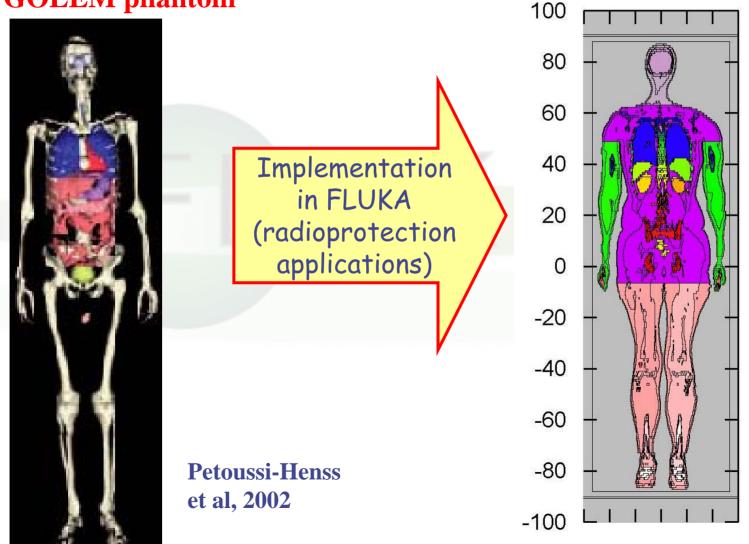


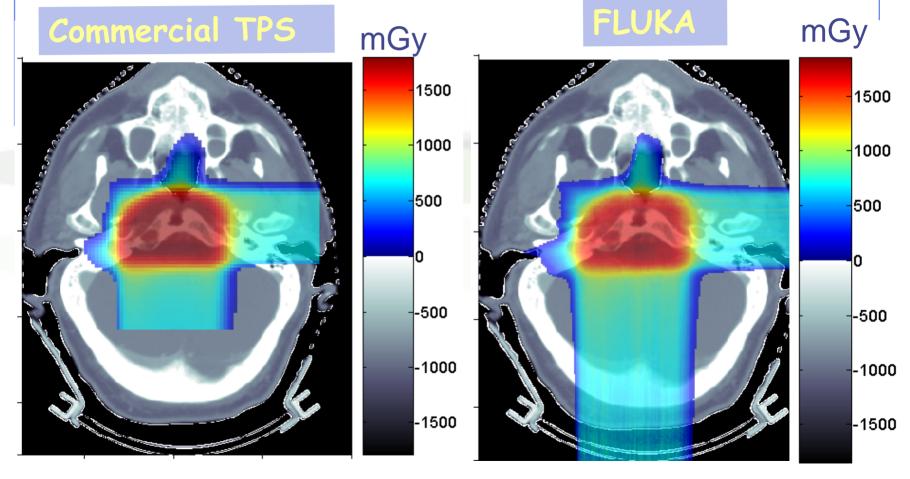
Voxels and Medical Applications

7th FLUKA Course NEA, Paris, Sept 28 - Oct 27, 2008

 It is possible to describe a geometry in terms of "voxels", i.e., tiny parallelepipeds (all of equal size) forming a 3-dimensional grid



Voxel geometries: examples


The anthropomorphic GOLEM phantom

FLUKA golem section

Voxel geometries in medical applications

 Voxel geometries are especially useful to import CT scan of a human body, e.g., for dosimetric calculations of the planned treatment in radiotherapy

