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FLUKA: generalities

FLUKA

Interaction| and

Transport

MonteCarlo code

e Each component is treated as far as possible with the same accuracy

e All components in a

single run

, without intermediate steps. All the

secondaries are transported before a new history is started.

e FLUKA can be run in fully

interaction models reproduce internal correlations.

e |t can also be run in

analog/ mode. Its microscopic

biased

mode

http://www.fluka.org
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FLUKA ToPics

Descriptions of FLUKA models and extensive benchmarking can be
found in the literature (see the web page)
A few recent, space-related developments will be presented here

e The Past: Cosmic ray shower calculations, Benchmarks and
applications

BME

, Houston, October 14th, 2002




Cosmic Ray Showers

(- )

Motivations: Atmospheric neutrino fluxes (Astropart.Phys.12 (2000) 315) (Milan)

— Exploiting the reliability of FLUKA Hadronic interaction models

Results
e The first 3Dimensional MC simulation of v production due to
atmospheric showers
[

e Widespread applications to aircraft exposure evaluation

Past results obtained in the superposition model: primary nucle:
are split into nucleons before interacting

, Houston, October 14th, 2002 4
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Hadron/muon fluxes in the atmosphere: examples 111

ZJugspitze neutron data (may-1995)
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Computed heutron flux (histo) at top of the Zugspitze (left) f(;rdergf and wet
conditions, and hadron flux (right) measured with the KASKADE experiment. Data
(symbols) from JPG 20, 637 (1994), JPG 21, 439 (1995).
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Hadron/muon fluxes in the atmosphere: examples IV
(Rad.Prot.Dosim.98 (2002) 367)
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Hadron/muon fluxes in the atmosphere: examples V

(Rad.Prot.Dosim.98 (2002) 367)
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Doses to aircraft crews (Pelliccioni et al., Rad.Prot.Dosim. 93 101 and 96 219 (2001))
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AMS (AMS-Perugia, astro-ph/0111111 and P.Zuccon PhD Thesis)
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AMS (courtesy of AMS-INFN Perugia)

Flux (m?s sr MeV)™  positron/electron ratio
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AMS (courtesy of AMS-INFN Perugia)

lifetime (s)

102 E F- 1 :
t[Jo00o @ | (G
: £ ] Long lived
EnuDDDDDD- = g j 9.1
7DDDDDDDDDDDDD 3 -
. 000000 o00joo g
10 L7
SN DDDDDDDDDDDDDD 2
R DDDDDDDDDDDDDDDDD H
: uuuuuuuuuuu ooo0[J0oooon0os .l, o
- e d ¥
nnnnnnnnnnnn 0 0o[Q Dosoo . = L= *a s
s D200 oo = Bl i o]
nnnnnnnnnnnnnnn ofgooo s+ o s - =
nnnnnnnnnnnn -1 -
10 lE t
10'1BDDDDDDDDDDDDDDDDDDDD C oo ; s H
mo0000000000000000000 00 0« 0 I
[+ 00 10 000000000000000 00008 s + - : ALLEUTRURIORES
L s sesensnoDos e Al
-2 Do e :
10 | L 10 Fr
1 [_1 I s,
10 1 10 10 1 E, (GeV)
kinetic energy (GeV)

Proton flight time calculated with FLUKA (left) and evaluated from
AMS data (right). Cut at ©); < 0.6 rad

, Houston, October 14th, 2002 12




New Primary spectra

New measurements

Primary proton spectra

Stringent accuracy needed T T T T T oo ik -
New fit

for v fluxes
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Heavy Ion TRANSPORT
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Experimental (red) (R.Bimbot, NIMB69
(1992) 1 ) and FLUKA (blue) stopping

powers of Argon ions in different materials
and at different energies.

Heavy ion transport is already in

FLUKA:

e [onization energy losses

— Up-to date effective charge
parametrizations

— Energy loss straggling
e Multiple scattering
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Heavy ion Interactions

High energy A-A interactions (E > 5 — 10 GeV/u):

e Interface to Present
Intermediate energy A-A interactions
e Medium-heavy nuclei: interface to RQMD-2.4 code
(H.Sorge)
e Medium-heavy nuclei: Internally developed QMD
e Light nuclei (<C): extension of , Near
(the FLUKA cascade+preequilibrium model ) Future

Low energy A-A interactions (£ < 100MeV/amu):
e Interface to Monte-Carlo Boltzmann Master Equation
code developed at Milan University. (NPA 679 (2001) 753)

