationship of the relativistic Compton cross section to the momentum distribution of bound electron states

[175] S. Ritter, J. Ranft
Simulation of quark jet fragmentation into mesons and baryons on the basis of a chain decay model
University of Leipzig report KMU–HEP–79–09 1979

[176] S. Ritter
QCD jets in $e^+e^−$-annihilation and the transition into hadrons

[177] S. Ritter
Monte-Carlo code BAmJET to simulate the fragmentation of quark and diquark jets
University of Leipzig report KMU–HEP 83–02 (1983)

[178] S. Ritter
Monte-Carlo code PARJET to simulate $e^+e^−$-annihilation events via QCD Jets

[179] S. Roesler, R. Engel and J. Ranft
The single diffractive component in hadron-hadron collisions within the two-component Dual Parton Model

[180] S. Roesler, R. Engel and J. Ranft
The Monte Carlo event generator DPMJET-III,

deg99.f - A FLUKA user-routine converting fluence into effective dose and ambient dose equivalent

[182] K. Roeed, M. Brugger and C. Pignard
PTB irradiation tests of the LHC radiation monitor (RadMon)
CERN ATS Note 2011–012, 2011
http://cds.cern.ch/record/1329478?ln=es

[183] K. Roeed, M. Brugger, D. Kramer et al.
Method for measuring mixed field radiation levels relevant for SEEs at the LHC

[184] T. Sanuki et al.
Precise Measurement of Cosmic-Ray Proton and Helium Spectra with the BESS Spectrometer

[185] E. Sartori

[186] F. Sauter
Über den atomaren Photoeffekt bei grosser Härte der anregenden Strahlung
Über den atomaren Photoeffekt in der K-Schale nach der relativistischen Wellenmechanik Diracs

[187] H. Schönbacher
Short write-up of standard RA-Group Monte Carlo programs available on permanent file on the 7600 computer library

Bremsstrahlung spectra from electron interactions with screened nuclei and orbital electrons

[189] S.M. Seltzer, M.J. Berger
Bremsstrahlung spectra from electrons with kinetic energy 1 keV-10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100

[190] Qing-biao Shen
Systematics of intermediate energy proton nonelastic and neutron total cross section
IAEA Report *INDC(CPR)–020*, 1991

[191] H. Sorge, H. Stöcker and W. Greiner,
Poincaré invariant Hamiltonian dynamics: Modelling multi-hadronic interactions in a phase space approach

[192] H. Sorge, H. Stöcker and W. Greiner,
Relativistic quantum molecular dynamics approach to nuclear collisions at ultrarelativistic energies

[193] H. Sorge,
Flavor production in Pb(160 A GeV) on Pb collisions: Effect of color ropes and hadronic rescattering

Density effect for the ionization loss of charged particles in various substances

Density effect for the ionization loss of charged particles in various substances

[196] G.P. Summers, E.A. Burke, M.A. Xapsos
Displacement damage analogs to ionizing radiation effects

[197] O.A.P. Tavares and M.L. Terranova
Nuclear photoabsorption by quasi-deuterons and an updated evaluation of Levinger’s constant

[198] M.L. Ter-Mikaelyan
Bremsstrahlung radiation spectrum in a medium

[199] M.L. Ter-Mikaelyan
Vliyanie Sredy na Elektromagnitnye Protsessy pri Vysokikh Energiiakh
English translation: High Energy Electromagnetic Processes in Condensed Media
Wiley & Sons, New York 1972

Radiological Safety Aspects of the Operation of Proton Accelerators

[201] Y.-S. Tsai
References

Pair production and bremsstrahlung of charged leptons
Erratum: Rev. Mod. Phys. 49, 421-423 (1977)

[202] T. Tymieniecka, H.-J. Möhring
NEUKA86 Manual
ZEUS–Note 90–097 (1990)

[203] A. Van Ginneken
CASIM, program to simulate hadronic cascades in bulk matter
Fermilab report FN–272 (1975)

[204] A. Van Ginneken Energy loss and angular characteristics of high energy electromagnetic processes

[205] H. Wetzig, K. Hänssgen, J. Ranft
Monte-Carlo simulation of elastic hadron nucleus reactions with the computer code NUCREL

[206] M. Zankl and A. Wittmann
The adult male voxel model "Golem" segmented from whole-body CT patient data

[207] J.M. Zazula
Implementation of a low energy neutron transport module into a Monte Carlo hadronic shower code and its applications for accelerator shielding problems

[208] J.M. Zazula and K. Tesch
Study of the neutron field from a hadronic cascade in iron: verification of a Monte Carlo calculational model by comparison with measured data

The stopping and ranges of ions in matter
Index

Δ Resonance, 4, 204, 205, 410, 415
η, 324
cutoff, 202
ω-factors, 234, 251, 269
π−, 203
π0, 113
decay, 110, 410
\(^1\text{H}(\gamma)^2\text{H}, 166\)
\(^6\text{Li}\)
pointwise cross sections, 166, 416
reactions, 416
\(^{8}\text{Xe}(\gamma)^{10}\text{Xe}\)
correlated photon cascade, 165
correlated secondary generation, 165
\(^{10}\text{B}(\gamma)^{7}\text{Li}, 338\)
\(^{113}\text{Cd}(\gamma)^{114}\text{Cd}\)
correlated photon cascade, 165
\(^{14}\text{N}(\gamma)^{14}\text{C}\) reaction, 6, 166, 327, 338-340, 416
+ operator, 311
- operator, 311
| operator, 312
@LASTMAT, 49, 51
@LASTPAR, 49
@LASTREG, 49, 51
1 MeV-neutron equivalent fluence, 263, 266
1 MeV-neutron equivalent fluence, 265, 268
260-group neutron library, 165
3-D
binning, 40, 264, 265
neutrino flux simulation, 411
300 GeV project, 409
Aarnio P., 9, 409, 410
abort, 244
ABSCFF user routine, 194, 197, 367
absorbing medium, 390
absorption
analogue, 95-98
coefficient, 351
cross section, 352
in flight, 351
mean free path, 160
non analogue, 8, 96-98, 159, 324, 387, 420
probabilities
printing, 165
processes
two- and three-nucleon, 418
Accelerator Driven Systems, 411, see ADS
accelerator shielding, 3, 33, 58, 60, 66, 99
accuracy, 3, 32, 62
minimum in a boundary intersection, 178
parameter, for ionisation fluctuation algorithm, 149
activation, 3, 10
study mode, 91, 222
activity, 48, 263
binning, 264, 265
specific, 263
ADS, 3, 411
Ae, 119
age, 75, 222, 249, 252, 367, 370, 375, 384
AIR Project, 411
aircraft crews, 10, 411
albedo, 173, 390
alignment errors, 320
rules, 13
all regions
score, 225, 271, 277
All-nucleon flux, 402
All-Nucleon-Spectra, 398
All-particle flux, 403
All-Particle-Spectra, 398
ALLDLT COMMON, 151
alloy, 16, 86
alphanumeric identifiers
of bodies, 312
of bodies and regions, 320
of low-energy neutron cross sections, 342
of regions, 312
alternate material
for ionisation processes, 169
for radioactive decay product transport, 68
AMS, 399, 411
analogue
calculations, 32, 60, 64, 65, 145, 146, 290
decays, 221
mode, 127
problem, 56
testing, 146
angle, largest in a step, 178
angular
distribution, 29, 261
biasing, 8
discrete, 338
frequency, 367, 368, 379, 380
ANISN, 339, 416
format, 339
annihilating particles, 235, 251, 269
annihilation
at rest, 378
in flight, 378
of p and π−, 203
photons, 201, 420
anti-coincidences, 9, 55, 64, 104, 105, 421
antinucleon, 4
interactions, 419
antiparticle capture, 4
antiprotons, 203
Ap, 119
APS, 411
ARB body, 303
arbitrary convex polyhedron, 303
area
of a boundary, 19
of a detector, 260
unit, 48
argon
References

capture gammas, 338, 416
liquid, 353
artefacts, 337, 415
ASI, 411, 421
ASSIGNMAt input command, 18, 59, 68, 169, 325, 407
Atchison F., 419
ATLAS, 411, 412
test beam, 417
atmosphere
density, 400
model, 399
local, 400
atmospheric pressure, 169
shells, 139
atom
ccontent, 86
cfraction, 324
crelative content, 86
atomic composition, 59
data, 38
density, 86, 321
mass, 370, 419
number, 16, 46, 169, 324, 340, 370, 391
weight, 16, 46, 169, 324
attenuation, large, 3, 84
Auger, 7, 39, 123
electrons, 123
auxiliary programs, 37
AUXSCORE input command, 70, 266
azimuthal angle, 393
ccoordinate in R-Φ-Z binnings, 270
backscattering, 5, 60, 413
cnear a boundary, 413
Bamjet, 39
banner page, 320
barionic charge, 281
Barkas effect, 5
Bartol, 411
Bateman equations, 420, 421
Battistoni G., 413
BEAM input command, 58, 63, 66, 73, 76, 81, 102, 212, 222, 323, 324
beam, 14, 73
cangular distribution, 14
Gaussian, 73
crectangular, 73
cannular, 73, 74
definition, 55
direction, 55, 58, 78
cosines, 75, 284
divergence, 58, 73
cenergy, 73
cintensity, 153
cmomentum
distribution, 14
Gaussian distribution, 73
crectangular distribution, 73
cspread, 73
cparticle name, 74
cpencil, 76
cprofile, 14, 58, 73, 76
Gaussian, 73, 74
crectangular, 73
cproperties, 14, 323
creference frame, 55, 58, 75, 76, 81, 385
cspot, 78
cstarting point, 14, 55, 58, 78
cwidth, 73
cbeam-machine interactions, 411
BEAMAXES input command, 59, 75, 76, 76, 81
BEAM COMMON, 73–75, 78, 80, 366, 384, 385
BEAMPOS input command, 58, 66, 74, 76, 78, 323, 408
cbeginner’s guide, 11
Berger M.J., 6, 171, 181, 414
BESS, 399
cbeta
cand gamma transport, 65
cspectra, 222
Bethe H.A., 5
Bethe-Bloch, 5
Bhabha, 378
cproduction threshold, 62
cscattering, 6, 89, 415
biased
ccalculations, 65
cdistribution, normalised, 382
cdownscattering, 221, 387
cfactor, 387
crun, 145
cvs. analogue, 3
BIASING input command, 33, 65, 66, 82, 105, 113, 221, 289, 324
biassing, 8, 10, 11, 33, 65, 82, 420
ccommands, 105
counters, 82
cprinting, 82
cdecay
cdirection, 40, 155
clength, 155
clife, 155
cdecay length, 56
cdownscattering probability, 56
celectronuclear reactions, 206
cfunction for the decay direction, 158
chadronic interaction length, 65
cinteraction
clength, 56, 155
cprobability in thin or low-density targets, 65, 66
cmean free path of EM particles, 65
cmuon or neutrino production, 66
cparameters, overriding, 40
cphotomuclear reactions, 206
cuser-driven, 40
with the inverse of the unbiased distribution function, 382
bin volume, 269
binning, 9, 56, 57, 64, 127, 231, 263, 268
3-D, 40
arbitrary orientation, 228, 231, 232, 268
Cartesian, 268
max. number, 269
normalisation, 127
number of, 9
numbering, 249, 366, 370
overlapping, 268
R-Z, 268
recursive transformation, 229
reduced storage, 232
rotation/translation, 56, 228, 231
storage precision, 231
symmetry, 265
track-length, 9
transformations, 228, 231
user-defined, 371

