

Induced Radioactivity

7th FLUKA Course NEA Paris, Sept.29-Oct.3, 2008

FLUKA-Implementation – History - 1

1995 – Offline evolution:

An offline code (usrsuwev.f) is distributed together with FLUKA, which allows the offline computation of the time evolution of a radionuclide inventory obtained with RESNUCLE for arbitrary irradiation profiles and decay times.

2002 – Two step method:

The offline code has been adapted for online use, each time a residual nucleus is produced during a particle cascade. This allows storing information on radio-nuclides for certain irradiation parameter and cooling times into an external file. This information can then be read in order to compute residual dose rates due to induced radioactivity (two-step method). Results were benchmarked in numerous irradiation experiments.

2004 - Online:

This capability has been implemented into FLUKA with an exact analytical solution of the Bateman equations describing activity build-up and decay during irradiation and cooling down, for arbitrary irradiation conditions.

FLUKA-Implementation – *History - 2*

The generation and transport of decay radiation (limited to γ , β -, and β + emissions for the time being) is now possible during the same simulation which produces the radio-nuclides (one-step method). A dedicated database of decay emissions has been written, using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency.

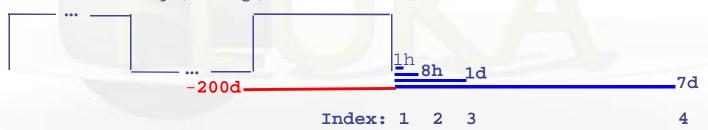
As a consequence, results for production of residuals, their time evolution and residual doses due to their decays can now be obtained in the same run, for an arbitrary number of decay times and for a given irradiation profile.

FLUKA-Implementation – *Main features*

- up to 4 different decay branching for each isotope/isomer
- all gamma lines down to 0.1% branching
- all beta emission spectra down to 0.1% branching: the sampling of the beta+/- spectra including Coulomb corrections
- Auger and conversion electrons
- Isomers: the present models do not distinguish among ground state and isomeric states (it would require spin/parity dependent calculations in evaporation). A rough estimate (equal sharing among states) of isomer production can be activated in the RADDECAY option, or in the offline evolution code.
- Different transport thresholds can be set for the prompt and decay radiation parts, as well as some (limited) biasing differentiation (see later)

Input options

Input card: RADDECAY


requests simulation of decay of produced radioactive nuclides allows to modify biasing and transport thresholds (defined with other cards) for application to the transport of decay radiation

Input card: IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

Input card: DCYTIMES

definition of decay (cooling) time

Input card: DCYSCORE

associates scoring detectors (radio-nuclides, fluence, dose) with different cooling times

Input card: AUXSCORE

allows to associate scoring estimators with auxiliary (generalized) particle distributions and dose equivalent conversion factors

```
* 1) request radioactive decays
                                       3.0
                                                     0000099999
RADDECAY
                  1.0
* 2) definition of irradiation pattern
             180days
                         part/s
                                   185days
                                                        180days
                                                                   part/s
            1.5552E7
                       5.9175E5 1.5984E7
                                                  0.0 1.5552E7 5.9175E5
IRRPROFI
* 3) definition of cooling times
                         8hours
                                                         1month
                1hour
                                                                   4months
                                      1day
                                                7days
                3600.
                         28800.
                                    8.64E4
                                             6.048E5
                                                        2.592E6
DCYTIMES
                                                                  1.0368E7
                                       1.0
USERWEIG
* 4) associate scoring with different cooling times
                  1.0
                                                            1.0
                                                                          USRBIN
DCYSCORE
                                                  1.0
                 10.0
                           201.
                                     -70.0
                                               150.0
USRBIN
                                                          200.0
                                                                    5000.0EWT74
               -250.0
                          -200.
                                       0.0
                                                 80.0
                                                           80.0
                                                                       1.0&
USRBIN
                  2.0
                                                  2.0
                                                            2.0
DCYSCORE
                                                                          USRBIN
                           201.
                                               150.0
                                                          200.0
USRBIN
                 10.0
                                     -71.0
                                                                    5000.0EWT74
               -250.0
                          -200.
                                       0.0
                                                 80.0
                                                           80.0
USRBIN
                                                                       1.0&
                  3.0
                           -26.
                                                          FLOOR
RESNUCLE
                                                                          TUN_FLOO
                           -27.
                  3.0
RESNUCLE
                                                           WALL
                                                                          TUN_WALL
                  1.0
                                                       RESTUBE1
DCYSCORE
                                            RESTUBE1
                                                                          RESNUCLE
                  3.0
                           -75.
RESNUCLE
                                                           TUBE
                                                                          RESTUBE1
```

request radioactive decays

```
RADDECAY
                                    Decays: Active ▼
                                                                                                               3.0
                                                                  Patch Isom:
                                                                                                     Replicas:
    h/µ Int: ignore ▼
                                   h/µ LPB: ignore ▼
                                                                              ignore ▼
                                                                                                               ignore ▼
                                                                    h/u WW:
                                                                                                     e-e+ Int:
  e-e+ LPB: ignore ▼
                                   e-e+ WW: ignore ▼
                                                                            ignore 🔻
                                                                                                               ignore 🔻
                                                                 Low-n Bias:
                                                                                                  Low-n WW:
                                                                 prompt cut: 99999.0
                                  decay cut: 0.0
                                                                                                Coulomb corr:
```

definition of irradiation pattern

```
180days part/s 185days 180days part/s

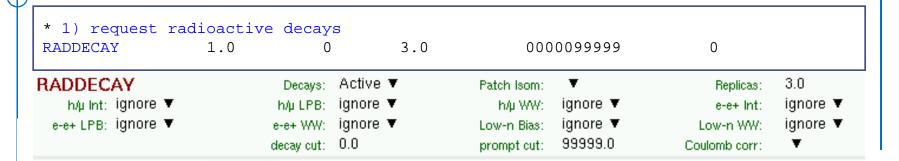
IRRPROFI
Δt: 1.5552E7 p/s: 5.9175E5
Δt: 1.5984E7 p/s: 0.0
Δt: 1.5552E7 p/s: 5.9175E5
```

definition of cooling times

```
        1hour 8hours
        1day
        7days 1month 4months

        DCYTIMES
        t1: 3600.
        t2: 28800.
        t3: 8.64E4

        t4: 6.048E5
        t5: 2.592E6
        t6: 1.0368E7
```