, Houston, October 14th, 2002
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Heavy ions at relativistic energies: DPMJET (-2.5/I11)

a 1.
Nucleus-Nucleus interaction code for collisions from ~5-10 GeV/n up to

the highest cosmic ray energies (10*® — 10?° eV) used in many CR shower

codes
18 based on the Dual Parton Model and the Glauber

model, like the high energy FLUKA hadron-nucleus generator

FLUKA-DPMJET (DPMJET-11.53, upgrading to DPMJET-III):

Cross sections pre-computed by DPMJET, tabulation is used by FLUKA
Glauber impact parameter pre-computed over complete A and E range
Interface call at begin and end of single interactions
Reaction products given back to be transported by FLUKA
Evaporation and deexcitation of residual nuclei performed in FLUKA

'PRD 51 (1995) 64; Gran Sasso INFN/AE-97/45 (1997); hep-ph/9911232; hep-ph/9911213; hep-ph /0002137, “The Monte Carlo Event
Generator DPMJET-III” Proc. MC2000, Springer-Verlag Berlin, Heidelberg, pp. 1033-1038.

~

J
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DPMJET(-2.5): examples of performances
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DPMJET(-IIT): examples of performances 11
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DPMJET (-IIT): examples of performances III

dN/dy
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FLUKA-DPMJET applications: ATIC

The ATIC detector

Balloon experiment to measure
cosmic ray composition
Flew 2001 over Antarctica, more

flights planned

BGO calorimeter
scintillator hodoscopes
Carbon targets

silicon strip detectors

BOTTOM TOP

Alfredo Ferrari COSPAR-2002, Houston, October 14th, 2002 20



ATIC (preliminary)

-

ATIC 1 TeV/A C Chrgd. Part. Fluence
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(r)QMD approach:

-

Features of a generic QMD:
Nucleons = wave packets

=the mean field evolves during the interaction

Introduce (Monte Carlo) two—body scattering/interactions to model the
reaction

Initialization is critical (very unstable configurations possible)
Relativistic extension problematic.

, Houston, October 14th, 2002



The FLUKA - RQMD-2.4 interface

4 Author: H. Sorge (PRC52 3291 (1995), Ann. Phys. 192 266 (1989)) )
Nice relativistic QMD model applicable from =~ 0.1 GeV/n up to several

hundreds of GeV/n, successfully applied to relativistic A-A particle production

over a wide energy range

Problems:
e No evaporation/fragmentation /fission /deexcitation of residuals and fragments

e No longer maintained

Solutions:
e Rework from scratch the nuclear final state out of the available info on spectators,

correlating the excitation energy to the actual hole depth of hit nucleons
[

° FLUKA

Temporary solution for A-A interactions below few GeV/n

, Houston, October 14th, 2002 23



FLUKA with modified RQMD-2.4 - results

400 MeV/n Ar on (thick) Al -> neutrons 400 MeV/n Fe on (thick) Al -> neutrons
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Double differential neutron yield by 400 MeV /n Ar (left) and Fe (right) ions on thick
Al targets, histo FLUKA | dots exp. data (PRC62 044615 (2000)).
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FLUKA with modified RQMD-2.4 - results 11
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A-A cross sections

.

g At high energies, down to ~ 3 GeV/nucleon: Glauber o (DPMJET) A
At lower energies, from few AMeV to few AGeV, NASA parametrization
(R.K. Tripathi et al., NIM B117,347(1996))

Good matching for light systems, small modification to NASA ¢ needed
for heavy systems (and for Li)
8000—: Oprod(mb) 3500
“ A .

1T A=26 1.
2000 AR 500, 23
Pb-A (left) and '°O-A (right), o at \/syy = 3 GeV
black: Glauber; blue: NASA; green: modified NASA; red: data

_/

, Houston, October 14th, 2002
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A-A cross sections

1 Oprod (mb)j

E, (GeviN) : E, (GeVIN)

T \\\\\Hi T \\\\\Hi T \\\\\Hi T \\\\\H‘ T \\\\\Hi T \\\\\Hi T \\\\\Hi T \\\\\H‘
107 107 107" 1 10 107 107 107 1 10

Reaction cross sections for a’s on Carbon (left) and *C on Aluminium as obtained

from our approach compared with exp. data (green and symbols) from various
sources. The point is the Glauber computed cross section at the

\ joining point. The original NASA parametrization is not distinguishable in this case.
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A-A cross sections

2000
NASA o parametrization seems
to have problems for Li ions: vo. /. N
SLi on 27Al vs. Energy

green: Original NASA oo\
red: revised parametrization
point: 500
green and points:  exp.
data EyefSvm)
0° 107 107 1 10
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New QMD

-

Presently working on the initialization stage
Key issues are

e selection of potentials and of the potential parameters
e Pauli blocking constraint.

