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Overview
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General concepts:

Phase space

The Boltzmann equation

Analog vs. biased Monte Carlo calculation
Figure of merit

Simulation vs. integration

Sampling techniques
discrete
by inversion
by rejection

Statistical errors on results: batch statistics
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Phase space

N
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e Phase Space: a concept of classical Statistical Mechanics
e Each Phase Space dimension corresponds to a particle degree of freedom
e 3 dimensions correspond to Position in (real) space: x,y, z

e 3 dimensions correspond to Momentum: p,, p,, p-
(or Energy and direction: E, 6, ¢)

e More dimensions may be envisaged, corresponding to other possible
degrees of freedom, such as quantum numbers: spin, etc.

e Each particle is represented by a point in phase space

e [ime can also be considered as a coordinate, or it can be considered
as an independent variable: the variation of the other phase space co-
ordinates as a function of time (the trajectory of a phase space point)

constitutes a particle “history”
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The Boltzmann equation
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o All particle transport calculations are (explicit or implicit) attempts to

solve the Boltzmann Equation

e |t is a balance equation in phase space: at any phase-space-point, the
increment of particle phase-space-density is equal to the sum of all

“production terms’ minus a sum of all “destruction terms”

e Production: Sources, “Inscattering”, Particle Production, Decay
e Destruction: Absorption, “Outscattering”, Decay

e We can look for solutions of different type: at a number of (real
or phase) space points, averages over (real or phase) space regions,
projected on selected phase space hyperplanes, stationary or time-
dependent
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Mean of a distribution - 1

N

e [n one dimension:
Given a variable x, distributed according to a function f(x), the mean or average of

another function of the same variable A(x) over an interval [a,b| is given by:

A= ﬁ Alz) f(z) dx
/ab f(x)dz

Or, introducing the normalized distribution f’:

A= ﬁ)A(l) f(z)dz

A particular case is that of A(x) = 1. T = fbrf"(r) dx

a
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Mean of a distribution - 2

N

e In several dimensions: Given n variables . y. z... ., distributed according to the
(normalized) functions f'(x), ¢'(y), h'(z)..., the mean or average of a function of

those variables A(x.y, z...) over an n-dimensional domain D) is given by:

A= L[] Mgz fle) gl h(z).dedydz.; .

Often impossible to calculate with traditional methods, but we can sample N values of
A with probability f"-¢'- 2"+ and divide the sum of the sampled values by N

N
?A{J':J Jf (x)g'(y) W (2)

Sl N

Each term of the sum is distributed like 4 (Analog Monte Carlo). Integration, but also simulation!
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Central limit theorem

N

Central Limit Theorem:

lim P(Sy) = —= o~ (Sn—A)? /2
N — oo \,I ET?r T4

For large values of N, the normalized sum of N independent and
identically distributed random variables tends to a normal distribution
with mean A and variance 07 /N

_'H'I-'l_ E : 5 ; ; .
YA Y, -0 Flz)g ) Riz) - .
lim Sy = lim 4 , =— 4
i.‘i,[.r — D Jnll' —r 0 .J:I.\'I
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MC mathematical foundation
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The central limit theorem is the mathematical foundation of the Monte
Carlo method:

In words:

Given any observable A, that can be expressed as the result of a

convolution of random processes, the average value of A can be obtained

by sampling many values of A according to the probability distributions
of the random processes.

MC is indeed an INTEGRATION method that allows to solve
multi-dimensional integrals by sampling

The accuracy of a MC estimator depends on the number of samples
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Analog Monte Carlo

N

L/

e Inan analog Monte Carlo calculation ( “honest” simulation), not only the
mean of the contributions converges to the mean of the real distribution,
but also the variance and all moments of higher order:

=,
=\

Z(l — )" |
lim L

N—o0 N

and fluctuations and correlations are faithfully reproduced.
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Integration efficiency

N

e [raditional numerical mtegratlon methods (Simpson, etc.) converge to

the true value as NV 7, where N = number of ° ‘points” (intervals) and

n = number of dimensions

e Monte Carlo converges instead as ——

VN
Number Traditional Monte Carlo Remark
of dimensions methods
n=1 % L MC not convenient
VN
oo 1 1 -
n=">2 i Y/ about equivalent
_ ¢ 1 1
n>?2 v v MC converges faster

