Nuclear models in FLUKA: present capabilities, open problems and future improvements

INTERNATIONAL CONFERENCE ON NUCLEAR DATA

FOR SCIENCE & TECHNOLOGY

September 30 2004

Santa Fé

F. Ballarini⁴, G. Battistoni⁰, F. Cerutti⁰, A. Empl¹, A. Fassò², <u>A. Ferrari³</u>, E. Gadioli, M.V. Garzelli⁰,

A. Ottolenghi⁴, L.S. Pinsky¹, J. Ranft⁶, S. Roesler⁷, P.R. Sala⁰, G. Smirnov⁸

⁰ University of Milan and INFN, Italy
 ¹ Houston University, Texas, USA
 ² SLAC, Stanford, USA
 ³ CERN (on leave from INFN-Milan)
 ⁴ University of Pavia and INFN, Italy
 ⁵ INFN Frascati, Italy
 ⁶ Siegen University, Germany
 ⁷ CERN
 ⁸ JINR, Dubna, Russia

Topics

- \bullet Generalities and general philosophy of $\rm FLUKA$ models
- The FLUKA High energy hadronic models
 - Short description
- \bullet The $\rm FLUKA$ Low-intermediate energy hadronic models
 - Short summary and thin target benchmarks
 - "Exotic" applications: neutrino physics
- Examples of complex applications
 - Activation and residual dose rate experiments at CERN
- Nucleus-nucleus interactions in FLUKA
 - Status and (one) example
 - ElectroMagnetic dissociation: an intriguing process

FLUKA: generalities

★ Interaction and transport Monte Carlo code

- Hadron-hadron, hadron-nucleus, and γ -nucleus interactions 0-10000 TeV
- Nucleus-nucleus interactions 0-10000 TeV/n
- Electromagnetic and μ interactions 1 keV-10000 TeV
- Neutrino interactions and nucleon decays

★ Proven capabilities in:

- Accelerator design and shielding (standard tool at CERN for beam-machine and radioprotection studies)
- ADS studies and experiments
- Dosimetry and hadrotherapy
- Space radiation and cosmic ray showers in the atmosphere (Support by NASA, "de facto" standard tool for all aircraft dosimetry studies in Europe)

Design philosophy: the highest priorities

- ★ Sound and modern physics
 - Based, as far as possible, on original and well tested microscopic models
 - All steps (Glauber-Gribov cascade, (G)INC, preequilibrium, evaporation/fragmentation/fission) are self-consistent and have solid physical bases
 - Performances optimized by comparing with experimental data at single interaction level: "theory driven, benchmarked with data"
 - Final predictions obtained with minimal free parameters fixed for all energies/target/projectiles
 - Results in complex cases, as well as properties and scaling laws, arise naturally from the underlying physical models
 - Basic conservation laws fulfilled "a priori"
- \implies Predictivity where no experimental data are directly available
- \star Monte Carlo exclusive event generators
 - Correlations preserved fully within interactions and among shower components
 - Suitable environment for "exotic" extensions (ν 's, nucleon decays etc)

Example: Next generation ν experiments

 ν experiments with accelerator, atmospheric and reactor ν , aim to high precision studies, like

- θ_{13} driven "subleading" $\nu_{\mu} \leftrightarrow \nu_{e}$ oscillation (% effect)
- CP violation

Plot: 20 GeV p on C, $\rightarrow \pi^+ \rightarrow \nu_\mu$ oscillation at 730 km $\rightarrow \nu_e$ Mandatory: high precision in:

- ν spectra calculation from
 - Cosmic rays showers (from multi-TeV to sub GeV, + heavy ions)
 - "Super-beams" and β -beams from accelerators (few GeV, π production and transport)
- ν interactions down to the sub-GeV range Nuclear effects

5

Neutrino quasi-elastic events

Neutrino quasi-elastic events

The FLUKA hadronic models

hA at high energies: Glauber-Gribov cascade with formation zone

★ Dual Parton Model (DPM)

