CombLayer
a fast CSG geometry builder

Stuart Ansell
and
Konstantin Batkov

MAX IV Laboratory
Lund University

October 28, 2024
Karlsruhe

Introduction
Geometry
Export

Examples

Outline

Introduction

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Introduction

The purpose of CombLayer

To easily and rapidly build complex geometric models
which are fast to run

in Monte Carlo codes

utilising Constructive Solid Geometries.

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer

Introduction

CombLayer allows:
m prepare input files with C++, defining:

geometry

materials and their mixtures

source term

estimators

physics settings

magnetic fields

variance reduction

everything — no need to post-edit the generated input files

m export models into different formats:

FLUKA

MCNP

PHITS — STEP

POV-Ray — STEP

VTK — ROOT (see my talk)

Konstantin Batkov

| ComblLayer https://github.com/SAnsell/CombLayer

Introduction

CombLayer helps you build
easily manageable
fully parametric and fast Monte Carlo models.

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Introduction

Main author: Stuart Ansell
since 2011
m KB: since 2015
~ 500k lines of code
GPL 3 licence
Daily used at MAX 1V, ESS, ISIS
+ some projects at SNS, Delft and PIK

m Very stable code
m is used to build detailed models of facilities

https://github.com/SAnsell/CombLayer

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

https://github.com/sansell/comblayer

Outline

Geometry

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

m Geometry is described in object-oriented approach
m whole model is built from
m Individual components are assembled together much like
the
m Each component is described in its
m can be placed anywhere with arbitrary orientation
m can be flipped with respect to arbitrary plane
m Each component is described in its

B no need to care about overlaps in surface/region naming
with other components

m Each component can be

B copies from each other
m Depending on needs,

only of the whole geometry can be built

m significantly improves tracking speed

m Whole model can be arbitrary and translated

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer | 9/23

Geometry

m C++ allows a user to benefit from its object-oriented
programming approach:

[through inheritance and polymorphism

m This enables ,
which is easy to modify
m all variables (e.g. geometry dimensions and materials) are
and can be changed runtime
(as command line arguments or .xml file entries)
— optimisation calculations
— modelling various scenarios
m Big of already-built components and a library of
pre-defined materials
m accelerator, reactor, neutron guides, x-ray beamlines
] among users

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Geometry optimisation

m CombLayer performs a two factor to
minimise the number of literals in the region description
m removal of duplicated implicants
m partial disjunctive normal form optimisation
m In intersection it removes unnecessary surfaces and allows
the regions to be split or merged as needed minimising
Monte Carlo run-time cost
m e.g. complex-shaped walls can be for
importance biasing

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Geometry

Intersection of components

m Intersection of components is done just by specifying
which component goes into which one

m all the low-level math is handled by the code,
allowing users to spend their time more efficiently

Spoon->InsertTo (Cup) ;

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Geometry
Tracking system

CombLayer has a built-in geometry tracking system, that allows
m internal geometry debugging
m efficient intersection of components
m removal of zero-volume regions
m weight-window generation (see next slide)

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

CombLayer has a built-in
for FLUKA, MCNP and PHITS

m 3D mesh of importances superimposed with geometry
m handy for deep penetration calculations

m not as powerful as e.g. ADVANTAG,
but

m nested meshes are possible

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Outline

Export

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

m As indicated above, one can define with
CombLayer and export it to one of the listed Monte Carlo
codes (MCNP, FLUKA, PHITS), and POV-Ray and VTK

m However, between Monte Carlo codes, it
is sometimes not possible to export
model to different codes
B some estimators and surfaces exist in some codes,
but not in the others

m source term, physics and biasing settings don’t completely
overlap between the codes

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Export same settings to different Monte Carlo codes

m Geometry

[to all codes
provided that all required surfaces are supported by the
given code

| i.e. single cones exist in MCNP but not in FLUKA
m Materials

m material composition can be exported to all codes
m temperature and S(a, 8): only MCNP and PHITS

m Estimators and Physics settings
m typically to be individually defined for each code
m Magnetic fields
m currently, only FLUKA
m Biasing
m to be individually defined for each code
+ built-in weight window generation for all supported codes

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

HOVAEY,
Persistence of Vision Raytracer

m POV-Ray is a CSG-based raytracer that produces realistic
3D images

m CombLayer only exports geometry and materials as simple
textures, so all scene setup must be prepared manually

m http://povray.org

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer | 18/23

http://povray.org

Outline

Examples

onstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Examples

ESS target wheel

m The target wheel consists of 36
sectors (numbered)

m Each sector is a C++ class
instance

= the wheel is made of 36
copies of the same object

m All sectors are made of Tungsten
bricks (see sectors 0, 1, 35)

m The brick surfaces and regions
are defined with the for loops

m To speed-up calculations, other
sectors are made of
homogenised Tungsten
W the switch is implemented just by setting the BricksActive variable to

false in the command line

Konstantin Batkov | CombLayer https://github.com/SAnsell/CombLayer

Examples
ESS moderators

Moderator 1

m To maximise neutron production, the ESS
target-moderator-reflector assembly have been optimised
m Different geometries of neutron moderators were studied
m two of them are shown above
m The moderator geometry is selected by setting a single
command line variable, i.e.
-v ModeratorType BF1

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer | 21/23

Examples

Accelerator beamline

m Part of an accelerator beamline with complex outer region:

m The same geometry with outer region split into simpler
regions to speedup tracking (and reduce the DNF length):

— Ot et T ﬁ = ”‘ =ecé

1

67l

m CombLayer does it semi-automatically, almost without user
intervention

m only need to indicate the bounding box dimensions
m and the start/end surfaces of each component

B this is anyway needed to attach other components

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

Conclusion

m ComblLayer is a powerful and user-friendly tool for building
fully parameterised and fast CSG Monte Carlo models

m Source code and documentation:
https://github.com/SAnsell/CombLayer

Konstantin Batkov | ComblLayer https://github.com/SAnsell/CombLayer

https://github.com/SAnsell/CombLayer

	Introduction
	Geometry
	Export
	Examples