A typical particle transport Monte Carlo problem is a 7-D problem!
X, ¥, Z, Py Py P: and t!!
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Random numbers

N

e Basis for all Monte Carlo integrations are random numbers,
i.e. values of a variable distributed according to a pdf
(probability distribution function).

e Inreal world: the random outcome of a physical process
e In computer world: pseudo-random numbers
e The basic pdf is the uniform distribution:

fle)=1  0<g<1

e Pseudo-random numbers are sequences that reproduce the
uniform distribution, constructed from mathematical
algorithms.

e All computers provide a pseudo-random number generator (or
even several of them). In most computer languages (e.g.,
Fortran 90, C) a PRNG is even available as an intrinsic routine
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| Sampling from a distribution
\‘/

Sampling from a discrete distribution

e Suppose to have a discrele random variable o, that can assume values
T, T2, ....T, with probability p;....p,.

e Assume Y p;, — 1, or normalize it.
1

e Divide the interval (0,1) in n subintervals, with limits

yo =10, y1 =p1, Y2 =p1 + Pa...
e Generate a uniform random &
e Find in which of the i y-intervals it is

e Select the corresponding ; as sampled value

Since £ is uniformly random, we have

P(zi) = P(Yi-1 <§ < Yi) = Yi — Yi-1 = P
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Sampling from a distribution

N
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Sampling from a generic distribution
e Using one random number

e Integrate the distribution function, analytically or numerically, and normalize to 1 to
obtain the normalized cumulative distribution:

F(g) =
| / flz)dz

L

e Sample a uniform pseudo-random number &

e Get the desired result by finding the inverse value | X = F~Y(£)|, analytically or most

often by interpolation (table look-up)

Since & is uniformly random, we have

Pla<az<b)=P(F(a)<{< F()=Fb) —Fla) = /:J flz)de
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Example

N
\J

take f(z) =e %, 2 € [0, 00
—~ 18
Cumulative distribution: & " r y=exp(—x)

Y. R W g - MC, N=100000
F(t)= fe%ds=Xx(1-e) = Mﬁﬂzmm
Normalized: N M, N=1000C

oe K-
Ft)=f~5de=1-cF o8 1
Sample a uniform £ € [0, 1] oI qq
l — E_i_ - - E 0.4 :-
sample 7 by inverting o
t=—In{£— 1) e VTR S B N ¥ R YR

distance (interaction lengths)
repeat N times

Practical rule: a distribution can be sampled directly if and only if its
pdf can be integrated and the integral inverted
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Sampling from a distribution

N
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e Using two random numbers (rejection technique)

e Choose a constant value C > f(x) for any x
e Sample two random numbers &, and &
o If & < f(&)/C | X =&,

otherwise re-sample &;. &

The probability that a & value is accepted is B

F(60)/C for any & MR
Plz)de = P(& =x)dx - f(& =x)/C s |

Since (&) dx = consl, 1' _ E o a

Plx)de = const - f(x) o _ i
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Particle transport Monte Carlo

N

Application of Monte Carlo to particle transport and interaction:

Each particle is followed on its path through matter.

At each step the occurrence and outcome of interactions are
decided by random selection from the appropriate probability
distributions.

All the secondaries issued from the same primary are
transported before a new history is started.

The accuracy and reliability of a Monte Carlo depends on the
models or data on which the pdfs are based

Statistical accuracy of results depends on the number of
“histories"

Statistical convergence can be accelerated by "biasing"
techniques.
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Monte Carlo Flavors -I

Microscopic Analog Monte Carlo

e uses theoretical models to describe physical processes
whenever possible

e samples from actual physical phase space distributions
e predicts average quantities and all statistical moments of any

order

e preserves correlations (provided the physics is correct, of
coursel)

e reproduces fluctuations (provided. . . see above)

e is (almost) safe and (sometimes) can be used as a "black box"
(idem)
But:
e can be inefficient and converge slowly
e can fail fo predict contributions due to rare events
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Monte Carlo Flavors -II

Biased Monte Carlo

e samples from artificial distributions, and applies a weight to

the particles to correct for the bias (similar to an integration
by a change of variable)

predicts average quantities, but not the higher moments (on
the contrary, its goal is to minimize the second moment!)

same mean with smaller variance - faster convergence

allows sometimes to obtain acceptable statistics where an
analog Monte Carlo would take years of CPU time to converge

But:
cannot reproduce correlations and fluctuations

ONLY privileged observables converge faster (some regions
of phase space are sampled more than others).
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Reduce variance or CPU time ?