- Interacting strings (quarks held together by the gluon-gluon interaction)
- Each of the two colliding hadrons splits into two colored partons \rightarrow combination into two color neutral chains \rightarrow two back-to-back jets
- Each jet is then hadronized into physical hadrons

 \star Glauber cascade

- Quantum mechanical method to compute Elastic, Quasi-elastic and Absorption hA cross sections from Free hadron-nucleon scattering + nuclear ground state
- Multiple collision expansion of the scattering amplitude
- ★ Glauber-Gribov
 - Field theory formulation of Glauber model
 - Multiple collision terms \Leftrightarrow Feynman graphs
 - High energies: exchange of one or more Pomerons (IP) with one or more (=v) target nucleons (a closed string exchange)

 \star Formation zone (= materialization time)

Generalized Intra-Nuclear Cascade: PEANUT

- \star Main assets of the full GINC as implemented in FLUKA below 5 GeV:
 - PEANUT (PreEquilibrium Approach to NUclear Thermalization): GINC + preequilibrium stage handling nucleons, pions, kaons, γ , stopping μ^- and ν 's
 - Nucleus divided into 16 radial zones of different density, plus 6 outside the nucleus to account for nuclear potential, plus 10 for charged particles
 - Different nuclear densities for neutrons and protons
 - Nuclear (complex) optical potential => curved trajectories in the mean nuclear+Coulomb field (reflection, refraction)
 - Updating binding energy (from mass tables) after each particle emission
 - Multibody absorption for $\pi^{+/0/-}$, K $^{-/0}$, μ^{-}
 - Energy-momentum conservation including the recoil of the residual nucleus
 - Nucleon Fermi motion including wave packet-like uncertainty smearing
 - Quantum effects (mostly suppressing): Pauli blocking, Formation zone, Nucleon antisymmetrization, Nucleon-nucleon hard-core correlations, Coherence length

Nuclear effects in ν interactions - I

 ν interactions in FLUKA: ν -nucleon int. integrated in PEANUT nuclear environment. Quasi-elastic built-in, Resonant and deep-inelastic presently from NUX generator (NUX-FLUKA in Proceedings of NUINT04, in press).

Angle-Momentum correlation of the outgoing μ in Quasi Elastic ν_{μ} interactions, on free neutrons and on Oxygen nuclei. Initial State effects are evident.

Formation zone

Naively: "materialization" time. Qualitative estimate: in the frame where $p_{\parallel}=0$

$$\bar{t} = \Delta t \approx \frac{\hbar}{E_T} = \frac{\hbar}{\sqrt{p_T^2 + M^2}}$$

particle proper time

$$\tau = \frac{M}{E_T} \bar{t} = \frac{\hbar M}{p_T^2 + M^2}$$

Going to lab system

$$t_{lab} = \frac{E_{lab}}{E_T} \bar{t} = \frac{E_{lab}}{M} \tau = \frac{\hbar E_{lab}}{p_T^2 + M^2}$$

Condition for possible reinteraction inside a nucleus:

$$v \cdot t_{lab} \leq R_A \approx r_0 A^{\frac{1}{3}}$$

Coherence length \equiv formation time for elastic or quasielastic hN interactions (not discussed here)

Formation zone+ coherence length in ν interactions

Effect of different formation time (τ) values on the total hadron multiplicity and on hadron spectra in ν_{μ} CC interactions.

Alfredo Ferrari

 $\underline{Nuclear \ Data}$, Santa Fé, September 2004

Pions: nuclear medium effects

Pion-nucleon interactions: non-resonant + p-wave resonant Δ 's.