Associate scoring with different cooling times

		J			
Cooling t:	3600. ▼	to Det	: ▼	Kind: Step:	USRBIN ▼
Ymin:	-200.	Unit: Xmax: Ymax: Zmax:	70 BIN ▼ 150.0 200.0 5000.0	Name: NX: NY: NZ:	Shielding 80.0 80.0 1.0
		to Det:	Target ▼	Kind: Step:	USRBIN ▼
Z:	0	Part: A: to Det:	▼ 0 ▼	Set: Isomer: Step:	EWT74 ▼ 0
Ymin:	-200.	Unit: Xmax: Ymax: Zmax:	71 BIN ▼ 150.0 200.0 5000.0	Name: NX: NY: NZ:	Target 80.0 80.0 1.0
Type: Max M:	All ▼	Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Vol:	TUN_FLOO
Type: Max M:	All ▼	Unit: Reg:	27 BIN ▼ WALL ▼	Name: Vol:	TUN_WALL
		to Det:	RESTUBE1 ▼	Kind: Step:	RESNUCLE ▼
Type: Max M:	All ▼	Unit: Reg:	75 BIN ▼ TUBE ▼	Name: Vol:	RESTUBE1
	Cooling t: Det: Xmin: Ymin: Zmin: Cooling t: Det: Type: Z: Det: Xmin: Ymin: Ymin: Zmin: Type: Max M: Type: Max M: Cooling t: Det:	Type: All ▼ Max M: Cooling t: 3600. ▼ Det: RESTUBE1 ▼ Type: All ▼	Cooling t: 3600. ▼ Det: Shielding ▼ to Det Unit: Xmax: Unit: Xmin: -250.0 Ymax: Zmin: 0.0 Zmax: Cooling t: 28800. ▼ To Det: Type: USRBIN ▼ Part: Z: 0 A: Det: Target ▼ to Det: Unit: Xmax: Vmax: Ymin: -250.0 Xmax: Ymin: -250.0 Ymax: Zmin: 0.0 Zmax: Type: All ▼ Unit: Max M: Reg: Cooling t: 3600. ▼ Reg: Cooling t: 3600. ▼ To Det: Type: All ▼ Unit: Type: All ▼ Unit:	Det: Shielding ▼ to Det: ▼	Cooling t: 3600. ▼ to Det: ▼ Stipe: Unit: 70 BIN ▼ Name: Xmin: -250.0 Xmax: 150.0 NX: Vmin: -200. Ymax: 200.0 NY: Zmin: 0.0 Zmax: 5000.0 NZ: Cooling t: 28800. ▼ Kind: Det: Target ▼ to Det: Target ▼ Step: Type: USRBIN ▼ Part: ▼ Set: Det: Target ▼ to Det: ▼ Step: Det: Target ▼ to Det: ▼ Step: Linit: 71 BIN ▼ Name: Xmin: -250.0 Xmax: 150.0 NX: Ymin: -200. Xmax: 150.0 NX: Ymin: -200. Ymax: 200.0 NY: Zmin: 0.0 Zmax: 5000.0 NZ: Type: All ▼ Unit: 26 BIN ▼ Name: Max M: Reg: FLOOR ▼ Vol: Cooling t: 3600. ▼ WALL ▼ Vol: Cooling t: RESTUBE1 ▼ to Det: RESTUBE1 ▼ Name:

Particle Types

Name	Number	Units	Description
DOSE	228	GeV/g	Dose (energy deposited per unit mass)
ACTIVITY	234	Bq/cm ³	Activity per unit volume
ACTOMASS	235	Bq/g	Activity per unit mass
SI1MEVNE	236		Silicon 1 MeV-neutron equivalent flux
HADGT20M	237		Hadrons with energy > 20 MeV
DOSE-EQ	240	pSv	Dose Equivalent (AUXSCORE)

Card: RADDECAY [1/2]

WHAT(1) = 1
Decays: Active

radioactive decays activated for requested cooling times "activation study case": time evolution calculated analytically for <u>fixed</u> (cooling) times and daughter nuclei as well as associated radiation is considered at these (fixed) times

Semi-Analogue

radioactive decays activated in semi-analogue mode each radioactive nucleus is treated like all other unstable particles (random decay time, daughters and radiation), all secondary particles/nuclei carry time stamp ("age")

WHAT(2) > 0 isomer "production" activated

Patch Isom: On

WHAT(3)
Replicas: #

number of "replicas" of the decay of each individual nucleus

Card: RADDECAY [2/2]

RADDECAY

h/µ Int: ignore ▼ e-e+ LPB: ignore ▼ Decays: Active ▼
h/µ LPB: ignore ▼
e-e+ WW: ignore ▼
decay cut: 0.0

Patch Isom: ▼
h/µ WW: ignore ▼
Low-n Bias: ignore ▼
prompt cut: 99999.0

Replicas: 3.0 e-e+ Int: ignore ▼ Low-n WW: ignore ▼ Coulomb corr: ▼

WHAT(4)

h/m Int .. Low-n WW

switch for applying various biasing features only to prompt radiation or only to particles from radioactive decays

9 digits, each responsible for a different biasing Example:

5th digit, e+/e-/gamma leading particle biasing applied 000010000 to prompt radiation only 000020000 to decay radiation only 000030000 to both

Default: 111111111 (or blank as above)

WHAT(5)

decay cut: #
prompt cut: #

multiplication factors to be applied to transport cutoffs

10 digits, first five for decay radiation, second five for prompt radiation (see manual)

Special cases:

0000099999 kill EM cascade for prompt radiation 9999900000 kill EM cascade for residual radiation

Card: IRRPROFI

```
* 2) definition of irradiation pattern
                180days
                            part/s
                                                             180days
                                      185days
                                                                         part/s
                                                      0.0 1.5552E7
               1.5552E7
                          5.9175E5 1.5984E7
                                                                       5.9175E5
 IRRPROFI
      180days
              part/s 185days
                                  180days part/s
IRRPROFI
                                                       p/s: 5.9175E5
                               Δt: 1.5552E7
                                                       p/s; 0.0
                               Δt: 1.5984E7
                               Δt: 1.5552E7
                                                       p/s: 5.9175E5
```

WHAT(1,3,5) irradiation time (second)

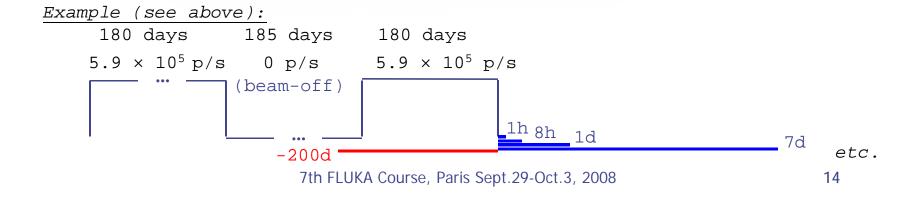
Δt: #

WHAT(2,4,6) beam intensity (particles per second)

p/s # Note: zero intensity is accepted and can be used e.g., to define beam-off periods

Note: Several cards can be combined up to a maximum of 100 irradiation intervals (subject to change with new releases).

Example (see above):


180 days 185 days 180 days
$$5.9 \times 10^5 \text{ p/s}$$
 0 p/s $5.9 \times 10^5 \text{ p/s}$ (beam-off)

Card: DCYTIMES

```
* 3) definition of cooling times
                  1hour
                            8hours
                                          1day
                                                    7days
                                                              1month
                                                                        4months
 DCYTIMES
                  3600.
                            28800.
                                        8.64E4
                                                  6.048E5
                                                             2.592E6
                                                                       1.0368E7
                      1day
                            7days 1month 4months
       1hour
              8hours
DCYTIMES
                               t1: 3600.
                                                            28800.
                                                                                      8.64E4
                                                        t5: 2.592E6
                               t4: 6.048E5
                                                                                      1.0368E7
```

WHAT(1) – WHAT(6) cooling time (in seconds) after the end of the irradiation 11 .. 16 Note: Several cards can be defined.