N

e
Computer cost

A Figure of Merit:

)

Computer cost of an estimator = o~ X

(0> = Variance, t = CPU time per primary particle)

e some biasing techniques are aiming at reducing o, others at reducing t
. 7 I .
e often reducing o~ increases t, and viceversa

P P ) '
o therefore, minimizing o~ X ¢ means to reduce o at a faster rate than t increases,
or viceversa
e —— the choice depends on the problem, and sometimes a combination of several

techniques is most effective

e bad judgement, or excessive “forcing’ on one of the two variables, can have

catastrophic consequences on the other one, making computer cost “explode”

o2 is converging like 1/N, while t is obviously proportional to N
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Monte Carlo Flavors -III

N

Macroscopic Monte Carlo

Instead of simulating interactions, uses
parametrizations of the reaction product
distributions, obtained from fits to data and
extrapolations

Fast, especially when reactions are complex

Can be more accurate than microscopic MC if the
theory contains uncertainties/approximations

But:

The single pdfs are reproduced, but the
correlations among interaction products are not.

Cannot be extended outside the data range.
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A specific MC:..FLUKA

N

e FLUKA is a Microscopic MC

s Except for the low energy neutron transport (see lecture)

e FLUKA can be used in biased mode (see lecture)
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Pseudo-random numbers in FLUKA

FLUKA uses the most up-to-date version of the Marsaglia
random humber generator.

It provides sequences of 64 bit pseudo-random numbers that
pass all the "randomness" tests.

Different, independent sequences can be obtained using
different SEEDS for the sequence initialization

The initial seed can be set in the RANDOMIZE card. A
default value is provided

RANDOMIZE Unit Seed

The code proceeds through the random sequence, each run
provides the starting seed for the next one

“parallel" runs can be performed by changing the initialization
seed

In user routines: to get a random number use the function
FLRNDM(x)
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Results from a MC calculation

N

Estimators
e |t is often said that Monte Carlo is a “mathematical experiment”
The MC equivalent of the result of a real experiment (ie., of a

measurement) is called an estimator
e Just as a real measurement, an estimator is obtained by sampling from

a statistical distribution and has a statistical error (and in general also
a systematic one)

o There are often several different techniques to measure the same physi-
cal quantity: in the same way the same quantity can be calculated using

different kinds of estimators
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| Statistical Errors

Could be calculated for single histories, or for batches of several histories each
Distribution of scoring contributions by single histories can be very asymmetric (many

histories contribute zero). In FLUKA, errors are calculated in batches.

Scoring distribution from batches tends to Gaussian for N — oo, provided 0% # oc
The standard deviation of a score calculated from batches is an estimate of the stan-
dard deviation of the actual distribution (“error of the mean”)

How good is such an estimate depends on the type of estimator and on the particular

problem (but it converges to the true value for N — o)

Relative error Quality of Tally (from the MCNP Manual )

50 to 100%  Garbage
20 to 50% Factor of a few
10 to 20% Questionable

<10% Generally reliable except for point detector (not available in FLUKA )
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Statistical Errors (batch statistics)

The variance of the mean of an estimated quantity = (e.g., fluence),
calculated by NV F'LUKA jobs, is:

1 , |1 (x )2] 1
Z 1 T; 2 T | | o

1 i=1 'T?.,z

<r>

where:

e 1; is the number of histories in the ' job
e n = Xn; is the total number of histories in the [NV jobs

o 7; is the is the average of x calculated in the i job: x; = Y/,

where x;; is the contribution to = of the 71" history in the zm job
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Practical tips:

N

» Use always at least 5-10 batches of comparable

size (it is not at all mandatory that they be of equal
size)

Never forget that the variance itself is a
stochastic variable subject to fluctuations

Be careful about the way convergence is achieved:
often (particularly with biasing) apparently good
statistics with few isolated spikes could point to a
lack of sampling of the most relevant phase-space
part

Plot 2D and 3D distributions! In those cases the
eye is the best tool in judging the quality of the
result
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