 $\rightarrow \Delta$ width different from the free one

Assuming a Breit-Wigner for the free resonant cross section with width Γ_F

$$\sigma_{res}^{Free} = \frac{8\pi}{p_{cm}^2} \frac{M_{\Delta}^2 \Gamma_F(p_{cm})^2}{(s - M_{\Delta}^2)^2 + M_{\Delta}^2 \Gamma_F(p_{cm})^2}$$

Add "in medium" width (Oset et.al ,NPA 468, 631)

$$\frac{1}{2}\Gamma_T = \frac{1}{2}\Gamma_F - \mathrm{Im}\Sigma_\Delta, \quad \Sigma_\Delta = \Sigma_{qe} + \Sigma_2 + \Sigma_3$$

 $(\Sigma_{qe}, \Sigma_2, \Sigma_3 = widths for quasielastic scattering, two and three body absorption)$ Add two-body s-wave absorption cross section from optical model Nuclear potential for π : Energy dependent, resonant shape (+ Coulomb)

Pions in ν interactions

Nuclear Data , Santa Fé, September 2004

Missing Transverse Momentum

 $\begin{array}{l} \nu_{\tau} \text{ identification vs } \nu_{e} \\ (\text{i.e. CNGS } \nu \text{ beam}) \\ \text{One of the possible "cuts" :} \\ \text{missing } P_{T} \\ \nu_{\tau} + A \rightarrow \tau^{-} + X \rightarrow e^{-} + \bar{\nu}_{e} + \nu_{\tau} + X \\ \text{Intrinsic Missing } P_{T} \text{ due to } \tau \text{ decay} \\ \nu_{e} + A \rightarrow e^{-} + X \\ \text{No Missing } P_{T} \text{ on free nucleon} \\ \text{Deeply changed by nuclear effects} \end{array}$

Pion production: a key feature for future accelerator projects

Preequilibrium in FLUKA

FLUKA preequilibrium is based on GDH (M. $Blann \ et \ al.$) cast in a MonteCarlo form

GDH: Exciton model, ρ , E_F are "local" averages on the trajectory and constrained state densities are used for the lowest lying configurations.

Modifications of GDH in FLUKA:

- σ_{inv} from systematics
- Correlation/coherence length/ hardcore effect on reinteractions
- Constrained exciton state densities configurations 1p-1h, 2p-1h, 1p-2h, 2p-2h, 3p-1h and 3p-2h
- True local ρ , E_F for the initial configuration, evolving into average
- Non-isotropic angular distribution (fast particle approximation)

Preequilibrium/(G)INC transition

INC stage (left). The various lines show the total, INC, preeq. and evaporation contributions, the exp. data have been taken from M.Trabandt et al. **PRC39** (1989) 452

Nucleon emission: thin target examples

PEANUT: example of coalescence

Equilibrium particle emission

- ***** Evaporation: Weisskopf-Ewing approach
 - New!! ≈ 600 possible emitted particles/states (A \leq 24) with an extended evaporation/fragmentation formalism
 - Full level density formula with level density parameter A,Z and excitation dependent
 - Inverse cross-sections with proper sub-barrier
 - Analytic solution for the emission widths (neglecting the level density dependence on U, taken into account by rejection)
 - Emission energies from the width expression with no approx.
- \star Fission: improved version of the Atchison algorithm
 - Improved mass and charge widths
 - Full competition with evaporation
- ★ Fermi Break-up for A \leq 17 nuclei
 - \approx 50,000 combinations included with up to 6 ejectiles
- $\star~\gamma$ de-excitation: statistical + rotational + tabulated levels