Birks
factor, 64
law, 249, 257, 413
parameter, 249, 256
Birks J.B., 9, 57, 64, 249
bitmap-images format, 34
black hole, 14, 16, 17, 68, 169, 293, 321, 327, 376, 393
assignment to regions, 18
blanks
in free format, 137
treated as zero, 12
Blann M., 418
Bloch effect, 5
BLOCK DATA, 39
Blunck-Leisegang, 5
BME, 39
Bme, 5, 39, 152
threshold, 208
Bme event generator, 421
bodies, 11, 58, 141, 293
  alphanumeric identifier, 296
  CG, 7
  END line, 296
  input echo, 320
  name, 7, 296, 311, 312
  new, 7
  recommended, 308
  table, 295
  three letter code, 295
Boltzmann Master Equation, 5, 421
Bonner spheres, 161
boolean
  operations, 58, 293, 311
  operators, 311
Born approximation, 5, 180, 182, 370, 413
bottom weight window level, 289
boundary, 5, 6, 260
  approach algorithm, 181
  crossing, 83, 107, 260, 352, 379
  algorithm, 414
  by charged particles, 415
detectors, max. number, 261
  dumping, 375
estimator, 9, 19, 57, 64, 410, 421
flags for optical photons, 196
one-way scoring, 20, 64, 260
scoring as a function of angle, 421
two-way scoring, 64, 260
  with magnetic fields, 7
  with MCS, 7
iteration, 109, 178
normal, 19, 29, 261
reflection, 390
sensing, 415
algorithm, 181
straddling bins, 367
BOX body, 297
Bq, 91
Bragg additivity rule, 171
break-up, 421
bremsstrahlung, 6, 378
  angular distribution, 6
  by heavy charged particles, 5, 56, 63
  production, 96–98, 413
  threshold, 325
  by muons and charged hadrons, 200
  explicit, 200, 201
cross section, 414
file, 38
emission angle, 414
positron, 6, 414
production threshold, 62
sampling, 414
spectrum tip, 6, 414
built-in generalised scoring, 421
BXDRAW user entry, 375

c.m.s. frame, 281, 421
cadmium capture gammas, 338, 416
calculations
  analogue, 105, 409, 420
time-dependent, 12, 75
calling user routines, 66
CALOR, 410
CALORIMETry default, 95
calorimetry, 3, 10, 60, 95, 411, 412
capture
  gamma, 110, 338
  argon, 416
cadmium, 416
generation, 166
  transport, 166
  xenon, 416
  negative muon, 419
  of particles below threshold, 203
doing negative pions, 418
photons, 6
cards, 11, 49
Carminati F., 412, 414, 416
Carter L.L., 33
Cartesian
  binning, 127, 263
  geometry, 410
Cashwell E.D., 33
CASIM, 83, 184, 201
CASLIM COMMON, 366, 377
centre of mass frame, see c.m.s. frame
CERN, 215, 409, 411, 418, 419, 422
  Lab-II, 409
  Radiation Protection Group, 409, 410
Cerutti F., 422
CG, 293
input, 293
title line, 314
Chadwick M.B., 415
chain
building, 418
fragmentation, 417
hadronisation, 418
change of position, 40
for distributed energy, 368
for distributed track-length, 369
charge, 281
exchange, 418
fluctuations, 421
scoring, 263
yield scoring, 64
charged
hadron, 176
step, 136
particle
generation by neutrons, 339
polarisation, 413
tracking near boundaries, 412
charm production, 418
charmed
hadron
decays, 208
transport, 208
particle
decay, 418
transport, 418
Cherenkov, 7, 189, 351, 352
light generation, 356
photon, 351
production, 189, 192
radiation, 56
scoring, 40
CHORUS, 410
Chou C.N., 249
Chou parameter, 249
circular cylinder, 7
Clatterbridge, 411
CLIMAX, 399
CNGS, 410, 418, 420
coalessce, 208, 419
code
size, 422
structure, 10, 411
zones, 320
coherec length, 418, 419
coherent
atomic form factors, 38
scattering, 125, 352
coincidences, 3, 9, 55, 64, 104, 105, 421
colliding beams, 57, 395
collision
density, 20
detectors, max. number, 273, 279
estimator, 9, 57, 64, 234, 268, 271, 410, 421
file, 57, 67, 104, 421
tape, 12, 57, 67, 255, 348, 358, 374, 380
colour plots, 64
Combinatorial Geometry, 3, 7, 14, 39, 58, 140, 187, 215,
293, 294, 328, 410–413
combined prompt-decay particle scoring, 91
COMBNAME parameter, 146, 296
command, 11, 49, 55
basic, 57
list, 55
repeated, 50
setting, 58
comment, 11, 13
in line, 12, 320
in the geometry, 14, 296
line, 12, 296, 311
compilation, 365
tools, 26
complete fusion
threshold, 208
components, maximum number, 86
COMPOUND input command, 17, 46, 59, 86, 169, 324
compound, 16, 55, 86, 169, 321
chemical, 16
definition, 169
recursive, 86, 87
pre-defined, 17
Compton
binding
atomic, 7
corrections, 63, 125
effects, 414
Doppler broadening, 7, 63, 125
effect, 7, 414
minimum, 393
profile, 7, 95–98, 125
scattering, 95–98, 219, 378
computer
cost, 113
efficiency, 373
speed, 32
COMSCW user routine, 66, 92, 197, 258, 324, 352, 366, 367
condensed history, 8
approximation, 60, 61
conservation laws, 3
consistency, 3
costant parameterisation, 9, 411
contiguity list, 311, 312, 329
continuation
card, 50, 104, 105, 236, 260, 267, 271, 277, 282, 402, 403, 407
character, 13
continuous
approximation
for muon and hadron bremsstrahlung, 413
for muon and hadron pair production, 413
for muon/hadron bremsstrahlung, 200, 201
for muon/hadron pair production, 200, 201
energy deposition events, 255
slowing down approximation, 62, 101
Continuous Slowing Down Approximation, see CSDA
convergence, 33
cooling
down, 420
time, 9, 91, 93
core dump, 244
correlated
\(\gamma\) cascade, 222
tallies, 84
correlations, 3, 33, 65, 84, 105, 146, 160
among shower components, 3
between events, 375
between primary interactions and cascade particles, 417
between radiation components, 412
in multiple scattering, 60, 413
within interactions, 3
correspondence between FLUKA materials and low energy neutron cross sections, 17, 163, 340
CORRFAC T input command, 89
Corsika, 411
cosine
normalisation, 78, 374, 384
not normalised, 329
cosmic ray, 3, 10, 39, 56, 57, 61, 382, 398, 410, 421
composition, 398
galactic, 139, 398
initialisation, 139
showers, 417
spectrum, 398
Coster-Kronig, 7
Coulomb
barrier, 412, 418
corrections for beta decay, 222
Cozzi L., 414
CPU time, 65
per history, 325
average, 326
maximum, 326
used, total, 326
Cracow Institute of Nuclear Physics, 415
cross section, 283, 414
data, 38
differential, 9
energy dependence, 414
hadrons, 39
integral, printing, 165
invariant, 284
macroscopic, 160
partial, 234, 269, 322, 416
exclusive, 339
photonuclear, 39
pointwise, 416
printout, 322
variation with energy, 5, 6, 176
cross-talk between radiation components, 62
cryogenic
liquids, 416
temperature, 339
CSDA, 62, 101
CT scans, 89, 317, 412
cumulants, 5, 413
cumulative
distance, 393
distribution, 381
normalised, 381
ergy lost, 394
normalised function, biased, 382
probabilities, 323, 337
scattering probabilities, 323
time elapsed, 394
current, 9, 19, 258
scoring, 64, 260
curved
path length, 349
trajectories, 5
cutoff, 32, 55
ergy, 255
for electrons and photons, 62
group, 324
higher than 100 MeV, 203
cylindrical geometry, 410
damage
ergy threshold, 172
damping
factor, 415
weight fluctuations, 66
data cards, 49
DBLPRC INCLUDE file, 366
DCYSCORE input command, 65, 91, 93, 222
DCYTIMES input command, 65, 75, 91, 93, 222
dE/dx, 89
tabulation
printing, 101
debugger geometry, 8
debugging, 248
tools, 3
decay
angle biasing, 66
at rest, of particles below threshold, 203
biasing, applied only to primaries, 157
direction biasing, 40, 155
emission database, 420
flag, 323
length, 327
biasing, 8, 56, 66, 155, 420
biasing in the lab frame, 156
biasing in the particle rest frame, 156
life biasing, 155
products, 327
radiation, generation and transport, 420
radioactive, 153
replicas, 221
routines, 39
time, 55, 91, 93, 153, 420
for scoring, 65
decayed particles, 327
decimal point, 13
compulsory, 296
deep
inelastic scattering, 419
penetration, 65, 348
decexcitation, 417
gamma, 321
generation model, 419
DEFAULTS input command, 32, 49, 51, 60–63, 95, 101, 102, 127

missing, 60, 61
defaults, 13, 50, 55, 58, 60, 337
overriding, 60
resetting, 50
sets, 60
settings, 95, 412
deflection angle, 5
in an electric field, maximum, 109
delayed radiation, 421
delta ray, 5, 6, 39, 55, 62, 101, 110, 151, 325, 378, 413
production, 89, 95–98
threshold, 32, 62, 95–98