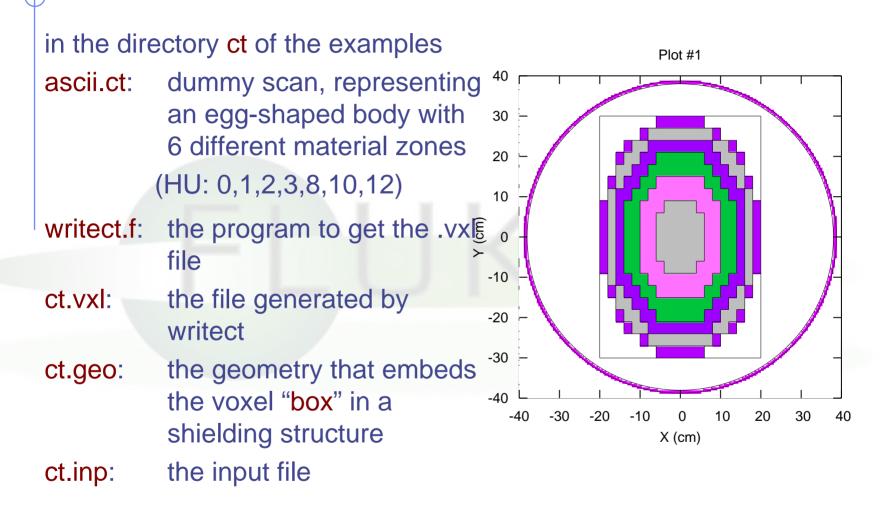
Parodi et al., 2007

 The CT scan contains integer values "Hounsfield Unit" reflecting the X-ray attenuation coefficient m_x

 HU_x = 1000 $(m_x\text{-}m_{\text{H20}})$ / m_{H20} , typically 1000 \leq HU \leq 3500

- We will use loosely the word "organ" to indicate a group of voxels (or even more than one group) made of the same "tissue" material (same HU value or in a given HU interval)
- The code handles each organ as a CG region, possibly in addition to other conventional "non-voxel" regions defined by the user
- The voxel structure can be complemented by parts written in the standard Combinatorial geometry
- The code assumes that the voxel structure is contained in a parallelepiped. This RPP is automatically generated from the voxel information.

- To describe a voxel geometry, the user must convert his CT scan or equivalent data to a format understood by FLUKA
- A prototype of conversion program is in writect.f
- This stage should :
 - Assign an organ index to each voxel. In many practical cases, the user will have a continuum of CT values (HU), and may have to group these values in intervals
 - Each organ is identified by a unique integer ≤32767. The organ numbering does not need to be contiguous (i.e. "holes" in the numbering sequence are allowed.)
 - One of the organs must have number **0** and plays the role of the medium surrounding the voxels (usually vacuum or air).
 - The user assigns to each NONZERO organ a voxel-region number. The voxel-region numbering has to be contiguous and starts from 1.


- The information is input to FLUKA through a special file *vxl containing:
 - The number of voxels in each coordinate
 - The number of voxel-regions, and the maximum organ number
 - The voxel dimension in each coordinate
 - A list of the organ corresponding to each voxel in Fortran list-oriented format, with the x coordinate running faster than y, and y running faster than z. val(1)
 corresponds to 1,1,1 == organ n. of first voxel

```
val(Nx) corresponds to Nx,1,1
val(Nx+1) corresponds to 1,2,1
val(2*Nx) corresponds to Nx,2,1
```

val(Nx*Ny) corresponds to Nx,Ny,2
 val(Nx*Ny*Nz) corresponds to Nx,Ny,Nz == organ n. of last voxel

A list of the voxel-region number corresponding to each organ

Voxels Example

Modifying writect

- The writect f program has to be adapted to the user's need: The user will have to adapt the reading of the scan, and if needed to group continuous values
- The user will need to modify the values of the parameters DX, DY DZ, NX, NY, NZ (respectively voxel size and number of voxels for each coordinate).
- writect.f takes also care of re-compacting the original organ numbers by eliminating all gaps in the sequence, and writes a translation table to the screen:

WRITE(*,'(A,2I10)') 'New number, old number: ', NO, IC

writect.f

PROGRAM WRITECT IMPLICIT DOUBLE PRECISION (A-H, O-Z) * COLUMNS: FROM LEFT TO RIGHT * ROWS: FROM BACK TO FRONT * SLICES: FROM TOP TO BOTTOM PARAMETER (DX = 2.0D+00) PARAMETER (DY = 3.0D+00) PARAMETER (DZ = 4.0D+00) PARAMETER (NX = 20) PARAMETER (NX = 20) PARAMETER (NY = 20)		For each voxel DO IZ=1,NZ DO IY=1,NY DO IX=1,NX IF (CT(IX,IY,IZ) .GT. 0) THEN IO= CT(IX,IY,IZ) VXL(IX,IY,IZ) = IO MO = MAX (MO,IO) DO IR=1,NO IF (IREG(IR) .EQ. IO) GO TO 1000		
<pre>PARAMETER (NZ = 20) DIMENSION CT(NX,NY,NZ) INTEGER*2 CT DIMENSION VXL(NX,NY,NZ) INTEGER*2 VXL CHARACTER TITLE*80 DIMENSION IREG(1000), KREC INTEGER*2 IREG, KREG * CALL CMSPPR DO IC = 1, 1000 KREG(IC) = 0 END DO OPEN(UNIT=30,FILE='ascii_ct',S READ(30,*) CT * * NO=0 MO=0 In this e organ nu set equal</pre>		<pre>NO=NO+1 IREG(NO)=IO KREG(IO)=NO WRITE(*,'(A,2110)') New number: assign new region NO to organ IO</pre> WRITE(*,'(A,2110)') New number; old number: ', NO, IO CONTINUE END IF END DO END DO END DO * NO = number of different organs * MO = max. organ number before compacting * WRITE(*,') NO,NIO,NIO OPEN(UNIT=31,FILE='ct.vxl',STATUS='UNKNOWN',FORM='UNFO RMATTED) TITLE = 'Egg-like CT scan' WRITE(31) TITLE WRITE(31) ITILE WRITE(31) NX,NY,NZ,NO,MO WRITE(31) DX,DY,DZ WRITE(31) (KREG(IC),IC=1,MO) STOP END WRITE(31) (KREG(IC),IC=1,MO) STOP		

Modifying writect

 In the considered example the CT numbers 0,1,2,3,8,10,12 have been converted to

- organs "IO" 0 1 2 3 8 10 12 (Max. MO=12)
- regions "NO" 0 6 5 4 3 2 1 (...because of the order of appearance)
- After having modified the program (assumed to be in a file writect.f), compile it and link with the FLUKA library, and then execute:
- ct > \\$FLUPRO/Ifluka -o writect writect.f

ct > ./writect

• The result will be a file ct.vxl (or equivalent name chosen by the user) which will be referred to by a special command line in the geometry input

Input file

- Prepare the usual FLUKA input file. The geometry must be written like a normal Combinatorial Geometry input (in any of the allowed formats, as part of the normal input stream or in a separate *geo file), but in addition must include:
 - VOXELS card as a first line, before the Geometry title card, with the following information:
 - WHAT(1), WHAT(2), WHAT(3) = x, y, z coordinates chosen as the origin of the "voxel volume", (i.e. of a region made of a single RPP body extending from WHAT(1) to WHAT(1) + NX*DX, ...) which contains all the voxels
 - WHAT(4), WHAT(5), WHAT(6): not used
 - SDUM = name of the voxel file (extension will be assumed to be .vxl)

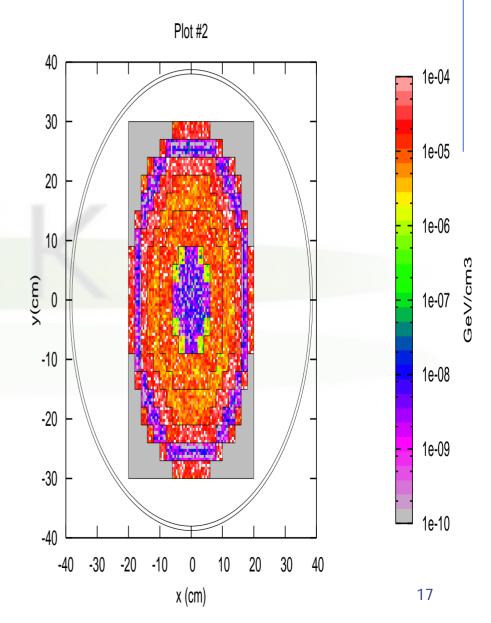
C[†]