Residual nuclei: the mass distribution at high energies

CERN activation and dose rate benchmark

Alfredo Ferrari

Nuclear Data , Santa Fé, September 2004

Table 1: Stainless Steel, cooling times 1d 6h 28m, 17d 10h 39m							
Isotope	$t_{1/2}$	Exp		STD FLUKA/Exp NEW FLUKA		UKA/Exp	
		$Bq/g \pm \%$			\pm %		\pm %
Be 7	53.29d	0.205	24	0.096	34	1.070	30
Na 24	14.96h	0.513	4.3	0.278	8.6	0.406	13
K 43	22.30h	1.08	4.6	0.628	8.7	0.814	11
Ca 47	4.54d	0.098	25	0.424	44	(0.295)	62)
Sc 44	3.93h	13.8	4.8	0.692	5.8	0.622	6.2
mSc 44	58.60h	6.51	7.1	1.372	8.1	1.233	8.6
Sc 46	83.79d	0.873	8.3	0.841	9.1	0.859	9.5
Sc 47	80.28h	6.57	8.2	0.970	9.7	1.050	13
Sc 48	43.67h	1.57	5.2	1.266	8.4	1.403	11
V 48	15.97d	8.97	3.1	1.464	3.8	1.354	4.8
Cr 48	21.56h	0.584	6.7	1.084	11	1.032	12
Cr 51	27.70d	15.1	12	1.261	13	1.231	13
$\mathrm{Mn}~54$	312.12d	2.85	10	1.061	10	1.060	11
Co 55	17.53h	1.04	4.6	1.112	7.7	0.980	10
Co 56	77.27d	0.485	7.6	1.422	9.0	1.332	10
Co 57	271.79d	0.463	11	1.180	12	1.140	12
Co 58	70.82d	2.21	5.9	0.930	6.3	0.881	6.9
Ni 57	35.60h	3.52	4.5	1.477	6.5	1.412	8.2

CERN activation benchmark: Stainless Steel

Alfredo Ferrari

CERN benchmark: residual dose rates

Nucleon Nucleon interactions: nuclear medium effects

The free NN scattering amplitudes and cross sections must be properly modified for medium effects (Pauli blocking, coherence effects, etc.). The resulting in medium cross sections are density-dependent and smaller than σ_{NNfree} There are several approaches:

- G.Q.Li et al., PRC48, 1702 (1993); PRC49, 566 (1994) (theoretical, ρ , E and θ dependent)
- C.Xiangzhou et al., PRC58, 572 (1998) (phenomenological, ρ and E dependent)
- R.K.Tripathi et al., NIMB152, 425 (1999); NIMB173, 391 (2001) (phenomenological, only E dependent)
- ...

One of open questions in microscopic models is the (proper) implementation of medium corrected nucleon cross sections. Double counting with explicit Pauli blocking (which is required to get physical events) is an issue, as well as proper correlations with the angular distribution

In-Medium cross sections: example

Heavy ion Interactions models in FLUKA

★ DPMJET-III model for energies \geq 5 GeV/n

- **DPMJET**¹ (R. Engel, J. Ranft, and S. Roesler): Nucleus-Nucleus interaction model
- Energy range: from \approx 5-10 GeV/n up to the highest CR energies ($10^{18} 10^{20} \text{ eV}$)
- Used in many CR shower codes
- Based on the Dual Parton Model and the Glauber model, like the high energy $\rm FLUKA$ hadron-nucleus generator
- \star Extensively modified and improved version of rQMD-2.4 for 0.1 < E < 5 GeV/n
 - rQMD-2.4² (H. Sorge et al.): Cascade Relativistic QMD model
 - Energy range: from $\approx 0.1~\text{GeV/n}$ up to several hundreds of GeV/n
 - Successfully applied to relativistic A-A particle production over a wide energy range

\bigstar Standard FLUKA evaporation/fission/fragmentation used in both cases for Target/Projectile final deexcitation

¹ PRD 51 (1995) 64; Gran Sasso INFN/AE-97/45 (1997); hep-ph/9911232; hep-ph/9911213; hep-ph/0002137, "The Monte Carlo Event Generator DPMJET-III" Proc. MC2000, Springer-Verlag Berlin, Heidelberg, pp. 1033-1038

² H. Sorge PRC52 3291 (1995), H.Sorge, H.Stocker, W.Greiner, Ann. Phys. 192 266 (1989), NPA498 567c (1989)