Each cooling time is assigned an index, following the order in which it has been input. This index can be used in option DCYSCORE to assign that particular cooling time to one or more scoring detectors. A negative decay time is admitted: scoring is performed at the chosen time "during irradiation"

Card: DCYSCORE

* Associate s	coring w	ith differe	nt cooling	times			
DCYSCORE	1.0			Target		บร	SRBIN
USRBIN	10.0	201.	-70.0	150.0	200.0	5000.0Ta	arget
USRBIN	-250.0	-200.	0.0	80.0	80.0	1.0&	
DCYSCORE		Cooling t: 3600.	▼			Kind:	USRBIN ▼
		Det: Shield	ling ▼	to Det:	▼	Step:	
USRBIN				Unit:	70 BIN ▼	Name:	Shielding
Type: X-Y-Z ▼		Xmin: -250.0)	Xmax:	150.0	NX:	80.0
Davis ALL_PART	•	Vesio: _200		Vessor	200.0	NIV/-	80 N

WHAT(1)

Cooling time index to be associated with the detectors

Cooling: # Drop down list of available cooling times

WHAT(4)..WHAT(5)

Detector index/name of kind (SDUM/Kind)

Drop down list of available detectors of kind (Kind)

WHAT(6)

step lengths in assigning indices

Step #

SDUM

Type of estimator

Kind

RESNUCLE, USRBIN/EVENTBIN, USRBDX, USRTRACK...

Units: All quantities are expressed per unit time. For example

RESNUCLE Bq

USRBIN fluence rate / dose rate

Card: AUXSCORE

* associate scoring with dose equivalent conversion factors
AUXSCORE USRBIN PHOTON Target EWT74

AUXSCORE Type: USRBIN ▼ Part: PHOTON ▼ Set: EWT74 ▼
Det: Target ▼ to Det: ▼ Step:

WHAT(1) Type of estimator to associate with

Type: drop down list of estimator types (USRBIN, USRBDX...)

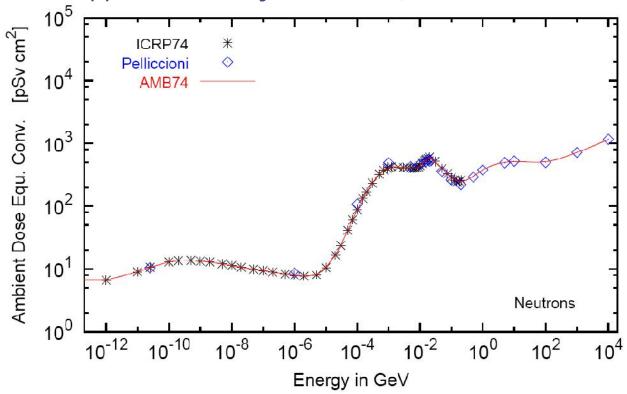
WHAT(2) particle or isotope to filter scoring

Part: # Particle or particle family list. If empty then flair will prompt for

Z, A, and State for filtering on specific isotopes

WHAT(4,5) Detector range

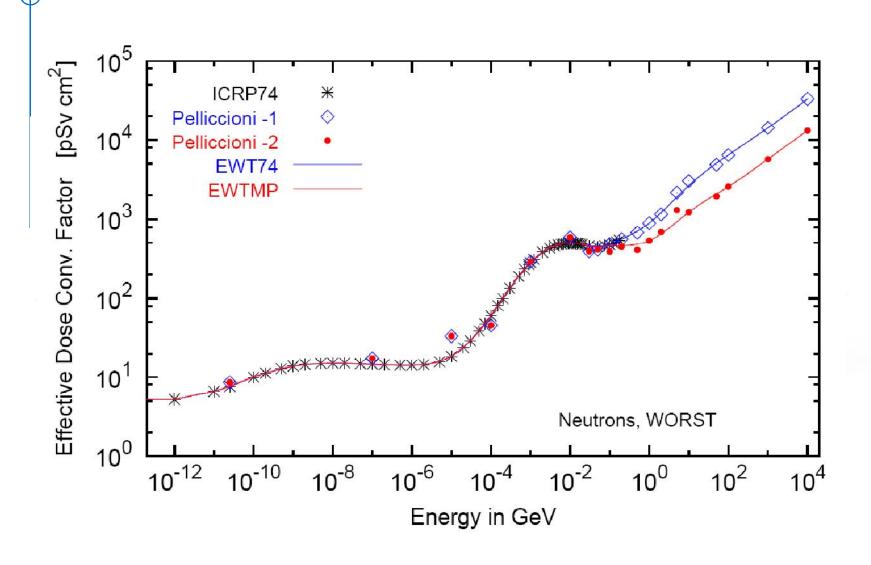
WHAT(6) Step in assigning indices of detector range


Step: #

SDUM Conversion set for dose equivalent (DOSE-EQ) scoring

Set: Drop down list of available dose conversion sets

Conversion Coefficients


Conversion coefficients from fluence to ambient dose equivalent are based on ICRP74 values and values calculated by M.Pelliccioni with FLUKA SDUM = AMB74 implemented for protons, neutrons, charged pions, muons, photons, electrons (conversion coefficients for other particles are approximated by these sets)

Fluence to effective dose coefficients

- Conversion coefficients from fluence to effective dose are implemented for three different irradiation geometries:
 - anterior-posterior
 - rotational
 - WORST ("Working Out Radiation Shielding Thicknesses") is the maximum coefficient of anterior-posterior, posterior-anterior, rightlateral and left-lateral geometries. It is recommended to be used for shielding design.
- Implemented for radiation weighting factors recommended by ICRP60 (e.g., SDUM=ETW74) and recommended by M.Pelliccioni (e.g., SDUM=EWTMP). The latter anticipate the 2007 recommendations of ICRP.
- Implemented for protons, neutrons, charged pions, muons, photons, electrons (conversion coefficients for other particles are approximated by these sets)
- Zero coefficient is applied to all heavy ions

Fluence to effective dose coefficients

Card: RESNUCLEi [1/4]

3.0 RESNUCLE -26. 0 0 FLOOR TUN FLOO TUN FLOO RESNUCLE Type: All ▼ 26 BIN ▼ Name: FLOOR ▼ Max Z: Max M: Vol:

Scoring of residual nuclei or activity on a region basis

WHAT(1)

type of products to be scored

Type:

- 1.0 spallation products (except from low-energy neutron interactions)
- 2.0 products from low-energy neutron interactions (provided the information is available)
- 3.0 all residual nuclei are scored (if available, see above)
- <= 0.0 resets the default (= 1.0)

WHAT(2)

logical output unit (Default = 11.0)

Unit:

WHAT(3)

Maximum atomic number Z of the residual nuclei distribution

Max Z:

Default: according to the Z of the element(s) of the material assigned

to the scoring region

WHAT(4)

Max M:

 $Maximum M = N - Z - NMZ_min$

of the residual nuclei distribution ($NMZ_min = -5$)

Default: maximum value according to the A, Z of the element(s) of the material assigned to the scoring region.