Voxel Body

- The usual list of NB bodies, not including the RPP corresponding to the "voxel volume" (see VOXELS card above). This RPP will be generated and added automatically by the code as the (NB+1) th body, with one corner in the point indicated in the VOXELS card, and dimensions NX*DX, NY*DY and NZ*DZ as read from the voxel file.
- The usual region list of NR regions, with the space occupied by body named VOXEL or numbered NB+1 (the "voxel volume") subtracted. In other words, the NR regions listed must cover the whole available space, excepted the space corresponding to the "voxel volume". This is easily obtained by subtracting body VOXEL or NB+1 in the relevant region definitions, even though this body is not explicitly input at the end of the body list.

Voxel Regions

The code will automatically generate and add several regions:
NO additional regions, where NO = number of non-zero organs:


Name	Number	Description
VOXEL	NR+1	sort of a "cage" for all voxels. Nothing should ever be deposited in it. The user shall assign vacuum to it.
VOXEL001	NR+2	containing all voxels belonging to organ number 0. There must be at least 2 of such voxels, but in general they should be many more. Typical material assignment to this region is air
VOXEL002	NR+3	corresponding to organ 1
VOXEL003	NR+4	corresponding to organ 2
VOXE###	NR+2+NO	corresponding to organ NO

Voxel Material Assignment

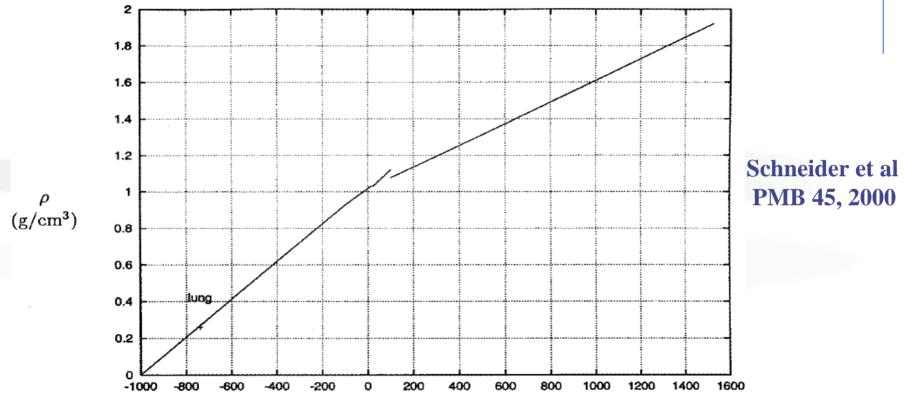
The assignment of materials shall be made by command ASSIGNMAt (and in a similar way other region-dependent options) referring to the first NR regions in the usual way, and to the additional regions using the correspondence to organs as explained before.

AS	SIGNMA BLC	KHOLE B	LKH
AS	SIGNMA VA	CUUM V	ACO
AS	SIGNMA ALL	IMINUM	AL
AS	SIGNMA VA	CUUM V	ACI
cage A.S.	STGNMA VA	CUUM VC	DXFL
0 Organ AS	SIGNMA VA	CUUM VOX	EL001
ÁS:	SIGNMA TIT	ANIUM VO	XELOO2
	SIGNMA I	RON VOXEL	_002
6 "Non- AS:	SIGNMA A	AIR VOXELO	003
zero" AS:	SIGNMA CC	OPPER VOXE	L004
organs AS	SIGNMA CA	LCIUM VOX	EL005
AS	SIGNMA CA	RBON VOX	EL006
		AIR VOXELO	

Energy deposition in the voxel structure, cut at z=0, 10 GeV protons, through cartesian USRBIN