FLUKA with modified RQMD-2.4 (cascade mode) - results

Electromagnetic Dissociation

Electromagnetic dissociation: σ_{EM} increasingly large with (target) Z's and energy. Already relevant for few GeV/n ions on heavy targets ($\sigma_{EM} \approx 1$ b vs $\sigma_{nucl} \approx 5$ b for 1 GeV/n Fe on Pb)

$$\sigma_{1\gamma} = \int \frac{\mathrm{d}\omega}{\omega} n_{A_1}(\omega) \sigma_{\gamma A_2}(\omega), \quad n_{A_1}(\omega) \propto Z_1^2$$

 $\underline{Nuclear \ Data}$, Santa Fé, September 2004

Electromagnetic dissociation: example

ions on Al, Cu, Sn and Pb targets. Points - measured cross sections of forward 1n and 2n emission as a function of target charge (M. B. Golubeva et al., in press)

Alfredo Ferrari

158 GeV/n fragmentation

Fragment charge cross sections for 158 AGeV Pb ions on various targets. Data (symbols) from NPA662, 207 (2000), NPA707, 513 (2002) (blue circles) and from C. Scheidenberger et al PRC, in press (red squares), histos are FLUKA (with DPMJET-III) predictions: the dashed histo is the electromagnetic dissociation contribution

ယ္လ

Future

- ★ Evaporation/fragmentation, residual nuclei:
 - Further development of the new model
 - Extended benchmarks against real life accelerator environment activation
- ★ Particle (particularly pion) production at few GeV's
 - Refined resonance production and reinteraction model
 - "Normal" to Glauber cascade transition
- \star Rich development program for ions for the future:
 - New QMD (Milan+Houston) model in place of the modified rQMD-2.4 for intermediate energies
 - BME model (from Milan University, see F.Cerutti talk at this Conference) covering the low energy range

This work was partially supported under:

- NASA Grants: NAG8-1658 and NAG8-1901
- DOE contract DE-AC02-76SF00515
- ASI Contract I/R/320/02
- European Union contract no. FI6R-CT-2003-508842, "RISC-RAD"

Single chain diagram for $\pi^+ - p$ scattering, corresponding to a physical particle exchange. The color (red, blue, and green) and quark combination shown in the figure is just one of the allowed possibilities Leading two-chain diagram in DPM for $pi^+ - p$ scattering. The color (red, blue, and green) and quark combination shown in the figure is just one of the allowed possibilities

Leading two-chain diagrams in DPM for p - p (left) and $\bar{p} - p$ (right) scattering. The color (red, blue, and green) and quark combinations shown in the figure are just one of the allowed possibilities

Nonelastic hN high E: (K⁻p) , (π ⁻p) 10-16 GeV, p_T

Nonelastic hN high E: $(\pi^+ p)$ 250GeV, x_F and p_t

h-A at high energies: Glauber-Gribov

One of the possibilities for Glauber-Gribov scattering with 4 collisions

Nonelastic hA interactions at high energies: examples

Rapidity distribution of charged particles produced in 200 GeV proton collisions on Hydrogen, Argon, and Xenon target (left), and multiplicity distribution of negative shower particles for 250 GeV/c K⁺ on Aluminium and Gold targets (right). Data from C. De Marzo et al., PRD26, 1019 (1982), I.V. Ajinenko et al. ZPC42 377 (1989).

Transverse momentum in ν interactions

QE \mathbf{E}_{ν} reconstruction

QE : "golden" channel for kinematic reconstruction, expecially in Water Cherenkov detectors (like Kamiokande). ν energy reconstructed from lepton momentum and angle, but: initial state distorsion contaminations from other reaction channels, ex. pion production followed by pion absorption

Example: reconstruction of the MiniBoone (Booster neutrino experiment at Fermilab) spectrum from "QE" interactions in water

Pion absorption cross sections: examples

Computed and experimental pion absorption cross section on Aluminium as a function of energy Computed and experimental pion absorption cross section on Gold or Bismuth as a function of energy

PEANUT, Au + Bi

Nakai et. al, Au

250

250

PEANUT, Au + Bi

Ashery et. al, Bi

Nakai et. al, Au

300

300

Pion Energy (MeV)

