

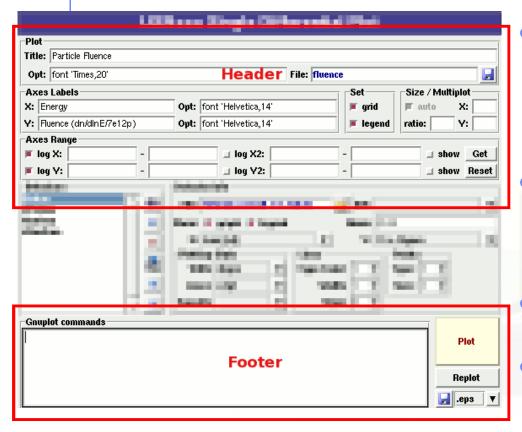
FLUKA: Flair Plots

7th FLUKA Course NEA Paris, Sept.29-Oct.3, 2008

Plot List

Plots can be created in the "Plot" list frame. Either Add new plots or Clone from existing ones.

It is important to set a unique filename for each plot. This filename will be used for every auxiliary file that the plot needs (the extension will change)

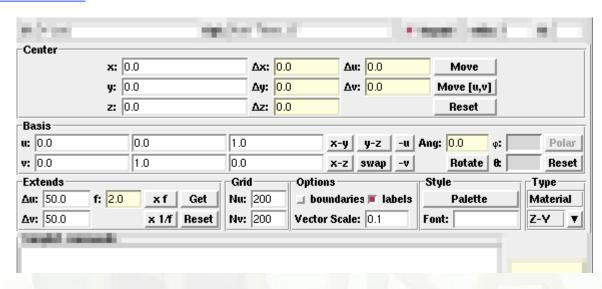

The Filter button creates automatically one plot for each processed unit

Hit Enter or click the Edit icon to display the plotting dialog

Plot Types

Plot Types		
	Geometry	For geometry plots
	USRBIN	For plotting the output of USRBIN
•	USR-1D	To plot single differential quantities from cards USRBDX, USRTRACK, USRCOLL, USRYIELD
	USR-2D	To plot double differential from USRBDX
	RESNUCLE	To plot 1d or 2d distributions of RESNUCLEi
•	USERDUMP	To plot the output of USERDUMP. Useful for visualizing the source distribution (ToDo)

Plotting Frames

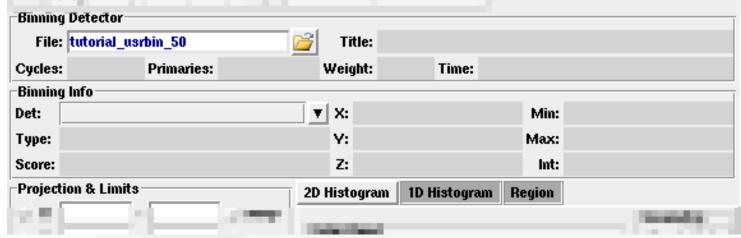


- All plot types share some common fields:
 - Title + options, Filename, Axis Labels, Legends (Keys) and Gnuplot Commands.
- Plot button (Ctrl-Enter) will generate all the necessary files to display the plot, ONLY if they do not exist.
- Re-Plot will force the creation of all files regardless their state
- Check the gnuplot manual to provide additional customization commands: e.g. To change the title font to Times size=20, add in the Opt: field the command: font 'Times, 20'

General Tips

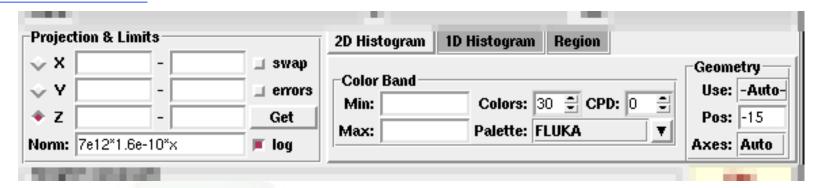
- To set some default parameters for gnuplot create a file called ~/.gnuplot
- The output window displays all the commands that are sent to gnuplot. As well as the errors. In case of problem always consult the output window!
- In the Gnuplot commands you can fully customize the plot by adding manually commands. Please consult the gnuplot manual for available commands
- All buttons and fields have tool tips. Move the cursor on top of a field to get a short description

Geometry Plotting

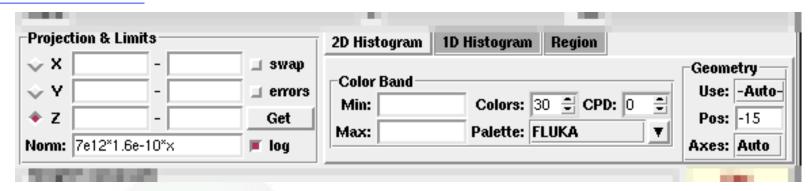

- For geometry plotting the following information is needed (Fields with white background):
 - Center (x,y,z) point defining the center of your plot
 - Basis (U,V): Two perpendicular axis vectors defining the new system
 - Extends (DU, DV) of the plot. The total width/height will be twice the extends
 - Scanning grid (NU, NV): how many points to scan
 - Plotting type (Only borders, Regions, Materials, ...)