Practical issues for Medical Applications

General problems for MC calculations on CT scans

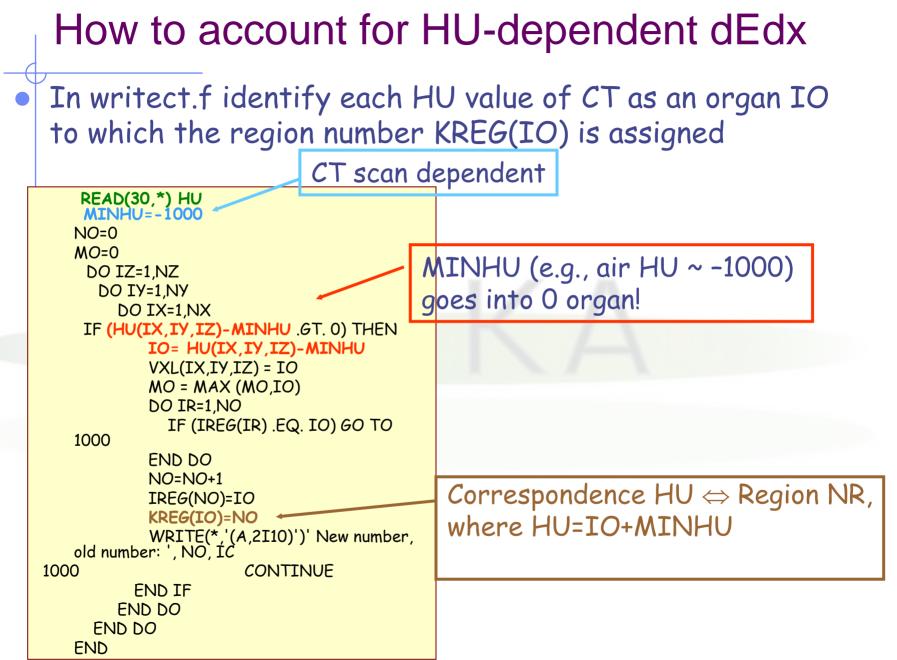

- How to assign realistic human tissue parameters (= materials) for MC Calculation ?
- How to find a good compromise between the number of different HU values (~ 3000-5000) and the materials to be considered in the MC ? (issues on memory and computation speed when attempting to treat each HU number as a different material !!!)
- How to preserve continuous, HU-dependent information when segmenting the HU numbers into intervals sharing the same "tissue" material ? (critical for ion range calculation in charged hadron therapy !!!)

CT stoichiometric calibration (I) CT segmentation into 27 materials of defined elemental composition (from analysis of 71 human CT scans) $w_i(pp)$ Η н С Ν 0 Na Mg Ρ S C1 Ar к Ca Air, Lung, -1000 - 95075.5 23.2 13 -950 - 12010.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2 Adipose tissue 68.1 0.2 0.1 0.1 -120 - 8311.6 19.8 0.1 -82 - 5311.3 56.7 0.9 30.8 0.1 0.1 0.1 0.2 -52 - 2311.0 45.8 1.5 41.1 0.1 0.1 0.2 -22-710.8 35.6 2.2 50.9 0.1 0.2 0.2 8 - 182.6 57.8 0.1 0.2 10.6 28.40.2 0.1 Soft tissue 19 - 8072.3 10.3 134 3.0 0.2 0.2 0.2 0.2 0.2 80 - 12094 20.76.2 62.2 0.6 0.6 0.3 120-200 0.1 9.5 45.5 2.5 35.5 2.1 0.1 0.1 0.1 45 64 200-300 8.9 42.3 2.7 363 0.1 3.0 0.1 0.1 0.1 300-400 82 391 2.9 37.2 0.1 39 0.1 0.1 0.1 83 400-500 76 361 3.0 38.0 0.1 0.1 47 0.2 0.1 101 0.2 500-600 71 33 5 32 387 0.1 0.1 54 117 600-700 6.6 31.0 39.4 0.2 3.3 0.1 0.1 6.1 13.2 700-800 61 28.7 35 40.00.1 0.1 6.7 0.2 146 800-900 5.6 26.5 36 40.5 0.2 7.3 0.3 15.9 0.1 7.8 Skeletal tissue⁴ 900-1000 5.2 24.6 37 411 0.1 0.2 0.3 17.0 22.71000-1100 49 38 41.6 0.2 83 0.3 18.1 0.1 1100-1200 4.5 21.0 39 42.0 0.1 0.2 88 0.3 19.2 4.2 19.4 42.5 0.2 9.2 0.3 1200-1300 4.0 0.1 20.1 1300-1400 3.9 17.9 4.142.9 0.1 0.2 9.6 0.3 21.0 1400-1500 3.6 16.5 42 43.2 0.2 10.0 0.3 21.9 0.1 3.4 15.5 4.2 43.5 0.1 0.2 22.5 1500-1600 10.3 0.3