350

350

Ashery et. al, Bi

★

200

★

200

(Exp. data: D. Ashery et al., PRC23, (1981) 2173 and K. Nakai et. al., PRL44, (1979) 1446)

Pion-nucleus interactions: examples

Nucleon emission: thin target examples I

Nuclear Data , Santa Fé, September 2004

46

Nucleon emission: thin target examples

Nuclear Data , Santa Fé, September 2004

Table 2: Al, cooling times 1d 16h, 16d 08h , 51d 09h								
Isotope	$t_{1/2}$	Exp		STD FLUKA/Exp		NEW FLUKA/Exp		
		$Bq/g \pm \%$			\pm %		\pm %	
Be 7	53.29d	0.789	13	0.364	16	0.688	19	
Na 22	2.60y	0.365	9.6	0.841	11	0.752	11	
Na 24	14.96h	38.6	3.6	0.854	4.0	0.815	4.6	
Sc 44	3.93h	0.229	24	2.219	27	0.820	36	
Sc 46	83.79d	0.025	16	1.571	19	0.902	28	
Sc 47	80.28h	0.163	12	0.986	27	(1.486)	43)	
V 48	$15.97 \mathrm{d}$	0.199	7.4	0.931	18	(0.938)	29)	
Cr 51	27.70d	0.257	17	0.873	23	0.942	28	
$\mathrm{Mn}~52$	5.59d	0.224	5.6	2.369	9.6	0.936	24	
$\mathrm{Mn}~54$	312.12d	0.081	11	0.972	15	0.917	19	
Co 57	271.79d	0.00424	32	0.833	50	(0.760)	67)	
Co 58	70.82d	0.019	22	1.820	27	0.841	39	

CERN activation benchmark: Aluminium

Alfredo Ferrari

Table 5. Cu, cooling times 54m, 1n 07m, 48d 5h 21m							
Isotope	$t_{1/2}$	Exp		STD FI	LUKA/Exp	NEW FLUKA/Exp	
		$Bq/g \pm \%$		\pm %		\pm %	
Be 7	53.29d	1.29	13	0.045	17	1.472	14
Na 22	2.60y	0.029	14	0.655	17	0.677	20
Na 24	14.96h	14.8	8.5	0.266	10	0.515	12
K 42	12.36h	21.6	15	0.592	17	0.685	17
K 43	22.30h	6.38	11	0.656	14	0.844	16
Sc 43	3.89h	24.6	24	0.645	25	0.443	27
Sc 44	3.93h	45.4	9.5	1.160	10	0.863	10
Sc 46	83.79d	0.865	8.3	0.890	9.0	0.850	9.7
Sc 47	80.28h	11.0	14	0.927	16	0.959	17
Sc 48	43.67h	3.16	13	1.151	16	1.293	16
mSc 44	58.60 h	18.4	13	1.280	14	0.952	14
V 48	$15.97 \mathrm{d}$	1.12	7.8	1.647	8.4	1.220	9.0
${\rm Cr}~49$	$42.30\mathrm{m}$	15.0	25	1.357	26	0.909	27
Cr 51	27.70d	3.55	13	1.306	13	1.099	14
${\rm Mn}~52$	5.59d	18.3	5.5	0.790	6.3	0.651	6.9
$\rm mMn~52$	21.10m	9.16	33	1.940	34	1.616	35
${\rm Mn}~54$	312.12d	1.13	10	1.177	11	1.171	11
Mn 56	2.58h	27.7	5.8	0.784	7.1	0.872	8.0

