*$ CREATE SOURCE.FOR *COPY SOURCE * *=== source ===========================================================* * SUBROUTINE SOURCE ( NOMORE ) INCLUDE '(DBLPRC)' INCLUDE '(DIMPAR)' INCLUDE '(IOUNIT)' * *----------------------------------------------------------------------* * * * Copyright (C) 1990-2010 by Alfredo Ferrari & Paola Sala * * All Rights Reserved. * * * * * * New source for FLUKA9x-FLUKA20xy: * * * * Created on 07 January 1990 by Alfredo Ferrari & Paola Sala * * Infn - Milan * * * * Last change on 17-Oct-10 by Alfredo Ferrari * * * * This is just an example of a possible user written source routine. * * note that the beam card still has some meaning - in the scoring the * * maximum momentum used in deciding the binning is taken from the * * beam momentum. Other beam card parameters are obsolete. * * * * Output variables: * * * * Nomore = if > 0 the run will be terminated * * * *----------------------------------------------------------------------* * INCLUDE '(BEAMCM)' INCLUDE '(FHEAVY)' INCLUDE '(FLKSTK)' INCLUDE '(IOIOCM)' INCLUDE '(LTCLCM)' INCLUDE '(PAPROP)' INCLUDE '(SOURCM)' INCLUDE '(SUMCOU)' * LOGICAL LFIRST * SAVE LFIRST DATA LFIRST / .TRUE. / *======================================================================* * * * BASIC VERSION * * * *======================================================================* NOMORE = 0 * +-------------------------------------------------------------------* * | First call initializations: IF ( LFIRST ) THEN * | *** The following 3 cards are mandatory *** TKESUM = ZERZER LFIRST = .FALSE. LUSSRC = .TRUE. * | *** User initialization *** END IF * | * +-------------------------------------------------------------------* * Push one source particle to the stack. Note that you could as well * push many but this way we reserve a maximum amount of space in the * stack for the secondaries to be generated * Npflka is the stack counter: of course any time source is called it * must be =0 NPFLKA = NPFLKA + 1 * Wt is the weight of the particle WTFLK (NPFLKA) = ONEONE WEIPRI = WEIPRI + WTFLK (NPFLKA) * Particle type (1=proton.....). Ijbeam is the type set by the BEAM * card * +-------------------------------------------------------------------* * | (Radioactive) isotope: IF ( IJBEAM .EQ. -2 .AND. LRDBEA ) THEN IARES = IPROA IZRES = IPROZ IISRES = IPROM CALL STISBM ( IARES, IZRES, IISRES ) IJHION = IPROZ * 1000 + IPROA IJHION = IJHION * 100 + KXHEAV IONID = IJHION CALL DCDION ( IONID ) CALL SETION ( IONID ) * | * +-------------------------------------------------------------------* * | Heavy ion: ELSE IF ( IJBEAM .EQ. -2 ) THEN IJHION = IPROZ * 1000 + IPROA IJHION = IJHION * 100 + KXHEAV IONID = IJHION CALL DCDION ( IONID ) CALL SETION ( IONID ) ILOFLK (NPFLKA) = IJHION * | Flag this is prompt radiation LRADDC (NPFLKA) = .FALSE. * | Group number for "low" energy neutrons, set to 0 anyway IGROUP (NPFLKA) = 0 * | * +-------------------------------------------------------------------* * | Normal hadron: ELSE IONID = IJBEAM ILOFLK (NPFLKA) = IJBEAM * | Flag this is prompt radiation LRADDC (NPFLKA) = .FALSE. * | Group number for "low" energy neutrons, set to 0 anyway IGROUP (NPFLKA) = 0 END IF * | * +-------------------------------------------------------------------* * From this point ..... * Particle generation (1 for primaries) LOFLK (NPFLKA) = 1 * User dependent flag: LOUSE (NPFLKA) = 0 * No channeling: LCHFLK (NPFLKA) = .FALSE. DCHFLK (NPFLKA) = ZERZER * User dependent spare variables: DO 100 ISPR = 1, MKBMX1 SPAREK (ISPR,NPFLKA) = ZERZER 100 CONTINUE * User dependent spare flags: DO 200 ISPR = 1, MKBMX2 ISPARK (ISPR,NPFLKA) = 0 200 CONTINUE * Save the track number of the stack particle: ISPARK (MKBMX2,NPFLKA) = NPFLKA NPARMA = NPARMA + 1 NUMPAR (NPFLKA) = NPARMA NEVENT (NPFLKA) = 0 DFNEAR (NPFLKA) = +ZERZER * ... to this point: don't change anything * Particle age (s) AGESTK (NPFLKA) = +ZERZER AKNSHR (NPFLKA) = -TWOTWO * Kinetic energy of the particle (GeV) * TKEFLK (NPFLKA) = SQRT ( PBEAM**2 + AM (IONID)**2 ) - AM (IONID) XRNDM = FLRNDM (XRNDM) IF ( XRNDM.LE.0.03067 ) THEN TKEFLK (NPFLKA)=0.0001 ELSE IF ( XRNDM.LE.0.06315) THEN TKEFLK (NPFLKA)=0.00015 ELSE IF ( XRNDM.LE.0.17079) THEN TKEFLK (NPFLKA)=0.0002 ELSE IF ( XRNDM.LE.0.20468) THEN TKEFLK (NPFLKA)=0.00025 ELSE IF ( XRNDM.LE.0.29646) THEN TKEFLK (NPFLKA)=0.0003 ELSE IF ( XRNDM.LE.0.33804) THEN TKEFLK (NPFLKA)=0.00035 ELSE IF ( XRNDM.LE.0.37648) THEN TKEFLK (NPFLKA)=0.0004 ELSE IF ( XRNDM.LE.0.41257) THEN TKEFLK (NPFLKA)=0.00045 ELSE IF ( XRNDM.LE.0.47925) THEN TKEFLK (NPFLKA)=0.0005 ELSE IF ( XRNDM.LE.0.48710) THEN TKEFLK (NPFLKA)=0.00055 ELSE IF ( XRNDM.LE.0.56005) THEN TKEFLK (NPFLKA)=0.0006 ELSE IF ( XRNDM.LE.0.61654) THEN TKEFLK (NPFLKA)=0.00065 ELSE IF ( XRNDM.LE.0.62093) THEN TKEFLK (NPFLKA)=0.0007 ELSE IF ( XRNDM.LE.0.62956) THEN TKEFLK (NPFLKA)=0.00075 ELSE IF ( XRNDM.LE.0.64839) THEN TKEFLK (NPFLKA)=0.0008 ELSE IF ( XRNDM.LE.0.66565) THEN TKEFLK (NPFLKA)=0.00085 ELSE IF ( XRNDM.LE.0.67898) THEN TKEFLK (NPFLKA)=0.0009 ELSE IF ( XRNDM.LE.0.70487) THEN TKEFLK (NPFLKA)=0.00095 ELSE IF ( XRNDM.LE.0.71429) THEN TKEFLK (NPFLKA)=0.001 ELSE IF ( XRNDM.LE.0.71876) THEN TKEFLK (NPFLKA)=0.00105 ELSE IF ( XRNDM.LE.0.78779) THEN TKEFLK (NPFLKA)=0.0011 ELSE IF ( XRNDM.LE.0.85683) THEN TKEFLK (NPFLKA)=0.00115 ELSE IF ( XRNDM.LE.0.86781) THEN TKEFLK (NPFLKA)=0.0012 ELSE IF ( XRNDM.LE.0.89135) THEN TKEFLK (NPFLKA)=0.00125 ELSE IF ( XRNDM.LE.0.93057) THEN TKEFLK (NPFLKA)=0.00135 ELSE IF ( XRNDM.LE.0.96980) THEN TKEFLK (NPFLKA)=0.0014 ELSE IF ( XRNDM.LE.0.97843) THEN TKEFLK (NPFLKA)=0.0016 ELSE IF ( XRNDM.LE.0.98313) THEN TKEFLK (NPFLKA)=0.00165 ELSE IF ( XRNDM.LE.0.98784) THEN TKEFLK (NPFLKA)=0.0017 ELSE IF ( XRNDM.LE.0.99208) THEN TKEFLK (NPFLKA)=0.00175 ELSE IF ( XRNDM.LE.0.99631) THEN TKEFLK (NPFLKA)=0.0018 ELSE TKEFLK (NPFLKA)=0.00195 END IF * Particle momentum PMOFLK (NPFLKA) = PBEAM * PMOFLK (NPFLKA) = SQRT ( TKEFLK (NPFLKA) * ( TKEFLK (NPFLKA) * & + TWOTWO * AM (IONID) ) ) * Cosines (tx,ty,tz) CALL SFLOOD (XXX,YYY,ZZZ,UXXX,VYYY,WZZZ) UBEAM = XXX VBEAM = YYY WBEAM = ZZZ TXFLK (NPFLKA) = UBEAM TYFLK (NPFLKA) = VBEAM TZFLK (NPFLKA) = WBEAM * TZFLK (NPFLKA) = SQRT ( ONEONE - TXFLK (NPFLKA)**2 * & - TYFLK (NPFLKA)**2 ) * Polarization cosines: TXPOL (NPFLKA) = -TWOTWO TYPOL (NPFLKA) = +ZERZER TZPOL (NPFLKA) = +ZERZER * Particle coordinates XFLK (NPFLKA) = XBEAM YFLK (NPFLKA) = YBEAM ZFLK (NPFLKA) = ZBEAM * Calculate the total kinetic energy of the primaries: don't change IF ( ILOFLK (NPFLKA) .EQ. -2 .OR. ILOFLK (NPFLKA) .GT. 100000 ) & THEN TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA) ELSE IF ( ILOFLK (NPFLKA) .NE. 0 ) THEN TKESUM = TKESUM + ( TKEFLK (NPFLKA) + AMDISC (ILOFLK(NPFLKA)) ) & * WTFLK (NPFLKA) ELSE TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA) END IF RADDLY (NPFLKA) = ZERZER * Here we ask for the region number of the hitting point. * NREG (NPFLKA) = ... * The following line makes the starting region search much more * robust if particles are starting very close to a boundary: CALL GEOCRS ( TXFLK (NPFLKA), TYFLK (NPFLKA), TZFLK (NPFLKA) ) CALL GEOREG ( XFLK (NPFLKA), YFLK (NPFLKA), ZFLK (NPFLKA), & NRGFLK(NPFLKA), IDISC ) * Do not change these cards: CALL GEOHSM ( NHSPNT (NPFLKA), 1, -11, MLATTC ) NLATTC (NPFLKA) = MLATTC CMPATH (NPFLKA) = ZERZER CALL SOEVSV RETURN *=== End of subroutine Source =========================================* END