Schneider et al PMB 45, 2000

CT stoichiometric calibration (II)

Assign to each material a "nominal mean density", e.g. using the density at the center of each HU interval (Jiang et al, MP 2004)



H

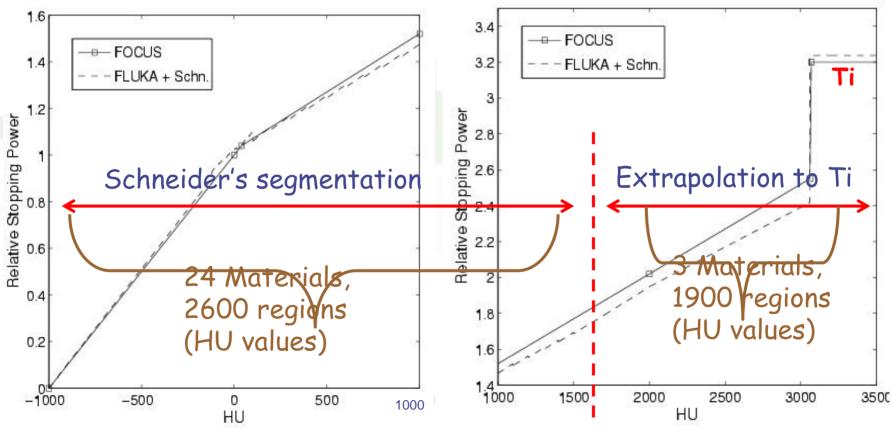
But "real density" (and related physical quantities) varies continuously with HU value !!!

The region-dependent CORRFACT card

- "CORRFACT" card allows to alter material density for dE/dx and nuclear processes
- First two inputs specify a density scaling factor (restricted to the interval [2/3,3/2]) for charged particle ionization processes (WHAT(1)) and for all other processes (WHAT(2)) to the region(s) specified by the inputs WHAT(4-6) [cf. manual]
- This is especially important in ion beam therapy to force the MC to follow the same semi-empirical HU-range calibration curve as the Treatment Planning System (TPS) for dosimetric comparisons

How to account for HU-dependent dEdx

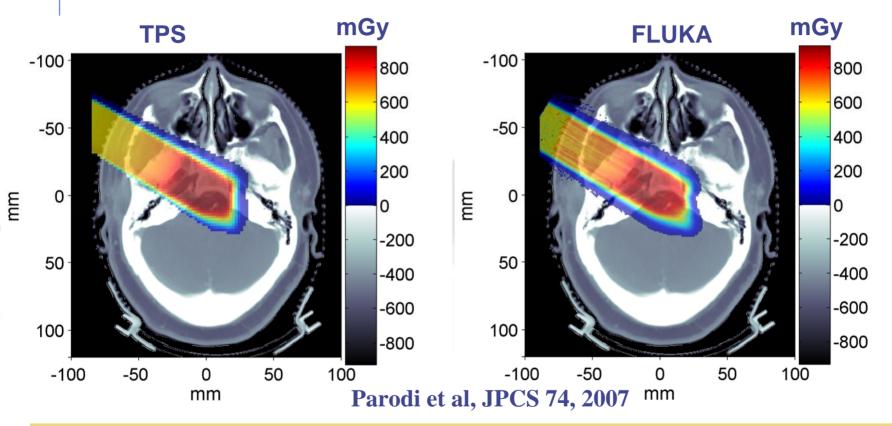
In the INPUT


- Let several regions share the same material composition and mean density according to CT segmentation (reduced number of materials to save memory / initialization time)
 ASSIGNMA BONE VOXEL005 (region number 25)
 ASSIGNMA BONE VOXEL016 (region number 31)
- Use CORRFACT to impose the desired correction for stopping power (⇒ ion range!) in the regions KREG corresponding to different organs IO (i.e., different HU values) sharing the same MATERIAL assignment