DELTA input command, 32, 62, 95–98, 101, 211, 324
density, 16, 46, 169, 324
effect, 5, 18, 57, 62, 170, 171, 247, 325, 413
effective, 171, 413
for transport, 173
fictitious, 56, 171
inhomogeneous, 56
local microscopic, 171
microscopic different from macroscopic, 170
partial, 324
physical, 173
scaling, 55, 89
density correction, 231
DESY, 411
DETECT input command, 64, 104, 324, 330
output, 330
detector, 11, 63, 91, 93
design, 3
numbering, 92, 324, 366, 370
regions, 104
studies, 10
detectors
number of, 9
deuterium, 2.2 MeV transition, 338
DFFCFF user routine, 194, 197, 368
differences of bodies, 311
differential distribution, 29
diffraction, 417
antibaryon, 418
low mass, 418
model, 418
diffractive events, 410
diffusive reflectivity, 351
DIMPAR INCLUDE file, 295, 366
direction
biasing
\( \lambda \), 388
of decay neutrinos, 420
user-defined, 8, 388
cosines, 350, 371, 373, 384, 390
of the magnetic field, 373
DISCARD input command, 32, 60, 63, 107, 110, 323
discarded particles, 55, 60, 107, 110, 323
discard heavy particles, 107
displacement
lateral, 5
longitudinal, 5

Displacements Per Atom, see DPA
distance
minimum from a boundary, 7, 412
unit, 48
distant collisions, 5
distributed
energy
change of position, 368
density, 40
fluence, 40
track-length, change of position, 369
distributions of particles
emerging from inelastic interactions, 284
entering an inelastic interactions, 284
DIVBM, 73
divergence, 76
dNEAR, 7, 145, 146, 320, 328, 412
D0-loop in input, 50
DOPpler broadening, 6, 416
dose, 234, 263
binning, 268
rate, 91
scoring, 64
modifier, 66
to commercial flights, 411
dose equivalent, 19, 48, 55, 70, 263
ambient, 70
binning, 268
calculated with a QF, 265
calculated with conversion coefficients, 265
calculated with a QF, 264
scoring, 66
dose equivalent binning
calculated with a QF, 266
DOSE–EQ scoring, 70, 266
DOSEQLET scoring, 71
dosimetry, 3, 10, 411, 416
phantom, 317
double differential
cross section, 283
fluence/current distribution, 261
yield, 283
double precision, 3, 9, 411
downscttering
biasing, 8, 66, 161, 324, 420
importances, 161
matrix, 165, 322, 337, 338
probability, 161
biasing, 56, 161
dp/dx
tabulation, 95–98, 101
accuracy, 102
limits, 102
DPA, 5, 60, 171, 263
binning, 264–266, 268
energy threshold, 172
DPBEAM, 73
DPM, 4, 415, 417–419
DPMJET, 5, 37, 39, 152, 421
initialisation, 421
library, 37
threshold, 208, 209
References

DPMJET-2.5, 421
DPMJET-3, 422
DPMJET-II.5, 398
Dresner L., 414, 419
drift, 368, 369
of an instrument, 67
Dual Parton Model, 4, 410, 417
dummy routines, 39
dump, 40, 348
dumping
energy deposition events, 348
source particles, 348
trajectories, 348
dxf format, 34
dynamical
allocation of storage, 215
dimensions, 3
memory allocation, 9, 321, 411, 421
dynamically opened file, 261, 269, 273, 279
E.U., 411
E1, E2 and M1 transitions, 419
EA-Mc, 411
Earth
dipole field, 139
equatorial magnetic field, 139
geomagnetic field, 398
geometry, 398
multipole field, 139
radius, 139
Ecut, 119
edge fine structure, 7
EET, 95, 96, 418
EET/TRANsmut default, 96
effective
atomic number, 17
charge, 44, 421
Z, 324, 413
Z/A, 325
effective dose, 70
efficiency, 3, 61
Egs4, 113, 146, 410, 412–415, 420
elastic
cross section
file, 38
interaction, 378
recoil, 350, 376
scattering, 4, 6, 339, 414
length, 18, 324
ELCFIELD input command, 109
electric field, 5, 8, 55, 109, 219
assignment to regions, 68
unit, 48
electromagnetic
calculations, 60
cascade, 95, 96, 409
parameterised, 410
dissociation, 4, 208, 210, 421
preprocessor, 415
showers, 33, 324, 327
ElectroMagnetic FLUKA, see EMF
ElectroMagnetic FLUKA (EMF), 414
electron, 6
accelerator, 10
shielding, 3, 33, 58, 60, 65, 66, 99, 415, 420
and photon
cutoffs, 324
multiple scattering, 324
transport, 414
dE/dx, 121
production cutoff, 116, 119
step, 55, 121
transport, 110
cutoff, 116
lowest limit, 6
transport cutoff, 119
electronuclear interactions, 56
reactions, 204
electronuclear interaction, 4
ELECUT, 117
ELL body, 301
ehlp1oid, 301
ehlp1oid cylinder, 7
EM–CASCade default, 63, 96
EMF input command, 63, 95–98, 102, 105, 110, 116
EMF, 6, 110, 166, 414
EMF–BIAS input command, 33, 65, 83, 105, 111, 221
emfadd, 37
EMFCUT input command, 18, 32, 61–63, 97, 98, 102, 105, 116, 116
EMFFIX input command, 61, 95–98, 121
EMFFLUO input command, 63, 95–97, 123, 325
EMFRAY input command, 63, 95–97, 125, 325
EMFSD0 routine, 350, 375, 376, 378
EMFSTK COMMON, 366, 378, 385
emission of energetic light fragments, 418
Empl A., 421, 422
END
body line, 311
region line, 311, 313, 314
ENDF/B, 339, 416
ENDRAW
user entry, 376, 385
ENDSUP user routine, 66, 258, 368
ENEA, 339, 411, 416
Bologna, 416, 419
energy
amplifier, 10, 411, 416, 419
and momentum conservation, 417
balance, 56, 58, 129, 327, 331
budget, 33
conservation, 411
crossing a surface, 261
cutoff, 11, 32, 56, 61, 415
density, 9, 19, 56, 235, 258, 259, 263, 326
binning, 264–266, 268
deposited, 57, 409
by electrons and positrons, 327
by light ion recoils, 327
by low-energy neutrons, 327
by nuclear recoils, 327
in vacuum, 203
ionisation, 327
per event, 104
References

total, 327
deposition, 6, 55, 234, 263, 269
dumping, 376
events, 349, 375
fluctuations, 113
local, 350, 376
unweighted, 9
escaping, 130, 327
excitation, 130
fluence, 261, 266, 273, 279
group, numbering, 339
groups, 289, 337
loss, 5, 55
continuous, 101
fluctuations, restricted, 149
in a step, absolute, 121
in a step, fractional, 95, 97, 98, 121, 136
shifting, 258
missing, 130, 327
of discarded particles, 327
of particles below threshold, 327
of particles out of time limit, 327
per nucleon, 281
spectrum, 261, 273, 279
thresholds, 323
transformer, 95, 96
unit, 48
Engel R., 421
EPDL97, 415
error
file, 13, 25
messages, 13, 328
file, 141, 187, 320
escaping particles, 293
estimators, 11, 19, 63, 324
files, 13
output, 253, 329
files, 187, 320
type, 91
ETH Zurich, 419
EURATOM, 215
evaluated data files, 342
EVA5-5, 415
evaporation, 4, 44, 110, 130, 208, 321, 414, 417, 419, 421
fragments internal code, 44
model
new, 211
old, 211
neutrons, 166, 419
routines, 39
evaporation vs. fission, 419
evaporation/fragmentation, 420
by event, 330
analysis, 222
energy deposition, 421
scoring, 12, 64, 105
code number, 257
definition, 389
diffractive, 417
dumping, 67
dump, dumping, 376
file, 348
general interface, 374
generator, 4, 25
hadronic, 39
high energy, 417
intermediate, 417
initialisation, 40, 389
user-defined, 389
output, user written, 389
resonant, 417
single-chain, 417
two-chain, 417
EVENTBIN input command, 64, 92, 127, 270, 330
output, 330
EVENTDAT input command, 64, 129, 328, 331
output, 331
EVENTQ, 410
EVTFSL COMMON, 366
excitation
energy, 148, 281, 417
average, 325
residual, 327
excited mass squared, 281
exciton, 418
executable, 365
expansion
of body dimensions, 308
experiment background, 411
exponential
notation, 13
transformation, 56, 133
EXPTRANS input command, 105, 133
external
black hole, 293
histogramming package, 67
packages, calling, 365
vacuum, 68, 169
void, 293
families of particles, 265
Fano correction, 5, 181, 413
Fano U., 181
Fassò A., 9, 409, 410, 412–414, 416, 420, 421
FEAT, 411
FEEDER routine, 104, 325
Feng I.J., 414
Fermi
break-up, 4, 321, 417, 419
fragments, 44
routines, 39
momentum, 410, 417, 419
fermion antisymmetrisation, 418
Ferrari A., 4, 7, 9, 409–422
Feynman-x, 21, 281, 421
longitudinal, 281
fff, 35, 37, 365
FHEAVY COMMON, 44, 366, 378
fictitious-σ method, 414
FIDO format, 339
field map, 67
file pre-connection, 187
FILEDEF, 187
filtering
d Detectors, 55
ions, 70
scoring estimators, 70
first call
informative message, 365
initialisation, 383
fissile materials, 327
fission, 4, 6, 110, 417, 419, 421
density, 9, 235, 263
binning, 264, 268
fragments, 44, 339
high energy, 45
low energy, 45, 340
neutron, 6, 338
average number, 322
multiplicity, 165, 339
production, 322
probability
group-dependent, 339
RAL model, 419
routines, 39
spectrum, 339
yield file, 38
fits, parameterised, 4
FIXED input command, 135, 137
fixed format, 49
input, 135
FLABRT routine, 244
Flair, 33, 319
FLDSCP user routine, 67, 258, 369
FLEUR, 421
flexibility, 3
FLKMAT COMMON, 366, 367
FLNRRN routine, 381
floating point
body data, 295
geometry data, 320
FLOOD, 80
Florida State University, 411
FLRN64, 224
FLRNDM routine, 381
fluctuations, 3, 33, 56, 65, 84, 146, 160, 421
fluence, 9, 19, 258, 263, 265, 271, 277
binning, 268
differential energy spectrum, 64
distributions, differential, 273, 279
double-differential angle-energy spectrum, 64
estimators, 410, 421
integral, 273, 279
scoring, 64, 260
modifier, 66
to dose conversion coefficients, 70
FLUGG, 140, 412
FLUKA
applications, 10
data files, 38
distribution
tar file, 37
earlier versions, 9
executable, 37, 38
first generation, 409
history, 409
libraries, 35
license, 40, 320
main, 39
materials, 17
medium number, 321
modules, 37, 39
neutron cross section libraries, 339
second generation, 409
source code, 35, 37
third generation, 410
website, 11, 21, 35, 64
FLUKA-DPMJET
switch energy, 209
fluka.stop, 244
FLUKA81, 410
FLUKA82, 410
FLUKA86, 39, 410
FLUKA86-87, 10
FLUKA87, 410–413, 415, 422
flukaadd, 37
flukadpm, 37
FLUKAFIX input command, 32, 61, 95–98, 121, 136
flukahp, 37
FLUKAN, 416
Fluktuerende Kaskade, 409
FLUNEV, 415
fluorescence, 7, 55, 63, 95–98, 123, 325, 414
and Auger routines, 39
data file, 38
FLUPRO, 24
FLUSCW user routine, 66, 92, 197, 258, 266, 324, 352, 366, 369, 372
Fokker-Planck diffusion equation, 399
Force Field Approximation, 399
form factor, 5, 7, 38, 40, 95–98, 180, 182, 370, 413
in δ-ray production, 208
Thomas-Fermi, 182
format
high precision, 14
name based, 294
formation zone, 418
FORMFU user routine, 182, 370
Fortran 90, 39
OPEN statement, 187
four-momentum, 281
fragmentation
of small nuclei, 419
region, 418
FREE input command, 12, 49, 60, 135, 137, 146
free
electron lasers, 10
format, 12, 49, 60, 140, 294, 296
in geometry input, 146
input, 56, 137, 145
region input, 311, 312
parameters, 3
frequency, 351
FRGHN S user routine, 192, 197, 351, 371, 390
Frisoni M., 416
FUDGE M parameter, 116
fully analogue run, 146
FUSRBV user routine, 264, 265, 267, 371, 373
FWHM, 73