Card: RESNUCLEi [2/4]

 RESNUCLE
 Type: All ▼
 Unit: 26 BIN ▼
 Name: TUN_FLOO

 Max Z:
 Max M:
 Reg: FLOOR ▼
 Vol:

WHAT(5) scoring region number/name

Floor: (Default 1.0)

WHAT(6) volume of the region in cm³

Vol: (Default = 1.0)

SDUM character string identifying the detector

Name: (max. 10 characters)

Notes:

- 1. In the case of heavy ion projectiles the default NMZ, based on the region material, is not necessarily sufficient to score all the residual nuclei, which could include possible ion fragments.
- 2. Residual nuclei from low-energy neutron interactions are only scored if that information is available in the low-energy neutron data set (see Manual)
- Starting with Fluka2006.3 protons are scored, together with ²H, ³H, ³He, ⁴He, at the end of their path, if transported (see option EVENTYPE). This is a change with respect to previous versions where protons were not scored.

Card: RESNUCLEi [3/4]

Postprocessing:

- use post-processor **usrsuw.f** to calculate average
- use post-processor **usrsuwev.f** to calculate average *and* perform off-line calculation of radioactive decay (induced radioactivity)

output:

```
test-resnuc binary file with average distribution
test-resnuc_sum.lis ASCII summary file (see below)
test-resnuc_tab.lis ASCII table for plotting programs
```

content of test-resnuc_sum.lis :

```
**** test-resnuc ****

Total primaries run: 132961

Total weight of the primaries run: 132961.

Detector n: 1 TDet

(Region 34 Volume: 8. cmc,
distr. type : 3 ,
Z_max: 78, N-Z_max: 42, N-Z_min: -4)

Tot. response (n/cmc/pr) 0.000382190832 +/- 99. %
( --> Nuclei/pr 0.00305752666 +/- 99. %)
```

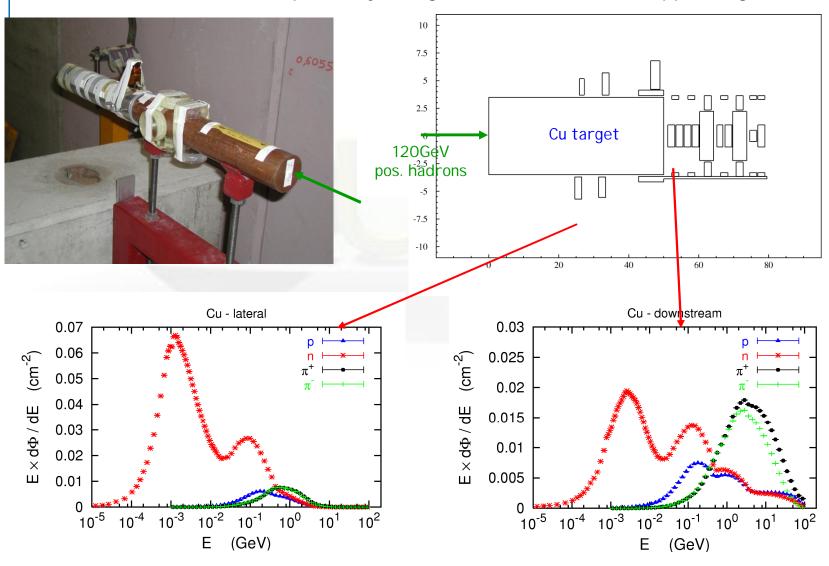
Card: RESNUCLEi [4/4]

```
**** Isotope Yield as a function of Mass Number ****
                (nuclei / cmc / pr)
 A_min: 1 - A_max: 198
            186 1.5870372E-08 +/- 9.9000000E+01 %
            185 3.7605012E-09 +/- 9.9000000E+01 %
 A:
 A:
            184 1.4581326E-08 +/- 9.9000000E+01 %
            183 1.0712972E-08 +/- 9.9000000E+01 %
 A:
            182 7.4882118E-09 +/- 9.9000000E+01 %
 **** Isotope Yield as a function of Atomic Number ****
                (nuclei / cmc / pr)
 Z min: 1 - Z max: 78
             74 5.2413383E-08 +/- 9.9000000E+01 %
             42 3.0072785E-07 +/- 9.9000000E+01 %
 7:
             41 4.7906228E-08 +/- 9.9000000E+01 %
             40 3.7605012E-09 +/- 9.9000000E+01 %
             38 3.7605012E-09 +/- 9.9000000E+01 %
**** Residual nuclei distribution
         (nuclei / cmc / pr)
 A \ Z 68
                                                 72
                                                                                                              78
                   69
                             70
                                       71
                                                            73
                                                                      74
                                                                                75
                                                                                          76
186  0.00E+00  0.00E+00  0.00E+00  0.00E+00
                                             0.00E+00
                                                       0.00E+00 1.59E-08
                                                                             0.00E+00
                                                                                       0.00E+00
                                                                                                 0.00E+00
                                                                                                           0.00E+
     +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0
185 0.00E+00 0.00E+00 0.00E+00 0.00E+00
                                             0.00E+00
                                                        0.00E+00
                                                                  3.76E-09
                                                                            0.00E+00
                                                                                      0.00E+00
                                                                                                0.00E+00
     +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0
184 0.00E+00 0.00E+00 0.00E+00 0.00E+00
                                             0.00E+00
                                                        0.00E+00
                                                                  1.46E-08
                                                                                      0.00E+00
                                                                                                0.00E+00
                                                                            0.00E+00
                                                                                                           0.00E+
     +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0
183 0.00E+00 0.00E+00 0.00E+00 0.00E+00
                                             0.00E+00
                                                       0.00E+00
                                                                 1.07E-08 0.00E+00 0.00E+00
     +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 %
. . .
```

Card: PHYSICS

Please activate the following two cards if residuals are of interest:

switch to activate the evaporation of heavy fragments (up to A=24)


```
PHYSICS 3.0 EVAPORAT
PHYSICS 1.0 COALESCE
```

special options for coalescence treatment

Benchmarks

Benchmark experiment

Irradiation of samples of different materials to the stray radiation field created by the interaction of a 120 GeV positively charged hadron beam in a copper target

Benchmark Experiment

Measurement and calculation of

- 1. Specific activities
- 2. Residual dose equivalent rates

for different cooling times

Benchmark experiment – Instrumentation 1

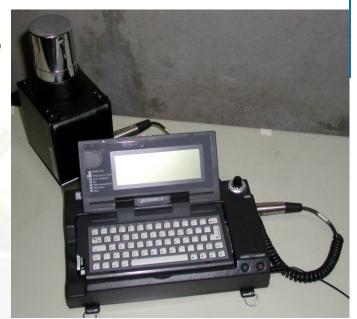
Low-background coaxial High Precision Germanium detector (Canberra)

- use of two different detectors (90 cm³ sensitive volume, 60% and 40% relative efficiency)

Genie-2000 (Ver. 2.0/2.1) spectroscopy software by Canberra and PROcount-2000 counting procedure software

- include a set of advanced spectrum analysis algorithms, e.g., nuclide identification, interference correction, weighted mean activity, background subtraction and efficiency correction
- comprise well-developed methods for peak identification using standard or usergenerated nuclide libraries. HERE: use of user-generated nuclide libraries, based on nuclides expected from the simulation and material composition

Efficiency calibration with LABSOCS


 allows the creation of a corrected efficiency calibration by modelling the sample taking into account self-absorption inside the sample and the correct detector geometry

Reference: M. Brugger, S. Roesler, et al., Nuclear Instruments and Methods A 562 (2006) 814-818