Goal: MonteCarlo creation of initial nuclear configurations
with

e properties close to experimental ground state ones
e stability for a time O nuclear collision

, Houston, October 14th, 2002
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New QMD

10

20 40 60 80 100 120 140 160 180 200
t (fm/c)
Root mean square radii of 10O nuclei (fm) versus time (fm/c) for eleven
initial “random” configurations: about 1/2 of them can be stored as
“stable” configurations.

, Houston, October 14th, 2002
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Normalized radial density distribution of a “stable” *°Ca nuclear
configuration at t=0 (solid line) and at t=200 fm/c (dotted line)

, Houston, October 14th, 2002

31




Monte Carlo BME

4 Monte Carlo approach based on the Boltzmann Master Equation theory
Heavy ion reactions at incident energies of a few tens of MeV/amu

BME:statistical evolution of the composite nucleus through a sequence of
two body interactions and emission of unbound particles, also in the form
of light clusters. Mean field effects are taken into account

BME is inclusive, but:

Milan:Monte Carlo code (exclusive) evaluates the probability of any
complex event as the joint probability of a sequence of elementary
emissions, whose probabilities are assumed to be equal to corresponding
multiplicities (given by BME) in very short time intervals. Up to %0,
incomplete fusion processes following the projectile break-up are included.

M. Cavinato et al., Nucl. Phys. A 679 (2001) 753, Phys. Lett. B 382 (1996) 1
\ E. Gadioli et al., Nucl. Phys. A 708 (2002) 391

~

Alfredo Ferrari COSPAR-2002, Houston, October 14th, 2002 32



Monte Carlo BME: examples I, from Nucl. Phys. A 679 (2001) 753

r 0 OAr (26 MeV/n) + "N *OAr (26 MeV/n) + %Mo YOAr (26 MeV/n) + %2Sn \

SO0
&

)
\HHH‘ T HHH‘ T \HH‘ T TN T TS T TTIT
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O

Spectra of neutrons emitted in central collisions of % Ar with Ni, Mo and '??Sn at 26 MeV /amu.
Symbols are exp. data, histograms are simulation results. Starting from top the spectra are
progressively scaled down by a factor ten

. _/
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Monte Carlo BME: examples II, unpublished

Residual In and Rh excitation functions following **C+1%Rh.

Red: simulation results, black: exp. data

200

2C+"Rh Excitation Functions
ot 10°
g
10 b
2, , i
) s 3 0 b Ly 1
0 ¢ 2 4 3
o ¢ H §§ .
1 . 3 by
o' ., 4 ol 3% 2 i
] 5 5 ¢
° foo e ¢ [
0 i ; . 5
o . . ] «° 2 .
o 100 200 300 o 100
0 10°
109, . .
10 b E T 530
@ 0 L s ig’f % 4
T vl £ 3 : %
. .
£ s s E
~ B 3
5 0L 5o 4 g
3,
. % N
oL % . ] 0° b 4
l‘o" L L 10’1 hd L L
0 100 200 300 0 100 200
10’
07
B
2
10° £ §§§§§§ %5 3
: g
0 ¢ ¢ E
. .
100 L L i
0 100 200 300
Energy(MeV)

300

2C+"Rh Excitation Functions

.
WDZmR
g aepeRgeligRier
.

.

50 100 150 200 250 300 350 400 450

50 100 150 200 250 300 350 400 450

o(mb)

omRp S
3 3] c.
PR $25553055

-

.
%3 * .
FEEP gy

50 100 150 200 250 300 350 400 450

50 100 150 200 250 300 350 400 450

T T
99th
to §‘§§§§§§5§§§5 .
s

Aaana
991

"Rh . .
7 §§§§§'§§§5§§§;.

[}

50 100 150 200 250 300 350 400 450

50 100 150 200 250 300 350 400 450

Energy(MeV)

, Houston, October 14th, 2002




Monte Carlo BME: examples III (NPA 708 (2002) 391)

d?c /dEAQ (mb MeV™' sr7)

15

10F

®0+%Co

80
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50 100 150 200

.25

E (MeV)

— 250MeV

14°

50

100 150 200

50

50°

100 150 200

Spectra of carbon fragments

- emitted in %0 on *?Co at

250 MeV.
Exp. spectra: solid points
Theoretical predictions by

= BME (lines)

projectile break-up (histo)
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Conclusions

" o FLUKA: proven capabilities in atmospheric and cosmic ray problems besides the )
original accelerator ones

e Complex 3D geometries with magnetic field transport, up-to-date CR primary
spectra, solar modulation, multipole expansion of the earth magnetic field
implemented and available

o Ability to follow the whole shower induced by whichever ton on whichever

target, with sound interaction physics above 100 MeV/n now achieved
e Rich development program for the future: performances will improve with

— PEANUT and new in place of the RQMD-2.4 “temporary” solution
— BME
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