GAMCUT, 117

gamma
  competition, 419
decexcitation, 4, 327
ergy
  groups, 338
  sampling within a group, 166
generation, 6, 338
  probability, 322
group, 165, 322
  structure, 340
production cross section, 323

Garzelli M.V., 422
gas, 169
  bremsstrahlung, 61, 182
  low density, 176, 182
  pressure, 18, 171, 173, 325
gaseous materials, 56, 60
Gaussian distribution, 381
two-dimensional, 75

GCR–SPE input command, 139, 398

GDH, 418
Geant3, 417
Geant4, 412
Geibel H., 409
generalised
  Gaussian quadrature, 337
  particles, 43, 45, 130, 262, 279, 285
Generalised IntraNuclear Cascade, see GINC
generation, 375
generator
  high energy, 422
  intermediate energy, 422

GENSTK COMMON, 366, 374, 378, 386
GEOR2N routine, 368–371, 374, 375, 377, 379, 386, 388, 390, 391

Giant Dipole Resonance, 4, 7, 204, 205, 415, 418
GINC, 4, 419
Glauber
  cascade, 417, 419
  Glauber R.J., 4
GLOBAL input command, 12, 49, 60, 64, 98, 127, 135, 137, 145, 145, 169, 328
global
declaration, 56, 145
initialisation, user written, 57
settings, 40
gnuplot, 34
Goebel K., 409, 410
Gonzalez I., 412
grazing angles, 413
Gribov V.N., 4
ground state, 226
group
  boundaries, 262, 273, 279
cutoff, 159, 387
energy
  average, 322
  limits, 322
limit for non analogue absorption, 159
velocities, 322

GSF, 411, 412
GSI, 411
GUI interface, 64

H1, 410
HADRIN, 410, 418
hadron
  and muon
cutoffs, 323
  multiple scattering, 324
  event generator, 99, 409, 410, 415, 416
fluence, 234, 268
inelastic collisions, 326
hadron-hadron
  interactions, 4
  scattering, 418
hadron-nucleon interaction, 4
hadron-nucleus interactions, 4
hadronic
  cascades, 113
decays, 209
  inelastic interaction, 234, 268
  inelastic interaction density
binning, 268
interaction models, 416
hadronisation, 39, 417
algorithm, 417
HADROTherapy default, 96
hadrotherapy, 60, 95, 96, 421
half-spaces, 293
Hänssgen K., 4
Hartree-Fock, 7
head, in PLOTGEOM, 216
heavy
fragment, 44, 130
evaporation, 211, 214
transport, 96–98
ion, 37, 44, 56, 74, 152, 375, 376, 421
beam, 74
dE/dx, 413
energy loss, 421
event generator, 63
interactions, 63
multiple scattering, 421
primary, 148
properties, 148
transport, 63, 421
help, 38
Helsinki University of Technology, 409
HERMES, 410
HETC, 410, 416
HETC/KFA, 415
hexadecimal, 244
HI–PROPErt input command, 63, 74, 148
HI–PROPErt input command, 222
high energy
fission, 321, 327
density binning, 268
hadron equivalent
fluence, 263
hadron equivalent fluence, 265
hadron generator, 419
model, improvements, 417
physics, 10
high-accuracy body fixed format, 295
HILO library, 415, 416, 419
histories, number of, 11
history, 244
file, 12
hit cells, 127, 232
Hobbs L., 409
Hoffmann L., 409
Houston, 421
hybrid systems, 411
hydrogen
cross section, bound, 340, 416
nuclei, 6
hyperons and anti-hyperon projectiles, 417
I/O
files, 187
logical unit assignment, 38
reserved unit numbers, 336, 380
IBM, 411
ICARUS, 95, 96, 356, 357, 410, 411, 417, 419, 420
ICARUS default, 96
ICRC2001 fit, 399
ICRU, 413
materials, 17, 46
IDEBG, 295
Ignatyuk A.V., 419
IGNITOR, 411
IGRF model, 402
IJBEAM, 74, 75
IMPEMF, 82
IMPHAD, 82
IMFLOW, 82
importance, 33, 82, 221, 287, 324
biasing, 33, 65
user-defined, 8, 40, 388
for low-energy neutrons, 289
modifying parameter, 83, 84
range, 290
ratio, 83, 290
region, 8
sampling, 55, 382
INCLUDE
files, 37, 366, 410
statements, 9
inclusive
distributions, 410
event generator, 409
hadron generator, 410
radiation spectra, 222
independent random number sequences, 224
induced activity, 45, 62, 64
at electron accelerators, 66
inelastic
cross sections, 414
hadron-nucleus interactions, 4
hadronic interaction length biasing, 156
applied only to primaries, 157
interaction, 225, 282, 378
recoil, 350, 376
length, biasing, 420
scattering length, 17, 324
infinite
circular cylinder, 306
cylinders, 293, 412
dilution, 338
elliptical cylinder, 306
half-space, 304
generic, 305
planes, 412
INFN, 410–412, 422
Frascati, 413
Milan, 412, 413, 416
inhomogeneous materials, 60
initialisation, 39, 40, 67, 99, 201, 383, 389
electromagnetic, 39
of tables, 58
PEANUT, see PEANUT, initialisation
user written, 57, 389
global, 389
input
alignment, 12
checking, 12, 320
References

echo, 12, 320
example, 13
expanded summary, 323
file, 11, 49
interpretation, 12
line structure, 12
logical unit, 38
name based, 12, 13, 16
non standard, 365
option order, 12, 173
preprocessor, 51
installation, 11
integer geometry data, 320
integral fluence/current, 261
interaction
ion-ion, 5
length
biasing, 8, 56, 155, 221
of electrons and photons, 55
model, high energy, 417
nucleus-nucleus, 5
interactive
run, 244
time limit, 244
interpreted
body echo, 141, 320
region echo, 141, 320
intersection, 293
of bodies, 311
intraneural cascade, 418
codes, 416
invariant cross section, 283
ion
escape, 376
interactions, 152
threshold, 209
transport, 152
IONFLUCT input command, 32, 62, 95–98, 102, 149, 325
ionisation, 130, 409
energy losses, 149, 413
fluctuations, 5, 56, 62, 95–98, 102, 149, 410, 413
potential, 5, 46, 60, 62, 102, 171, 247, 413
average, 171
processes, 89
IONTRANS input command, 63, 107, 152, 210, 226
IONUNIT INCLUDE file, 38, 366, 392
irradiation, 93
profile, 9, 56, 153, 222, 420
IRRPROFILE input command, 65, 93, 153, 222
IRRPROF input command, 75
ISCRNG, 366, 367, 370
isobar model, 418
isomer, 148, 221
isomeric state, 226, 391
ISOTOPE, 74, 222
isotope, 169
transmutation, 10
isotopic
composition, 86, 169, 414
natural, 340
mixture, 16
isotropic
cross section term, 337
distribution, 323
ISPORK, 385
Ispra, 412
Joint Nuclear Research Centre, 215
ISPUSR, 378
IVLFLG, 295, 326
Jaarsma R., 215, 412
James F., 411
JEF, 339
JEF–1, 416
JEF–2, 416
JENDL, 339, 416
JSCRG, 366, 367, 370
K− and K0 induced interactions, 419
Kshort component of K0/K0, 384
K-edge, 123
Karlsruhe, 411
KASHEA routine, 350, 375, 376, 378
KASKAD routine, 350, 375, 376, 378
KASNEU routine, 350, 375, 376, 378
KASOPH routine, 350, 358, 375, 376
kerna, 130, 255, 322, 327
approximation, 110, 339
factor, 6, 321, 339, 340, 416
printing, 165
keyword, 12, 55
Kim L., 414
kinematic variables, 9
kinetic energy, 281
cutoff, 202
transverse, 281
KL3DCAY, 413
Koblinger L., 33
Koch H.W., 414
Kowalski H., 415
lab frame, 281, 421
laboratory
decay length, 157
momentum, 281
LALRT, 418, 419
LAM–BIAS input command, 33, 65, 105, 113, 155, 221
Landau fluctuations, 62, 410, 413
Landau L.D., 6, 7, 62, 414
LANL, 418
Lantz M., 422
large dimensions, 61
latching, 379
Lateral Displacement Algorithm, 326
lateral shower spread, 113
LATTIC user routine, 314, 372
LATTICE input command, 50
lattice
card, 314
cell, 314, 372, 373
basic, 314
binning, 264, 265
number, 314
prototype, 315, 372, 373
References