Benchmark experiment – Instrumentation 2

Portable spectrometer Microspec

- Nal detector, cylindrical shape, 5 x 5 cm
- folds spectrum with detector response ("calibrated" with ²²Na source)
- physical centre of detector determined with additional measurements with known sources (60Co, 137Cs, 22Na) to be 2.4 cm

Reference: M. Brugger et al., Radiat. Prot. Dosim. 116 (2005) 12-15

7Be 53.29d 1.47 ± 0.19 M 1.65 ± 0.22 1.50 ± 0.19 0.98 ± 0.24 M C,N 0.71 ± 0.09 Al 1.17 ± 0 22Na 2.60y 0.72 ± 0.11 0.70 ± 0.13 M 0.85 ± 0.11 — 0.76 ± 0.07 Al 0.86 ± 0 24Na 14.96h 0.42 ± 0.03 0.48 ± 0.02 0.63 ± 0.02 0.37 ± 0.02 Fe,(Cr,Si) 0.81 ± 0.03 Al,Mg 0.62 ± 0 28Mg 20.91h 0.25 ± 0.04 - 0.23 ± 0.03 - 0.31 ± 0.02 - 0.29 ± 0.10 M- Fe,Ni,Si) 0.29 ± 0 29Al 6.56m — 0.93 ± 0.25 M 38S 2.84h — 0.60 ± 0.12 - — 0.60 ± 0.12 -		О	D, C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\dashv	
22 Na 2.60y 0.72 ± 0.11 0.70 ± 0.13 M 0.85 ± 0.11 — — 0.76 ± 0.07 AI 0.86 ± 0 24 Na 14.96h 0.42 ± 0.03 0.48 ± 0.02 0.63 ± 0.02 0.37 ± 0.02 Fe,(Cr,Si) 0.81 ± 0.03 AI,Mg 0.62 ± 0 27 Mg 9.46m 0.25 ± 0.04 - 0.23 ± 0.03 - 0.31 ± 0.02 - 0.29 ± 0.10 M- Fe,Ni,Si) 0.29 ± 0 28 AI 2.24m 0.25 ± 0.03 - 0.21 ± 0.02 - 0.31 ± 0.02 - 0.29 ± 0.10 M- Fe,Ni,Si) 0.29 ± 0 28 AI 6.56m 0.93 ± 0.25 M M Fe,Ni,Si) 0.29 ± 0	09		<i>y</i> , o
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00		a,(Si,Mg)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	വാ		a,(Si,Ng)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	02		za,(SI,AI)
²⁸ Al 2.24m 0.25 ± 0.03 - 0.21 ± 0.02 - 0.31 ± 0.02 - 0.29 ± 0.10 M- Fe,Ni,Si) 0.29 ± 0.29 ± 0.20 M 0.25 ± 0.25 M	02	_	a,(Si)
²⁹ AI 6.56m			
30	03 -	-	a,(Si)
³⁰ \$ 2.84h	0.7		a a
38CI 37.24m 0.61 ± 0.08 0.60 ± 0.01 0.58 ± 0.07 Fe,Cr,(Mn)	07		/a
20			
41 -	1.4		ca car
"Ar 1.82h 0.39 ± 0.06		_	a Sa
42		_	a Ca
⁴² K 12.36h 0.66 ± 0.10 0.83 ± 0.06 0.95 ± 0.05 0.76 ± 0.09 Fe,Cr,(Mn) 1.21 ± 0.05 0.81 ± 0.10 - 0.77 ± 0.05 0.85 ± 0.03 0.74 ± 0.04 Fe,Cr,(Mn) 1.16 ± 0.05 0.85 ± 0.03 0.74 ± 0.04 0.05 0.85 ± 0.05 0.85 ± 0.05 0.74 ± 0.04 0.05 0.85 ± 0.05 0.74 ± 0.04 0.05 0.85 ± 0.05 0.74 ± 0.04 0.05 0.85 ± 0.05 0.85 ± 0.05 0.74 ± 0.04 0.05 0.85 ± 0.05 ± 0.05 0.85 ± 0.05 0.85 ± 0.05 ± 0.05 ± 0.05 ± 0.05 ± 0.05 ± 0.05 ± 0.05 ± 0		_	a Ca
44K 22.13m	05		/a
45K 17.30m			
⁴⁷ Ca 4.54d 0.59 ± 0.16 0.56 ± 0.17 M 0.73 ± 0.12 0.51 ± 0.15 M Fe,Cr,(Mn) 0.79 ± 0	12	_	a
43Sc 3.89h 0.40 ± 0.07 - 1.01 ± 0.14 1.28 ± 0.28 - 0.93 ± 0.15 Fe,Cr,(Mn)	12		/a
44Sc 3.93h 0.89 ± 0.07 1.06 ± 0.06 0.88 ± 0.05 0.96 ± 0.08 Fe,Cr,(Mn) 0.83 ± 0.05	06		e,(Ti)
36 3.93/7 0.89 ± 0.07 1.06 ± 0.06 0.88 ± 0.05 0.96 ± 0.06 Fe,Cr,(Mn) 1.08 ± 0.17 Fe,Mn 1.67 ± 0.00 0.81 ± 0.00 Fe,Cr,(Mn) 1.08 ± 0.17 Fe,Mn 1.67 ± 0.00 0.81 ± 0.			e,(Ti) e,(Ti)
AC .			
**Sc 83.79d 0.81 ± 0.07			e,(Ti) e,Ti,(Ca)
48SC 43.67h 1.39 ± 0.16 1.47 ± 0.10 1.10 ± 0.04 1.42 ± 0.08 Fe,Cr,(Mn) 1.34 ± 0.13 Mil,(1,re) 1.00 ± 0.04 1.36 ± 0.09 Fe,Cr,(Mn) 1.39 ± 0.16 1.36 ± 0.09 Fe,Cr,(Mn) 1.30 ± 0.09 Fe,Cr,(e, Ti,(Ca) e, Ti,(Ca)
48V 15.97d 1.16 ± 0.08 1.45 ± 0.06 1.11 ± 0.07 1.44 ± 0.11 Fe,Cr,(Mn) 1.07 ± 0.13 Fe,Mn 1.63 ± 0.00 1.60 ± 0.08 1.	_	_	e, 11,(Ca)
⁴⁸ Cr 21.56h 0.92 ± 0.14 0.97 ± 0.07 1.02 ± 0.08 Fe ₃ (Cr) 1.06 ± 0.08 1.06 ± 0.09 1.00 ± 0.00 ± 0.0		M F	
49 Cr 42.30m 1.00 ± 0.22 M 1.24 ± 0.12 - 1.06 ± 0.12 Fe ₃ (Cr)	23 10	101 1	-
51 Cr 27.70d 1.06 ± 0.13 1.15 ± 0.12 0.64 ± 0.24 M 1.24 ± 0.16 Fe,Cr 0.86 ± 0.16 Fe,Mn 1.33 ± 0	22		e
52 Mn 5.59d 0.68 ± 0.05 1.15 ± 0.04 1.09 ± 0.03 Fe ₁ (Mn) 0.88 ± 0.07 Fe ₂ (Mn 1.39 ± 0.05 Fe ₃ (Mn) 1.39 ± 0.	_	_	e
m ⁵² Mn 21.10m 1.68 ± 0.35 1.24 ± 0.09 1.13 ± 0.10 Fe,(Mn) 1.75 ± 0.00 1.75 ±		M F	
54 Min 312.12d 1.13 ± 0.12 1.01 ± 0.10 1.08 ± 0.11 Fe,(Min) 0.96 ± 0.12 Min,Fe 1.06 ± 0.00			e :
56 Mn 2.58h 0.81 ± 0.06 0.99 ± 0.05 1.33 ± 0.10 Fe 1.53 ± 0.25 Mn 1.03 ± 0.05 1.00 Fe 1.53 ± 0.25 Mn 1.03 ± 0.05 1.00 Mn 1.03 ± 0.05 Mn 1.03 ± 0.0	_	_	/In,Fe
⁵² Fe 8.28h 1.09 ± 0.13		10	,. 0
53Fe 8.51m		_	
⁵⁹ Fe 44.50d 0.82 ± 0.09			
⁵⁵ Co 17.53h 0.66 ± 0.09 0.76 ± 0.04 1.03 ± 0.05 Fe,Ni			
1.13 ± 0.10			
⁵⁶ Co 77.27d 1.04 ± 0.08 1.15 ± 0.10 1.37 ± 0.11 Fe,Ni 0.80 ± 0	20 N	МЕ	e
1.79 ± 0.15			
⁵⁷ Co 271.79d 0.85 ± 0.09			
⁵⁸ Co 70.82d 0.91 ± 0.09			
⁶⁰ Co 5.27y 0.90 ± 0.08			
⁶¹ Co 99.00m 0.68 ± 0.08			
⁶² Co 90.00s			
⁵⁷ Ni 35.60h 0.76 ± 0.11 1.44 ± 0.07 Ni	_		
⁶⁵ Ni 2.52/ ₂			
⁶⁰ Cu 23.70m 0.78 ± 0.08			
⁶¹ Cu 3.33h 0.87 ± 0.25			
⁶⁴ Cu 12.70h 0.63 ± 0.10			
62 Zn 9.19h 1.05 ± 0.23			
⁶³ Zn 38.47m			
⁶⁵ Zn 244.26d 0.62 ± 0.08			
0.97 ± 0.20		\top	