CERN activation benchmark: Cu

Table 3: Cu, cooling times 34m, 1h 07m, 48d 3h 21m

Isotope	$t_{1/2}$	Exp		STD FLUKA/Exp		NEW FLUKA/Exp		
		$Bq/g \pm \%$			\pm %		\pm %	
Fe 59	44.50d	0.558	10	0.699	12	0.761	14	
Co 55	17.53h	7.41	10	0.855	12	0.712	14	
Co 56	77.27d	1.20	7.2	1.161	8.1	1.057	8.6	
Co 57	271.79d	1.75	9.9	0.917	10	0.851	11	
Co 58	70.82d	6.51	10	0.889	10	0.895	11	
Co 60	5.27y	0.172	8.5	0.798	8.9	0.832	9.4	
Co 61	99.00m	52.7	12	0.836	13	0.878	14	
Ni 57	35.60h	4.78	12	0.864	15	0.789	16	
Ni 65	2.52h	3.46	19	1.553	22	1.350	24	
Cu 60	$23.70\mathrm{m}$	16.4	8.7	0.847	9.9	0.787	11	
Cu 61	3.33h	165.	27	1.047	28	0.944	28	
Cu 64	12.70h	595.	13	0.564	14	0.560	15	
Zn 62	9.19h	5.66	20	1.213	22	1.117	24	
Zn 65	244.26d	0.117	12	0.635	14	0.615	17	

CERN activation benchmark: Cu cont.

Table 4: Cu, cooling times 34m, 1h 07m, 48d 3h 21m

CERN benchmark: residual dose rates

In-Medium cross sections: example cont.

FLUKA with modified RQMD-2.4 (cascade mode)- results

Alfredo Ferrari

Nuclear Data , Santa Fé, September 2004

10.6 GeV

n fragmentation

Fragment charge cross sections for 10.6 AGeV Au ions on Aluminium and Lead. Data (symbols) from PRC52, 334 (1995), histos are FLUKA (with DPMJET-III) predictions: the hatched histo is the electromagnetic dissociation contribution

55

Thick target neutron production: examples

Thick target neutron production: examples II

Simulated (dashed histogram) and experimental (symbols) neutron double differential distributions out of stopping length targets for 113 (left, M.M. Meier et al., Nucl. Sci. Eng. **110**, (1992) 299) and 256 MeV protons on uranium (right, M.M. Meier et al., Nucl. Sci. Eng. **102**, (1989) 310)

Thick target neutron production: examples III

```
Experiment
Protons from the CERN PS , 2.5 or 3.57 GeV/c
Lead target , 334 ton , 99.99% purity
64 Instrumentation holes, different detectors to measure neutrons from
thermal to MeV
Simulations: EA MC
Spallation production, transport down to 20 MeV : FLUKA
Neutron transport and interactions below 20 MeV and target evolution:
new code EA-MC (C.Rubbia et al)
Refs.: PLB458 (1999) 167, NIMA478 (2002) 577
```


Alfredo Ferrari

Nuclear Data , Santa Fé, September 2004

Alfredo Ferrari

Nuclear Data , Santa Fé, September 2004

Neutron production examples: TARC (PLB458 167, NIMA478 577)

Cosmic Ray Showers

Motivations: Atmospheric neutrino fluxes (Astropart.Phys.12 (2000) 315) (Milan) Aircraft doses (Frascati, Siegen and GSF)

 \rightarrow Exploiting the reliability of FLUKA Hadronic interaction models

Results

- The first 3Dimensional MC simulation of ν production due to atmospheric showers
- Extensive benchmarking with muon and hadron data in atmosphere
- Photomuon production by cosmic rays
- Widespread applications to aircraft exposure evaluation

Past results obtained in the superposition model: primary nuclei are split into nucleons before interacting Alfredo Ferrari

Nuclear Data , Santa Fé, September 2004

Hadron/muon fluxes Astropart. Phys. 17 (2002) 477), FLUKA and CAPRICE94 data

64

Hadron/muon fluxes in the atmosphere: examples

Alfredo Ferrari

 $\underline{Nuclear \ Data}$, Santa Fé, September 2004

Hadron/muon fluxes in the atmosphere: examples II (Rad.Prot.Dosim.98 (2002) 367)

Alfredo Ferrari

 $\underline{Nuclear \ Data}$, Santa Fé, September 2004

Hadron/muon fluxes in the atmosphere: examples III (Rad.Prot.Dosim.98 (2002) 367)