container regions, 314
go mean, 7, 39, 40, 372, 412
option, 293
laws of optics, 351
LCLS, 411
ldpm2qmd, 398
ldpmqmd, 37
leading particle, 83
  biasing, 8, 33, 55, 65, 83, 110, 111, 221, 287, 420
  for positrons, 420
Legendre
  angular expansion, 8, 416
  polynomial expansion, 323, 337
Leipzig, 418
  event generators, 416
  group, 410, 417
  intermediate energy code, 417
University, 409, 410
LEP, 411
leptonic decay, 209
LET, 21, 48, 281, 284
  yield scoring, 64
Levinger J.S., 415
Levinger’s constant, 415
lfluka, 26, 35, 37, 38, 365
LHC, 410, 419
  experiments, 411
liblflukahp.a, 37
light
  fragments
    from neutron capture, 339
    transport, 226
  ion, 152
  nuclei, 418
  deexcitation, 419
  transport of, 7
  yield, 351
Lindgren J., 409, 410
Linear Energy Transfer, 21, 64
linking
  tools, 26
Linux, 35, 187
liquid
  argon, 416
  helium, 416
  list-oriented format, 137
LLOUSE, 378
local energy deposition events, 255
Local Interstellar Spectrum, 399
log file, 25, 38
longitudinal momentum, 281
Lorentz factor cutoff, 202
LOW–DPP, 385
low energy
  cross section materials, 17
  fission
    products, 416
  neutron, 97, 375, 376, 378, 415
    calculations, 60
    component of the cascade, 10
    cross section, 46, 321
    cross sections, 163
  cutoff, 56, 159
  group cutoffs, 324
  group number, 384
  material identifiers, 321
  materials, 87
  products, 225
  transport, 56, 66
  transport threshold, 62
neutron cross section
  alphanumeric identifier, 163
  identifiers, 163
  integer identifiers, 163
  neutron interactions
    number of, 326
    total weight, 326
  particles, tracking in a magnetic field, 178
low energy fission
density
  binning, 268
LOW–BIAS input command, 32, 61, 63, 66, 105, 159, 324
low-density medium, 420
LOW–DOWN input command, 66, 105, 161, 221, 324
LOW–MAT input command, 17, 59, 86, 163, 170
LOW–NEUT input command, 17, 63, 95, 97, 165
LOW–PWXS input command, 168
lowneuadd, 37
LPM, 6, 7
effect, 414
LTCLCM COMMON, 366
LUNIN, 38
LUNOUT, 38
LUSRBL user routine, 264, 265, 267, 371, 373
Lux L, 33
machine specific routines, 39
MACRO, 411
MAGFLD user routine, 67, 69, 139, 178, 216, 373, 402
MAGI, 293, 412
magnetic field, 3, 5, 7, 8, 12, 55, 56, 59, 61, 67, 139, 178,
  203, 245, 325, 373, 410, 412, 413
  assignment to regions, 68, 178
  components, 178
  direction, 373
  intensity, 373
  map, 40, 374
  tracking, 39
  low-energy particles, 245
unit, 48
main routine, 39
makefile, 26, 37
Marsaglia G., 224, 411
mass
  fraction, 86
  number, 391
  scale, 419
MAT–PROP input command, 50, 60, 62, 98, 169, 170, 171
MATERIAL input command, 16, 17, 46, 59, 86, 169, 324
material, 11, 16, 46, 56, 57, 390
  assignment to regions, 11, 55, 68
  changing for radioactive decay, 68, 69
  correspondence with neutron cross sections, 59, 60
  definition, 169
gaseous, 171
identifier, 46
index, 16, 59
low energy neutrons, 6
name, 16, 46, 59, 324
number, 16, 59, 324
omitting, 169
sequence, 17, 46, 169
pre-defined, 11, 16, 17, 324
pre-mixed, 340
properties, 56, 171
redefining, 17
region correspondence, 325
single isotope, 169
user flagged, 390
user-defined, 324
math routines, 39
matrix element, 413
maximum
absolute step length, 61
error on the boundary iteration, 178
fractional energy loss per step, 61
number of geometry regions, 60, 145, 146
step size, 178
maximum CMS momentum, 208
Maxwell equations, 351
Maxwellian
approximation, 419
maze design, 10
MCNP format, 34
MCSTHRESh input command, 32, 61, 63, 121, 176, 176
MDSTCK user routine, 374
mean free path biasing, 111, 112
medical accelerators, 10
medium dependent directives, user-defined, 390
memory allocation, 145, 231, 321
MGDRAW user routine, 67, 257, 336, 348, 349, 353, 358, 373–375, 385
MGNFIELD input command, 59, 67, 69, 178, 178, 407
microscopic models, 3
midstep binning, 265, 269
Migdal A.B., 6, 7, 414
Milan, 411, 417, 421
minimum
input, 58
ionising muon, 393
step size, 178
mixture, 16, 55, 86, 169
of isotopes, 55
model parameters, 321
modular geometries, 314
modules, 39
Möhring H.-J., 9, 409, 410, 415
molecular
fraction, 86
Molière, 5
conditions, 326
screening angle, 181
theory, 121, 176, 181
energy too small, 182
step too short, 181
Molière G.Z., 5, 60
Møller
production threshold, 62
scattering, 6, 89, 415
secondaries, 378
momentum
cutoff, 202
per nucleon, 281
transfer, 9, 45, 370
density, 263
density binning, 264, 268
unit, 48
Morse, 7, 160, 293, 295, 311, 320, 337, 410, 412, 416, 420
Mott correction, 5
Motz J.W., 414
MULMIX routine, 17
MULSOPT input command, 32, 61, 63, 121, 180, 324, 370
multi-modal structures, 373
multi-source routine, 383
multigroup
cross sections, 6, 337
transport, 6, 66
algorithm, 166
routines, 39
multiple Coulomb scattering, 5, 6, 60, 63, 116, 121, 176, 180, 321, 409, 411, 413
algorithm, 245, 414
and magnetic/electric fields, 412, 413
correlations, 5
heavy charged particles, 5
higher order corrections, 177
minimum step size, 181
of primaries, 176
of secondaries, 176
optimisation, 182
polygonal step approach, 415
step, 413
suppression, 61, 176, 182
for e+ and e−, 180
for hadrons and muons, 180
threshold, 56, 61, 95–98, 177
multiplication factor for transport cutoff
doC decay radiation, 222
of prompt radiation, 222
multiplicity, 413
biasing, 82, 83, 324, 387
primary particles, 82
Negative Binomial distribution, 417
reduction, 8, 65, 420
muon, 176
photoinuclear interactions, 5, 39, 56, 63, 96–98, 184, 206, 325
step, 56, 136
straggling, 184
MUPHOTON input command, 32, 63, 184, 325
Musim, 184
MUSRBR user routine, 264, 265, 267, 371, 373
mutual photon polarisation, 415
MYRQMD
threshold, 208
(n,2n) reaction, 338
(n,n’) reactions, 338
References

(n,p) reaction, 321
(n,xn) reactions, 338
name
  identifiers, 145
  preceded by a minus sign, 13
name-based
  format, 140
  input, 49, 145
NASA, 411, 421
NAZ, 311, 312, 329
Nelson W.R., 410
net charge
density
  binning, 264, 268
NEUKA, 415
neutrino, 7, 107
deep inelastic scattering
  routines, 39
direction, preferential, 388
interaction, 7, 208, 412, 419, 422
  routines, 39
interactions
  charm production, 213
  deep inelastic, 213
  quasielastic, 213
  resonant, 213
physics, 3, 10, 410, 417
production, 7
resonance production
  routines, 39
transport, 107
threshold, 107
neutron
  absorption, non analogue, 160
  background, 411
balance, 9, 45, 235
density binning, 264, 268
balance density, 263
below threshold, 350, 376
cross section, 56
data file, 38
  library, 6, 59, 87, 163, 165, 321, 338, 342, 416, 419
  library, 260 groups, 337, 342
  pointwise, 165, 166
  printing, 165
current, 262
energy
cutoff, 166
fluence, 262, 273, 279
group, 165
cutoff, 62
  importance factor for downscattering, 161
  numbering, 160, 161, 166, 289
  structure, 340
inelastic mean free path, 393
interaction, 378
low energy, 6, 39, 130, 337, 342
multigroup transport, 416
resonances, 338
scattering cross section, 322
sink, 338
temperature, 340, 342
  threshold, 95–98
  total cross section, 322
transport, low energy, 161, 165
neutron-to-gamma transfer probabilities
  printing, 165
NEUTRONS default, 63, 97
new
  defaults, 97
  evaporation model, 225
NEW–DEFA default, 97
next region not found, 141
NIEL, 5, 46, 263
  binning, 264–266
density
  binning, 268
  restricted, 46
NLC, 411
NMGP, 159
NNDC, 414, 420
NOMAD, 410, 418, 419
non absorption
  probability, 290, 322, 338
  biasing, 290
non analogue
  absorption, 56, 221
  probability, 66
  calculations, 348
  radioactive decays, 221
  survival probability, 324
Non Ionising Energy Loss, 46
Non Ionising Energy Losses, see NIEL
non-overlapping OR, 373
non-zero binning, 127
normal, 64
to a boundary, 19, 29, 284
to a surface, 371
normalisation, 21, 75, 130, 235, 269, 282, 348
  of magnetic field cosines, 178
to unit primary weight, 259
  volumes, 326
Notre-Dame, 411
NPFLKA, 383
nTOF background, 419
NTP, 173, 247
nuclear
  binding energy, 417
  charge form factor, 370
  data, 38, 414
  file, 38
densities, of neutrons and protons, 418
excitation energy, 417
finite size effects, 180
gamma deexcitation, 419
interaction, 374
level densities, 419
masses
  in standard output, 321
  tables, 417
mean field, 418
  models, 321
potential effects, 418
  reactions
References