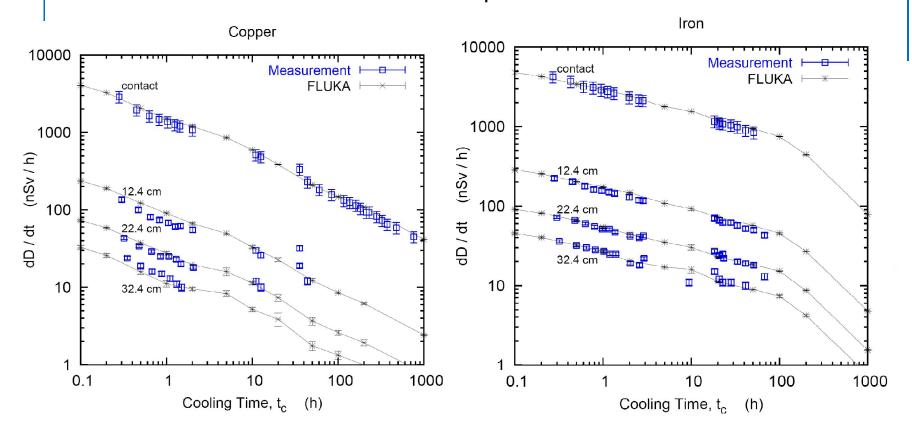
R = Ratio FLUKA/Exp

0.8 < R < 1.2

0.8 < R ± Error < 1.2

Exp/MDA < 1

R + Error < 0.8 or R - Error > 1.2

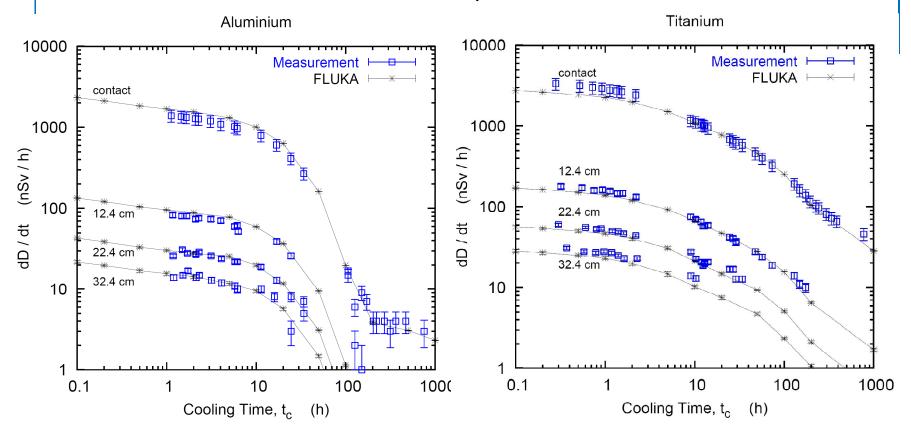

Reference:

M. Brugger, S. Roesler *et al.*, Nuclear Instruments and Methods A 562 (2006) 814-818

Benchmark experiment – Results 1

Dose rate as function of cooling time

for different distances between sample and detector

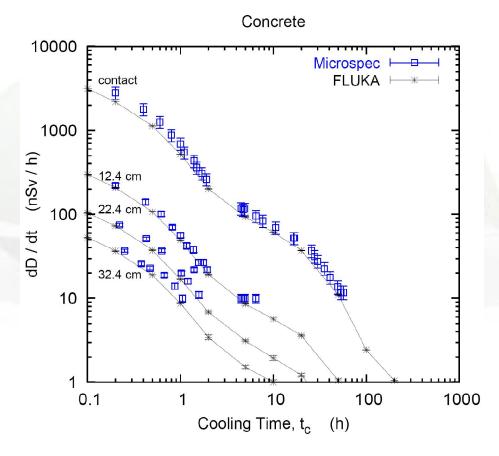


Reference: M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

<u>Benchmark experiment – Results 2</u>

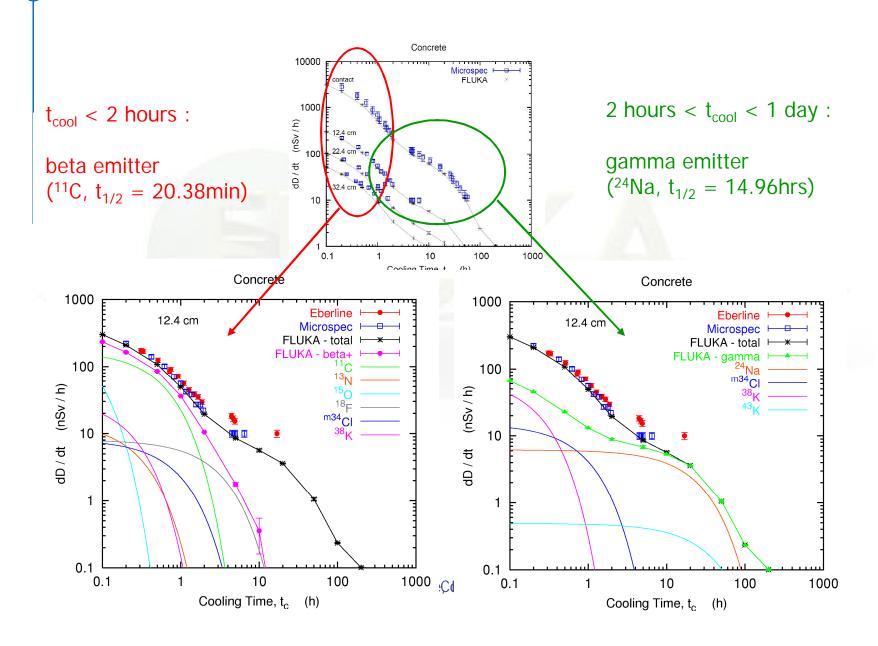
Dose rate as function of cooling time

for different distances between sample and detector

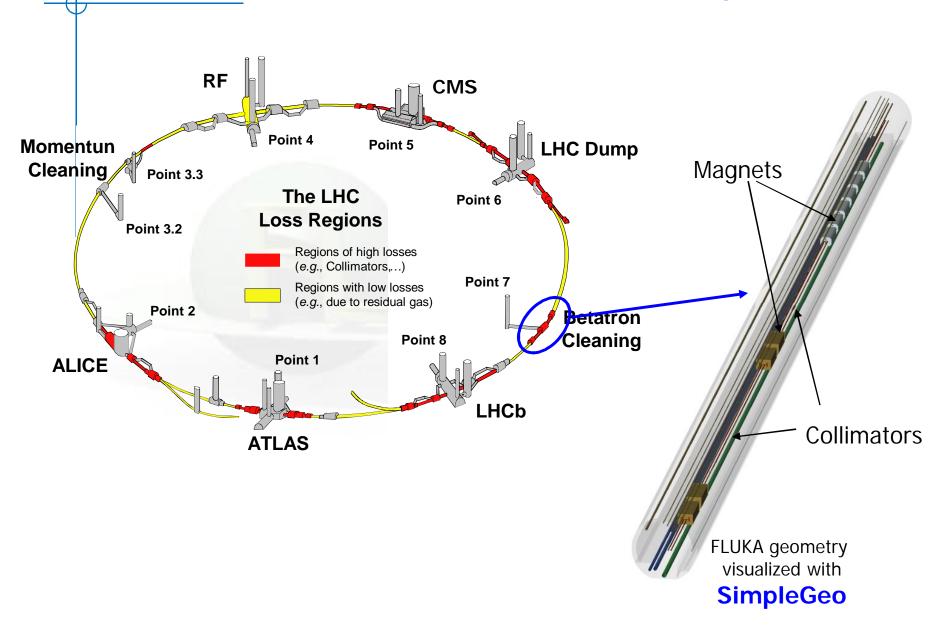


Reference: M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

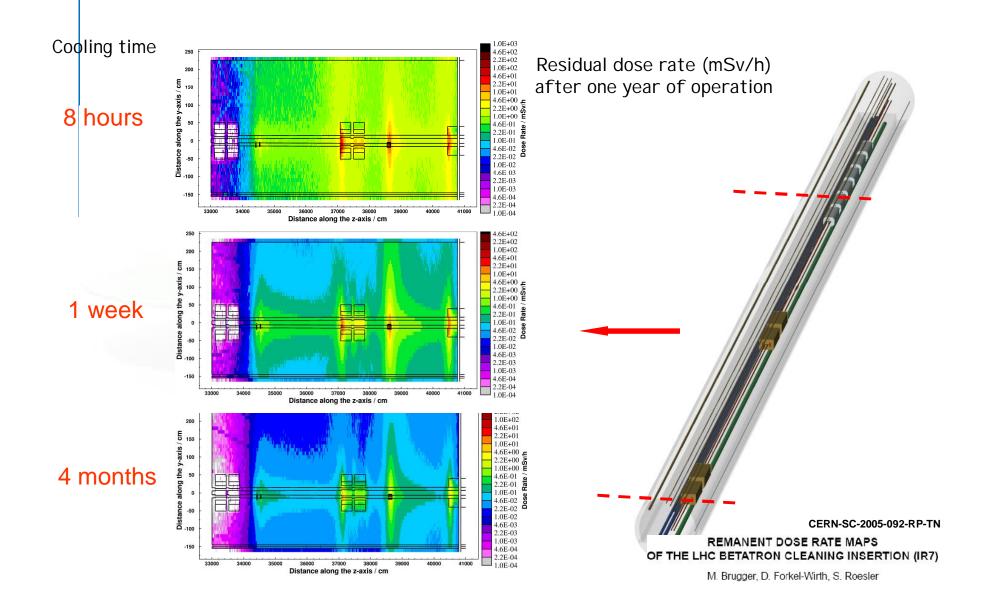
<u>Benchmark experiment – Results 3</u>


Dose rate as function of cooling time

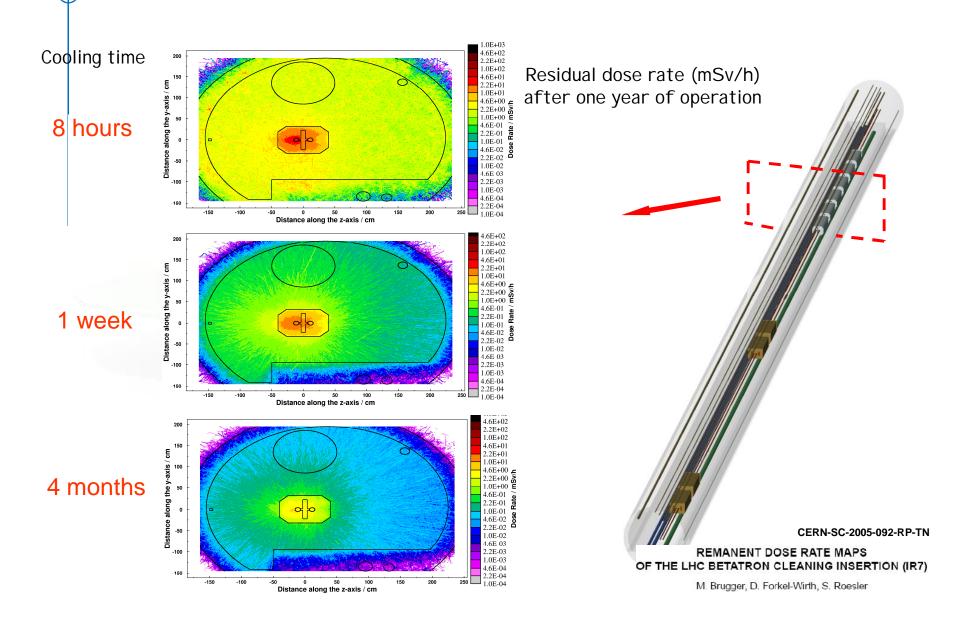
for different distances between sample and detector