Geometry plotting

- All input fields with light-yellow background are used to perform operations on the previous fields. e.g. to rotate the basis-vectors
- When the "Plot" button is pressed, flair will create a temporary input file containing only the geometry and the related information together with the appropriate PLOTGEOM card. It will start a FLUKA run, and on exit it will convert the PLOTGEOM file in a format that gnuplot understands


USRBIN

- With the USRBIN plotting frame you can perform 2D or 1D projections of the data or errors from USRBIN data.
- For the moment the special binning and region binning is not supported


- Set the usrbin summary file in the File: field
- Select from Det: the detector to use.
- All the available detector information will be displayed
- The information Mininum, Maximum and Integral will be filled after displaying the plot!

USRBIN (2D Plot)

- Select the "2D Histogram" tab
- Select the projection axis and limits
- swap: will exchange the plotting X and Y axis
- errors: will plot the error values as color plot
- Get: will get the projection limits from the gnuplot window
- Norm: is the normalization value or expression. You can even define a function to use as normalization using as argument x: e.g. 5*x**2+4*x
- log: select linear or log in the color bar axis

USRBIN (2D Plot) cont.

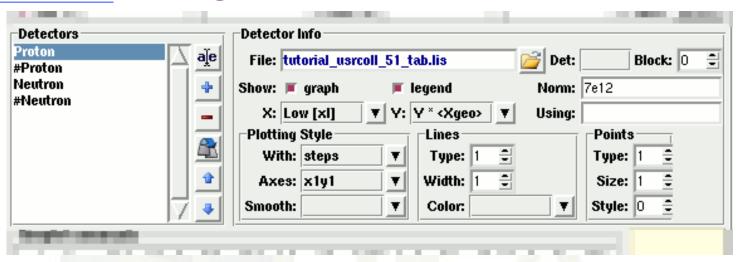
 The Minimum, Maximum, Colors and CPD (Colors per decade) are interconnected.

$$log10(Max) = log10(Min) + Colors/CPD$$

- Once the value is changed in one field, the other will be calculated accordingly
- Palette: offers a possibility to the user to choose from various predefined palettes. The user can define his own palette using the "set palette" command from the "Gnuplot commands" text box

USRBIN (2D plot) cont...

Superimpose the geometry can be done either automatically or manually.


- Auto: Select –Auto- in the Use: field of the Geometry and the program will try to draw the geometry at the middle of the limits on the projection axis. To change the position modify the Pos: value
- Manual: The dropdown listbox will display also a list of all geometry plots in the flair project. Select the one you prefer and the plotting axis. The manual mode can be used in special cases when the usrbin file do not contain the absolute coordinates
- The color palette is predefined in flair, but the user can modify it with the "set palette" gnuplot command.
 See gnuplot help page for more info.

USRBIN (1D-plots)

- Select the "1D Histogram" tab
- Select the projection axis from "Projection & Limits" as before
- WARNING: When making projections the error is typically underestimated.

USR-1D Single Differential Plot

- USR-1D is able to plot the 1D single differential information from the USRBDX, USRCOLL, USRTRACK and USRYIELD cards (The 2D information is not handled).
- The file type in use should have the extension <u>_tab.lis</u> and are generated by the FLUKA data merging tools (See Data Frame)
- You can superimpose many scoring output in a single plot.

USR-1D Single Differential Plot

The basic steps to create a plot are:

- Add or Clone a _tab.lis file, in the Detectors listbox.
- Select the detector to be used from the Det: dropdown listbox
- Set a name in the Name: field. Names starting with # will not be displayed as keys in the plot
- Select the X: and Y: information to plot as well the Style:
 X,Y,Style have different values.
 Note: Different combination will be interpreted in different way from gnuplot, resulting to maybe unwanted results
- You have the possibility to select:
 - Plotting axes
 - Smoothing of the plot
 - Color, line type, width, point sizes etc.
 (Enter the command "test" in the gnuplot command and hit "Plot" you will get a plot of all possible types)
 - Predefined styles

USR-1D Plots

- X: choices:
 - [xl, xh refer to the limits of each individual bin of the histogram]
 - GeoMean [sqrt(xl*xh)]
 - Mean [(xl+xh)/2]
 - Low [xl]
 - High [xh]
- Y: choices:
 - Y
 - Y × < X>
 - Y × < Xgeo >
 - Y × XI
 - Y × Xh
 - $\mathbf{Y} \times \mathbf{DX}$

Geometrical mean. Should be used if X is scored as a log-histogram Normal mean. For linear scoring Low value of the bin High value of the bin

Y-bin value as given by FLUKA

Y-bin value multiplied by the mean X value of the bin (Isolethargic)

Y-bin value multiplied by the geometrical X-mean of the bin (Isolethargic)

-//- with the X-low value of the bin

-//- with the X-high value of the bin

-//- with the width of the bin

USR-1D Plots

- Style: has a huge list of choices as given by gnuplot.
 You can consult gnuplot manual for the description of the options. Some suggested settings are the following:
 - To make a line/scatter plot with or without errors
 X: GeoMean (if scored in log), Mean (if scored in linear)

Y: Y × < Xgeo or X>, for isolethargic plotting Style: lines, linespoints, dots, errorbars, yerrorbars, errorlines...

To make a histogram

X: Xlow [xl]

Y: what ever choice you want to plot

Style: steps

or

X: Xhigh [xh] Style: **histeps**

USR-1D Plots

- You have the possibility to superimpose plots. Useful if you want to show a histogram with the errorbars superimposed.
- You can selected angular slices from USRBDX data using the "Block" option
- You can superimpose experimental data or any other data file and override all options using the "Using:" input field

USERDUMP

- Still under development
- Particle tracks (use with care)
- Visualize the source particles distribution, as well superimposed with the geometry.