- endothermic, 327
- exothermic, 327
- recoils, 130
- size effects, 5
- well potential, 417
- nucleon decay, 419
- nucleon-nucleon correlations, 418
- cross sections, 4
- nucleon-nucleus cross sections, 4
- nucleus-nucleus collision, 398, 410
- NuNn, 410
- number of primary histories, 67
- numerical
  - accuracy, 411
  - data in SDUM, 247, 286, 288
  - format input, 146
  - identifiers of low-energy neutron materials, 342
- NuNnS, 422
- NuNres, 422
- NuX, 419

- old evaporation model, 225
- on-line help, 38
- one-way scoring of fluence/current, 20, 64, 260
- OPEN input command, 38, 50, 187, 336
- opening I/O files, 187
- operator precedence order, 313
- OPPHBox user routine, 196, 197, 351, 379
- OPPHE COMMON, 378, 385
- OPT–PROD input command, 63, 189
- OPT–PROP input command, 63, 74, 193
- optical absorption coefficient, 40, 194, 197
derivatives, 194
user-defined, 367
diffusion coefficient, 40, 194, 197, 351
derivatives, 194
user-defined, 368
photon, 3, 7, 12, 40, 63, 74, 189, 192, 351, 367, 375, 376, 379, 380, 385, 390, 415
absorption, 350, 376
absorption coefficient, 379
absorption on a boundary, 379
beam, 74
boundary crossing properties, 379
detection sensitivity, 195
diffusion coefficient, 379
escape, 376
examples, 353
group velocity, 379
material roughness, 40, 192, 197, 351, 371, 390
reflectivity, 40
refraction index, 40, 379
routines, 39
sensitivity parameter, 195
transport, 173, 193
wave-length shifter, 40
properties, 56
of a boundary surface, 197, 351
of materials, 192, 193, 351
series expansions, 197

- optimisation, 9
- option, 11, 55
cards, 49
keyword, 49
list, 55
- Optis, 411
- OR operator, 146, 311, 320
order of input commands, 49, 146
organ, 317
dose, 10
- ORNL, 293
- output, 320
file names, 25
formatted, 320
header, 320
logical unit, 38
main, 320
non standard, 365
post-event, 40
standard, 12–14, 17, 18, 21, 25, 26, 32, 33, 69, 75, 81, 101, 129, 130, 140, 145, 244, 259–261, 320, 328, 330–332, 336, 365
statistics, 58
unformatted, 320
user generated, 57, 336, 390
overlapping
binnings, 268
ORs, 320
regions, 143
sub-regions, 146
overriding defaults, 60
- P5, 6, 323, 337
pair production, 378, 415
angular distribution, 6
by heavy charged particles, 5, 56, 63, 95, 97, 98, 413
by heavy ions, 208
by muons and charged hadrons, 200
explicit, 200, 201
emission angle, 414
energy sampling, 415
near threshold, 415
photons, 6
threshold for heavy charged particles, 325
- PAIRBREM input command, 32, 63, 200, 211, 325
- pairing energy, 419
- Palo Verde, 411
- Panini G.C., 339, 416
- PAPPROP COMMON, 384
- parallel jobs, 67, 224
- parameter setting, 57
- parentheses, 296, 311, 313
  - in geometry description, 7, 146
  - optimisation, 140, 294
  - in INCLUDE file names, 366
- parsing, 39
- PART–THRes input command, 166
- PART–THRes input command, 19, 32, 61, 98, 102, 107, 202, 324
- particle bank, 380
- below threshold, 130, 376
References