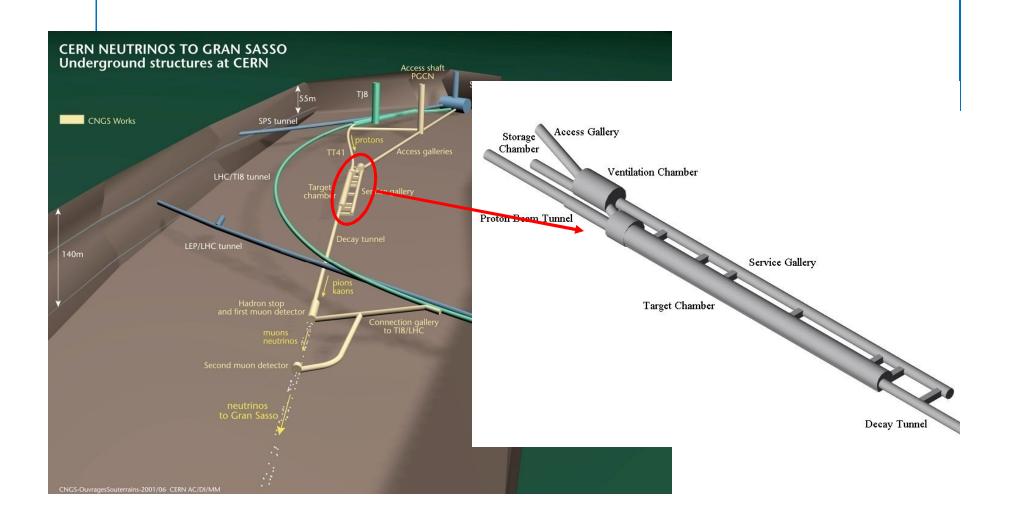

Reference: M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

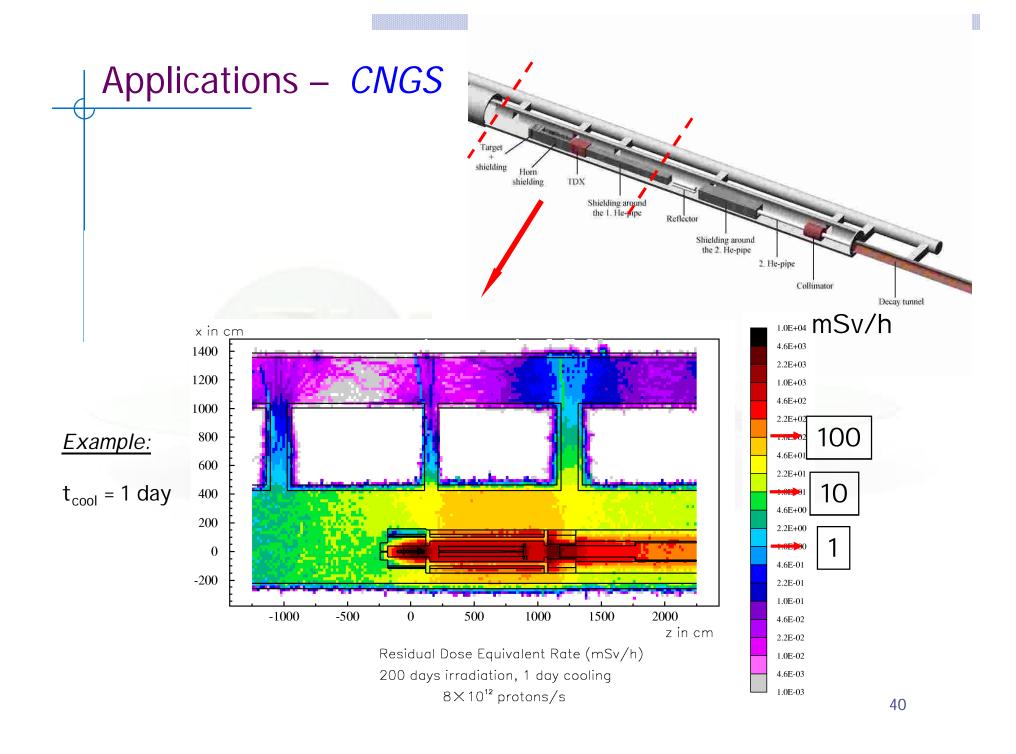
Benchmark experiment



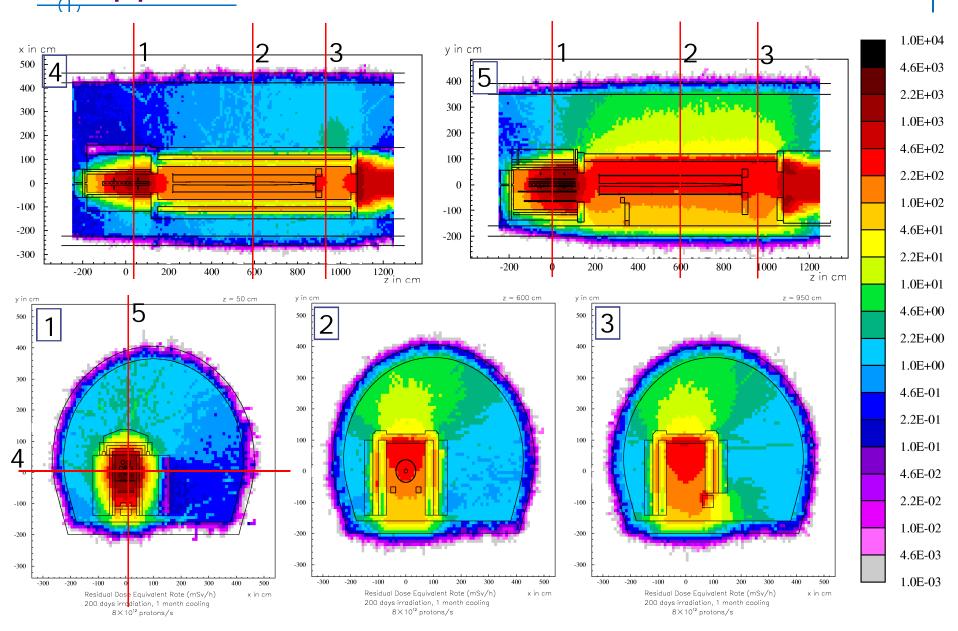
Applications


Applications – LHC collimation region


Applications – LHC collimation region



Applications – LHC collimation region



Applications – CNGS

Applications – CNGS

Two-step method

- not part of the standard FLUKA distribution
- all routines and data-files are available on request from Stefan.Roesler@cern.ch

<u>Overview</u>

Two separate FLUKA simulations:

1st step

- simulation of production of radioactive nuclides and of their build-up and decay for a certain irradiation pattern and different cooling times
 - write-out of all information on produced radio-nuclides at each cooling time into external file via user-routine usrrnc.f
 - uses the analytical solution of the Bateman equation in FLUKA (i.e., radioactive build-up and decay identical to 1-step method)

<u>2nd step</u>

- simulation(s) of radioactive decay and transport of decay radiation
- information on radio-nuclides read in from file created in 1st step via user-routine source.f
- individual simulations for each requested cooling time

Advantages and disadvantages

<u>Advantages</u>

- geometry for 1st and 2nd step can be different, e.g.,
 - * simulation of dose rate only from a certain activated component in a different environment (e.g., taken out from accelerator and brought into laboratory)
 - * investigation of relative contributions to the dose rate at a certain locations (e.g., beam-line components and tunnel wall)
 - * contributions from gamma, beta+ and beta- emitter can be studied separately
 - complex irradiation pattern can be read-in from external data file (e.g., exact treatment of several hundred beam-spills)

Disadvantages

- several simulations needed: for 1st step and for 2nd step for each individual cooling time
- dedicated user-routines have to be linked and a number of data-files are needed during execution