code, 43
coordinates, 385
decay, 208, 378, 388, 413
  biasing, 413
discarded, 130
escape, 350, 376
generation, 368, 369
identifier, 43
identifiers, 323
polarisation, 413
properties, user-defined, 385
reaching cutoff, 327
source, 11
  weight, 75
stopping, 376
transport, 412
weight, 84, 383, 390
yield, 281
  as a function of angle, 421
Particle Data Group, see PDG
partition of space, 58
Patera V., 413
path length
  correction, 5, 61, 413
curved, 375
path stretching, 56, 133
Pauli blocking, 418
PAW, 216
Pawlevbin, 21, 64
PBEAM, 73, 75
Pcut, 119
PDG, 43
  particle numbering scheme, 43
PEANUT, 4, 7, 415–420, 422
  initialisation, 39
  routines, 39
  upper limit, 419
  upper threshold, 208, 214
Peterls R.F., 247
Pelliccioni M., 71
performance, 61
PGMSCN routine, 216
phantom dosimetry, 10
PHOTONUC input command, 32, 60, 63, 98, 110, 204, 325
photomultiplier, 352
photomuon production, 4, 56, 205
  biasing, 205
photon, 6
  angular frequency, 190, 193
  central, 193
  maximum, 193
  minimum, 193
  cross sections, 38
  factories, 10
  generation probability, 352
  mean free path, 393
  polarisation, 414
  production cutoff, 116, 119
  transport, 110
  cutoff, 116
  lowest limit, 7
  transport cutoff, 119
wavelength, 189, 193, 367, 368, 379, 380
PHOTONUC input command, 32, 60, 63, 98, 110, 204, 325
photoneutron
  cross sections, 39
  interaction, 4, 158, 325
  biasing, 113
  of muons, 184
  of muons and charged particles, 56
  interactions, 56
  reaction, 33, 58, 63, 414, 417, 418
muons, 5
reactions, 204
physical
  models, 3
  processes, 56
  units, 48
PHYSICS input command, 32, 60, 63, 208, 323, 398
physics, 4
Pinsky L., 421
pion
  complex optical potential, 418
  cross section file, 38
  inelastic mean free path, 393
  interactions, 418
  resonant amplitudes, 418
  threshold, 418
PLA body, 305
plane, 7, 293, 304
  generic, 305
PLG.GFXINDAT, 137
PLOTGEOM input command, 50, 59, 67, 98, 137, 215, 248
PLOTGEOM, 8, 50, 56, 141, 144, 215, 412
  input, 137
  program, 67
  routines, 39
PLOTGEOM.STORE, 216
plotting
  geometry slices, 215
  magnetic field, 215
point-target yield, 284
pointwise
<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross sections, 338</td>
</tr>
<tr>
<td>neutron cross sections, 321</td>
</tr>
<tr>
<td>neutron transport, 338, 339</td>
</tr>
<tr>
<td>Poisson distribution, 5</td>
</tr>
<tr>
<td>polar angle, 281, 284, 393</td>
</tr>
<tr>
<td>polarisation, 3, 56, 63, 76, 236, 351</td>
</tr>
<tr>
<td>cosines, 384</td>
</tr>
<tr>
<td>in decay, 39</td>
</tr>
<tr>
<td>in particle decays, 209</td>
</tr>
<tr>
<td>of photons, 7, 218</td>
</tr>
<tr>
<td>of synchrotron radiation, 407</td>
</tr>
<tr>
<td>Ter-Mikaelyan effect, 6</td>
</tr>
<tr>
<td>vector, 219</td>
</tr>
<tr>
<td>polarised</td>
</tr>
<tr>
<td>decay, 413</td>
</tr>
<tr>
<td>muon decay, 413</td>
</tr>
<tr>
<td>POLARIZAti input command, 32, 63, 76, 81, 218</td>
</tr>
<tr>
<td>Pomeranchuk I.Va., 6, 7, 414</td>
</tr>
<tr>
<td>porous materials, 60</td>
</tr>
<tr>
<td>porous substances, 5</td>
</tr>
<tr>
<td>positron, 6, 201</td>
</tr>
<tr>
<td>annihilation, 6</td>
</tr>
<tr>
<td>at rest, 415</td>
</tr>
<tr>
<td>post-event output, 40</td>
</tr>
<tr>
<td>post-processing, 19</td>
</tr>
<tr>
<td>Prael R.E., 419</td>
</tr>
<tr>
<td>pre-connected</td>
</tr>
<tr>
<td>files, 38</td>
</tr>
<tr>
<td>unit, 261, 269, 273, 279, 284</td>
</tr>
<tr>
<td>pre-defined</td>
</tr>
<tr>
<td>materials, 46, 59</td>
</tr>
<tr>
<td>units, 255</td>
</tr>
<tr>
<td>pre-mixed neutron data set, 87</td>
</tr>
<tr>
<td>PRECISION default, 98</td>
</tr>
<tr>
<td>precision calculations, 60, 98</td>
</tr>
<tr>
<td>predictivity, 3</td>
</tr>
<tr>
<td>preequilibrium, 4, 418</td>
</tr>
<tr>
<td>-cascade model, 417, 418</td>
</tr>
<tr>
<td>linear, 418</td>
</tr>
<tr>
<td>linear model, 419</td>
</tr>
<tr>
<td>preprocessor</td>
</tr>
<tr>
<td>conditional directives, 51, 52</td>
</tr>
<tr>
<td>constant identifiers, 51</td>
</tr>
<tr>
<td>definition directives, 51</td>
</tr>
<tr>
<td>directives, 51</td>
</tr>
<tr>
<td>include directive, 51, 53</td>
</tr>
<tr>
<td>parametric expressions, 53</td>
</tr>
<tr>
<td>syntax, 51</td>
</tr>
<tr>
<td>pressure, partial, 86</td>
</tr>
<tr>
<td>PRESTA, 413</td>
</tr>
<tr>
<td>primary</td>
</tr>
<tr>
<td>heavy ion, 148</td>
</tr>
<tr>
<td>histories, 130, 244</td>
</tr>
<tr>
<td>ionisation, 149</td>
</tr>
<tr>
<td>particles, 14, 57, 236, 270, 291, 324, 380, 389, 389 handled, 325</td>
</tr>
<tr>
<td>number of, 326</td>
</tr>
<tr>
<td>stars produced by, 235</td>
</tr>
<tr>
<td>total weight, 326</td>
</tr>
<tr>
<td>printing routines, 39</td>
</tr>
<tr>
<td>production</td>
</tr>
<tr>
<td>cutoff, 18, 61, 62, 350</td>
</tr>
<tr>
<td>threshold, 18</td>
</tr>
<tr>
<td>profile of irradiation, 56</td>
</tr>
<tr>
<td>projected</td>
</tr>
<tr>
<td>angles, 5</td>
</tr>
<tr>
<td>step length, 5</td>
</tr>
<tr>
<td>projectile</td>
</tr>
<tr>
<td>direction cosines, 284</td>
</tr>
<tr>
<td>excited, 421</td>
</tr>
<tr>
<td>momentum, 284</td>
</tr>
<tr>
<td>prompt</td>
</tr>
<tr>
<td>particles, 91, 221</td>
</tr>
<tr>
<td>showers, 221</td>
</tr>
<tr>
<td>proton</td>
</tr>
<tr>
<td>accelerators, 10</td>
</tr>
<tr>
<td>colliders, 410</td>
</tr>
<tr>
<td>recoils, 4, 6, 130, 255, 327, 339, 340, 416</td>
</tr>
<tr>
<td>therapy, 413</td>
</tr>
<tr>
<td>pseudo-particles, 8, 44, 75, 336, 392</td>
</tr>
<tr>
<td>pseudo-random number, 381</td>
</tr>
<tr>
<td>pseudo-rapidity, 281, 393</td>
</tr>
<tr>
<td>PSI, 411</td>
</tr>
<tr>
<td>punchthrough, 3, 113</td>
</tr>
<tr>
<td>python, 33</td>
</tr>
<tr>
<td>QUA body, 307</td>
</tr>
<tr>
<td>quadric</td>
</tr>
<tr>
<td>generic, 307</td>
</tr>
<tr>
<td>quadrics, 7</td>
</tr>
<tr>
<td>quantistic corrections, 418</td>
</tr>
<tr>
<td>quantum efficiency, 40, 197, 351, 352</td>
</tr>
<tr>
<td>user-defined, 379</td>
</tr>
<tr>
<td>quark</td>
</tr>
<tr>
<td>-chain generator, 410</td>
</tr>
<tr>
<td>degrees of freedom, 417</td>
</tr>
<tr>
<td>quasi-deuteron, 4, 7, 204, 205, 415, 418</td>
</tr>
<tr>
<td>quasi-elastic</td>
</tr>
<tr>
<td>contribution, 417</td>
</tr>
<tr>
<td>neutrino interactions, 419</td>
</tr>
<tr>
<td>QUEFFC user routine, 195, 197, 351, 352, 379</td>
</tr>
<tr>
<td>quenching, 9, 57, 64, 249, 257, 413</td>
</tr>
<tr>
<td>R-Φ-Z binning, 263</td>
</tr>
<tr>
<td>R-Z binning, 263</td>
</tr>
<tr>
<td>RAD-BIOL input command, 220</td>
</tr>
<tr>
<td>RADDECAY input command, 65, 75, 91, 221</td>
</tr>
<tr>
<td>radial profile of an electromagnetic shower, 113</td>
</tr>
<tr>
<td>radiation</td>
</tr>
<tr>
<td>components, 62</td>
</tr>
<tr>
<td>damage, 10, 411</td>
</tr>
<tr>
<td>electronics, 10</td>
</tr>
<tr>
<td>from radioactive decay, 326</td>
</tr>
<tr>
<td>length, 18, 324, 393</td>
</tr>
<tr>
<td>prompt, 326</td>
</tr>
<tr>
<td>protection, 10, 417</td>
</tr>
<tr>
<td>radiative losses, 39</td>
</tr>
<tr>
<td>radioactive</td>
</tr>
<tr>
<td>decay, 9, 56, 65, 91, 93, 221, 226, 378</td>
</tr>
<tr>
<td>biasing, 222</td>
</tr>
<tr>
<td>isotope, 74, 91, 249, 252</td>
</tr>
<tr>
<td>isotopes, 222</td>
</tr>
<tr>
<td>product, scoring, 55</td>
</tr>
<tr>
<td>radioactivity, 420</td>
</tr>
</tbody>
</table>
on-line evolution, 421
radiobiology, 220, 411
radiotherapy, 3, 10, 411, 412
radius of curvature, minimum in a magnetic field, 178
RAL high-energy fission model, 419
random number
gaussian-distributed, 39
generator, 56, 224, 381, 411
calls, 224, 244, 325
initialisation, 224
routines, 39
independent sequences, 411
initialisation, 11
seeds, 224, 328
file, 187, 320
sequence, 22, 60, 67, 145, 146
independent, 67
skipping, 130
random.dat, 21
RANDOMIZE input command, 22, 67, 130, 224
Ranft J., 4, 7, 9, 409, 417, 418, 421, 422
ranging out, 62, 412, 413
of charged particles below threshold, 203
ranging out below cutoff, 5
RANMAR
rapidity, 21, 281, 421
rare interactions, 65
RAW body, 302
RAY, 8, 43, 44, 75, 336, 381, 392
output, 336
ray number, 393
Rayleigh scattering, 7, 55, 63, 95–98, 125, 219, 325, 351,
356, 378, 415
RCC body, 298
reactions
endothermic, 130
exotheermic, 130
README file, 35
READONLY, 187
REC body, 299
recoil
protons, 166, 321
recombination, 57
rectangular parallelepiped, 296
general, 297
redirection symbols, 38
reduced storage, 127
reference frame, for a beam, 58
reflection, 315, 418
at boundaries, 351
coefficient, 351
reflectivity, 197, 351
diffuse, 197
index, 194
specular, 197
user-defined, 379
refraction, 173, 351, 390, 418
at boundaries, 351
index, 194, 197, 351, 353, 356
derivatives, 194
user-defined, 380
reggeon, 417
region
binning, 235, 263–265, 269
data, 311
fixed format
allowing more than 10000 regions, 311
fixed format allowing more than 10000 regions, 295
importance, 387, 420
input echo, 320
name, 7, 312
numbers, 311
table, 295
volumes, 19, 21, 235, 314, 320
regions, 11, 58, 141, 293
max. number, 7
relativistic kinematics, 419
Relativistic Quantum Molecular Dynamics, 422
RELEASE-NOTES, 35
rem-counters, 161
reproducibility
of the random number sequence, 321
residual dose, 91, 93
residual nuclei, 4, 9, 56, 214, 225, 258, 391, 420
data, 339
distributions, 419
information, 342
in the neutron library, 322
printing, 165
production, 419
by low-energy neutrons, 339
scoring, 40, 64, 416, 421
modifier, 66
user handling, 391
RESNUC COMMON, 366
RESNUCLEI input command, 21, 32, 64, 91, 225, 324, 332
output, 332
resonance model, 4, 417
resonances, non resolved, 338
response functions, 40
restricted ionisation fluctuations, 62
Restricted NIEL, 46
results, 57
RLCTV user routine, 197, 351, 379
rfluka, 21, 24, 35, 38, 187, 320, 328, 365
temporary subdirectory, 24, 25, 38
rfluka.stop, 244
RFRNX user routine, 194, 197, 351, 380
RHEL, 409
RHOR factor, 171
Rief H., 215, 412
right
angle wedge, 302
circular cylinder, 298
elliptical cylinder, 299
Roesler S., 421, 422
ROOT, 421
Rossendorf, 411, 412
ROT–DEFI input command, 59
ROT–DEFI input command, 64, 228, 268, 309
rotation, 315
transformation, 373
rotation/translation
matrix, 231
transformations, 64
to-translation
of body coordinates, 309
RDR PRBIN input command, 59, 64, 127, 231, 268
Routti J., 9, 409
RRP body, 296
RQMD, 5, 37, 39, 152, 422
fast cascade, 208
library, 37
pre-equilibrium step, 208
threshold, 208, 209
RQMD-2.4, 421
RQMD DPMPET
switch energy, 209
RR, 287
counters, 33
level, 287
RR/Splitting counters, 326
RR Hadr, 82
Rubbia A., 419
Rubbia C., 411, 416, 418, 419
run
documentation, 13
sequential number, 38
Russian Roulette, 8, 33, 55, 57, 65, 66, 82, 84, 113, 156, 286, 291, 324, 420
inhibiting, 84
Rutherford E., 5
Sala P.R., 4, 7, 9, 409, 411–420
sampling from a non-monoenergetic spectrum, 75
Sandberg J., 409, 410
Sauter F., 7
scaling, 418
laws, 3
scattering
angles, printing, 165
Bhabha, 6, 415
incoherent, 370
kaon-proton, 4
low energy neutrons, 8
Møller, 6, 415
multiple, 370
non performed, 326
on hydrogen nuclei, 4
pion-proton, 4
probabilities, printing, 165
single, 6, 370
suppression, 5
transfer probability, 337
two-body, 418
scintillation, 357
light, 353
photon, 351
production, 415
radiation, 189, 351
scintillator, 249, 413
SCOHLP COMMON, 324, 366, 367, 370
SCORE input command, 19, 64, 129, 234, 326
scoring, 9, 10, 63, 421
by region, 234
conditional, 259, 370
detectors, 91
during irradiation, 153
normalisation, 130
of particle yields, 421
options, 63
routines, 39
weighting, 258
scratch files, 187, 320, 328
screening corrections for beta decay, 222
screening factor, 5
SDUM parameter, 12, 49
sea quantum distributions, 417
secondaries
in a collision, number of, 82
in inelastic hadron interactions, 327
in low-energy neutron interactions, 327
secondary
ionisation, 150
neutron production, 338
particle, 374
stack, management, 374
self-consistency, 412
self-shielded cross sections, 338
self-shielding, 338
Selzter S.M., 6, 171, 181, 414
semi-analogue mode for radioactive decays, 75, 91, 221, 222
separators, 145, 296
in free format, 137, 146
setting options, 60
settings, 11
shell
corrections, 5, 324, 413
model, 418
SHIELDING default, 98
shielding, 10, 84, 411, 412
calculations, 65, 98
design, 33
signal, 104
silicon damage weighting functions, 38
single
chains, 417
interaction level, 3
isotope yields, 234, 269
precision, 130, 232
single scattering, 5, 6, 8, 56, 61, 180, 324, 326, 415
activated everywhere, 182
number of steps, 180
number when crossing a boundary, 182
option, 181
skipping random numbers, 224
SLAC, 411
SLATEC, 39
smeared mass distributions, 417
smooth approach to boundaries, 412
SODRAW user entry, 377, 385
SOEVSV user routine, 380, 383, 385
Solar
Particle Event, 398
solar
activity, 398, 399
maximum, 398
References

minimum, 398
modulation, 399
wind, 398, 399
solar flares, 39
solar particle event, 139
solid angle, 261
unit, 48
Sorge H., 422
SOUEVT COMMON, 366, 380
SOURCE input command, 14, 58, 66, 236
SOURCE user routine, 14, 37, 57, 58, 66, 73–75, 78, 104, 236, 261, 269, 273, 279, 284, 323, 348, 350, 353, 377, 380, 383, 385, 389, 392
source, 57
biased, 383
Cartesian shell, 79
coordinates, 350
cylindrical shell, 79
distribution, 58
events, 40
saving, 380
extended in space, 14, 78, 79
isotropic, 14, 73, 75, 81
linear, 381
uniformly distributed, 385
particles, 40, 255, 377, 389
dumping, 377
reading from a file, 380
sampling from a biased distribution, 382
sampling from a generic distribution, 381
sampling from a uniform distribution, 381
producing an isotropic fluence, 80
routine, 14
sampling algorithm, 380
spatially extended, 78
special, 238
spherical shell, 78
user written, 380
SOURCM COMMON, 366, 377, 382
South Atlantic Anomaly, 401
space radiation, 421
spaghetti calorimeters, 8
spallation, 62
products, 225
sources, 411
SPAROK, 385
spatial mesh, 263, 268
SPAUSR, 378
specific activity, 45
binning, 264, 268
SPECSOUR input command, 58, 74, 139, 238, 395, 398, 402, 407
spectrum
channels, 105
tail, 382
specular reflectivity, 351
speed of light, 393
SPH body, 298
sphere, 298
spherical geometry, 410
spin
-relativistic
corrections, 5, 180
effects, 5
effects, 5
splitting, 8, 33, 55, 57, 65, 66, 82, 84, 113, 286, 287, 291, 420
inhibiting, 84
level, 287
splitting/RR counters, 66
SPS, 409
SPY, 418
square transverse momentum, 281
SSC, 410, 420
stack, 350, 378, 380, 384
full, 158
index, 381
management, 40
of secondaries, 374
pointer, 377, 381, 383
snapshot, 380
user variables, 385
variables, assigning, 380, 381
standard
device, 64
FLUKA neutron library, 166
input, 187
output, 60, 187, 224, 225, 251–253, 266, 269, 271, 273, 277, 279, 282, 284, 294, 348
star, 57, 62, 64, 234, 263, 268, 327
density, 9, 19, 56, 62, 64, 234, 258, 259, 263, 266, 326, 409
binning, 264, 268
number of, 326
scoring, 268
threshold, 62
total weight, 326
START input command, 22, 50, 67, 244, 325
start of the job, 244
starting
signal, 11
the calculation, 67
statistical
convergence, 33
error, 28
statistics, 63
final global, 326
step, 109, 121, 136, 178, 245, 388
control, 5
cut at a boundary, 181
deflections, 414
endpoints, 368, 369
length, 61
optimisation, 9
minimum in an electric field, 109
optimisation, 146, 177, 180, 181
reflected from a boundary, 181
size, 11, 57, 245
absolute, 245
by region, 245
in vacuum, 245
independent of bin size, 9
maximum, 245, 325
minimum, 245, 325
References

stepping factor, 181
STEP SIZE input command, 32, 61, 121, 178, 245, 325
STERNHIM input command, 49, 62, 247
Sternheimer
- Peierls formula, 247
parameters, 46, 62, 325
Sternheimer R.M., 5, 62, 171, 247
Stevenson G.R., 9, 215, 409, 410, 412
STOP input command, 22, 50, 67, 248
stop file, 22
stopping
charged particle, 413
file, 244, 325
negative pions, 418
particle, 350
energy, 327
power, 18, 101, 170, 249, 413
additivity, 171
fluctuations, 325
positrons, 6
restricted, 324
routines, 39
tabulations, 62, 121
unrestricted, 324
the job, 248
storage precision, 57
for binnings, 65
straggling, 5, 44, 201, 413
strangeness exchange, 418
STUPRE user routine, 378, 385
STUPRF user routine, 358, 378, 385
sub-barrier effects, 419
subregions, 293, 312, 320
subtraction, 293
SUMCOU COMMON, 366, 377
summary statistics, 251, 252
superposition model, 208, 398
suppressing
EM
interactions, 63
particle transport, 63
hadron
elastic scattering, 63
inelastic reactions, 63
low energy neutron transport, 63
surface reflectivity, 390
survival
biasing, 416, 420
probability, 156, 160
biased, 160
non analogue, 159, 387
physical, 159
symbolic links, 187
symmetry transformations, 293, 315, 372, 373
synchrotron radiation, 3, 10, 57, 382, 385, 407
shielding, 411
table
initialisation, 58
of available particle types, 323
tail, in PLOTGEOM, 216
tally, 63
TARC, 411
target
design, 3, 10
recoil, 350, 376
residual leftovers, 421
surface, 284
tau
decays, 208
Tavares O.A.P., 415
TCQUENCH input command, 62, 64, 75, 249
temperature, 6
unit, 48
Ter-Mikaelyan M.L., 6, 414
Ter-Mikaelyan polarisation effect, 414
TERA, 411
termination conditions, 244, 248, 324
thermal
energy groups, 159
group, 165
neutron
velocities, 322
thermal neutron equivalent fluence, 263, 265
thick-target yields, 284
thin layers, 5
THRESHOLD input command, 62, 63, 251, 268, 326
threshold
for Bhabha/Moller scattering, 117
for bremsstrahlung production, 117
for Compton scattering, 118
for delta ray production, 62, 101, 102
for electron production, 116
for electron transport, 117
for electronuclear interactions, 118
for hadron elastic reactions, 251
for hadron inelastic reactions, 251
for hadron reactions, 57
for multiple scattering, 61
for muon/hadron bremsstrahlung, 200
for muon/hadron pair production, 200
for pair production, 118
for photoelectric effect, 118
for photonuclear interactions, 118
for positron annihilation, 118
for Rayleigh scattering, 118
for star scoring, 57, 234, 251
time
dependent calculations, 62, 75
average per primary, 325
constant of scintillation light, 191
cutoff, 8, 62, 249, 414
for scoring, 57
for transport, 57, 252
dependence, 414
elapsed, 393
evolution
of a radionuclide inventory, 420
of decay radiation, 222
gate, 249, 252, 421
kill, 376
left, 244
before time limit, 326
limit, 22, 130
for scoring, 62
for transport, 62
interactive, 244
profile of irradiation, 65
still available, estimated, 325
unit, 48
window, 9
TIME–CUT input command, 62, 75, 252
timeout, 325
timing routines, 39
TITLE input command, 50, 98, 253
title, 11, 13
of the run, 253
Tkinter, 33
tools
compiling, 35
linking, 35
top weight window level, 289
total
energy of primary particles, 385
weight of the primaries, 383
TPSSCORE input command, 254
tpsscore, 254
track
segments, 375
shifting, 258
track-length, 20, 372
apportioning, 269, 421
density, 20, 107, 263
binning, 268
estimator, 9, 26, 57, 64, 277, 410, 421
fluence, 259
max. number of detectors, 273, 279
tracking
algorithms, 141
strategy, 7, 10, 412
TRACKR COMMON, 351, 358, 366, 367, 370, 375, 378, 385, 388
trajectory, 255
drawing, 67, 375
dumping, 375
segments, 349
transfer probabilities
- group to group, 322
- neutron to gamma group, 322
transformation
matrices, 229
of body coordinates, 309
transition radiation, 7, 56, 189, 351
translation, 315
of body coordinates, 309
transmutation, 10, 95, 96
transport, 8
\( \tau \) particle, 412
charged hadrons, 5
charmed hadrons, 412
cutoff, 18, 61, 350, 409, 413
for electrons, 102
for hadrons, muons and neutrinos, 202
energy cutoffs, 222
heavy ions, 412
light ions, 412
limits, 8
muons, 5
neutrino, 412
of electrons and photons, 39
of evaporation products, 321
of hadrons and muons, 39
optical photons, 412
routines, 39
threshold, 18, 56, 61, 95–98, 327, 412
for hadrons, muons and neutrinos, 202
transverse
mass, 281
momentum, 281, 417
TRC body, 300
trigger, 55, 64, 104
regions, 104
tritium production, 10
truncated right angle cone, 300
Tsai Y.-S., 182, 370
Tsang W.W., 224, 411
two-card commands, 50
two-chain events, 417
two-phases calculation, 348
two-step calculation, 67
two-way scoring of fluence/current, 64, 260
Tymieniecka T., 415
U.S. Standard Atmosphere, 398, 401
UBEAM, 78, 80
UBSSET user routine, 82, 111, 112, 117, 159, 161, 286, 387
UCKDIRL user routine, 155, 388
unbiased energy, 45
density binning, 268
underground
detectors, 10
experiments, 411
undersampling, 382
union, 293
of bodies, 311
units, 48
University of Houston, 421, 422
University of Milan, 414, 422
UNIX, 37, 187
unloading from stack, 383, 389
unstable residual nuclei, radiation from, 3
upscatter probability, 322
USBREEA post-processing program, 32, 270
USBSSW post-processing program, 31, 270
USDRAW user entry, 377, 385
user
- defined
  binning, 263
dump, 255
output, 67
source, 236
- written
  scoring, 348
biasing setting, 8, 387
code, 365
defined binnings, 264, 265, 371
density scaling, 40
flags, 378
energy thresholds, 286, 287, 291
  multiplicative factor, 286
  for low-energy neutrons, 287, 289
  thresholds for low-energy neutrons, 292
top weight, 286
worm, in Plotgeom, 216
WW–FACTOr input command, 49, 66, 84, 105, 113, 221, 286, 289
WW–PROFile input command, 66, 84, 289
WW–THRESh input command, 66, 84, 113, 291
www.fluka.org, 21, 35
XBEAM, 78, 80
XCC body, 306
XEC body, 306
xenon capture gammas, 338, 416
Xsec medium number, 321
XSPOT, 73
XYP body, 304
XYZ, 168
XZP body, 304
YBEAM, 78, 80
YCC body, 306
YEC body, 306
yield, 9, 258
  double differential, 281
  scoring, 57, 64
  vs. time, 281
yrast line, 419
YSPOT, 74
YZP body, 304
Zaman A., 411
Zazula J., 415
ZBEAM, 78, 80
ZCC body, 306
ZEC body, 306
zenith angle, 388
ZEUS, 410
Ziegler J.F., 5, 171, 413
zones, 293, 312