 CORRFACT
 0.85
 0.0
 0.0
 25
 Region #25 corresponds

 CORRFACT
 1.3
 0.0
 0.0
 31
 to "softer" bone than #31

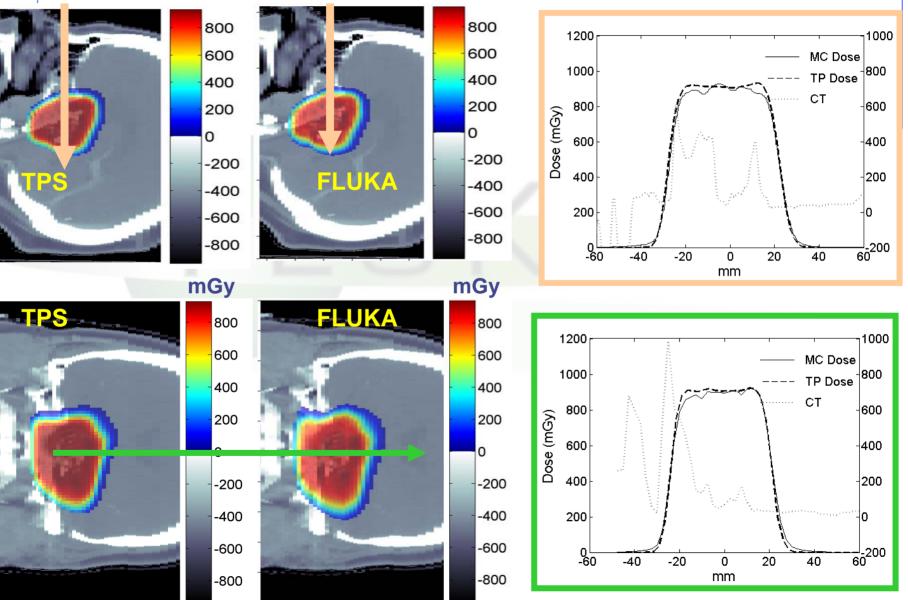
Forcing FLUKA to follow the same range calibration curve as TPS for p @ MGH Boston

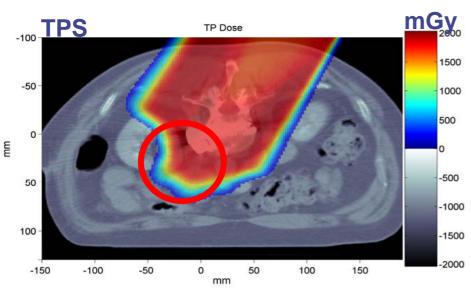

The CORRFACT ionization scaling factors were obtained from the dEdx ratio between TPS and FLUKA (+ Schneider "mass density")

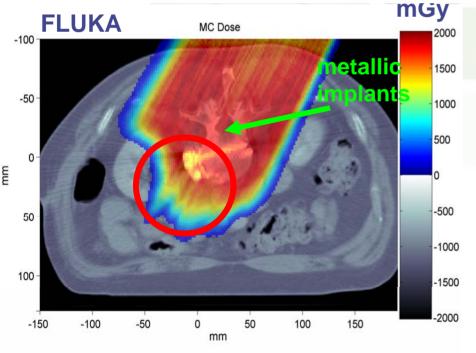
Parodi et al MP 34, 2007, Parodi et PMB 52, 2007

Applications of FLUKA to p therapy @ MGH

Input phase-space provided by H. Paganetti, MGH Boston

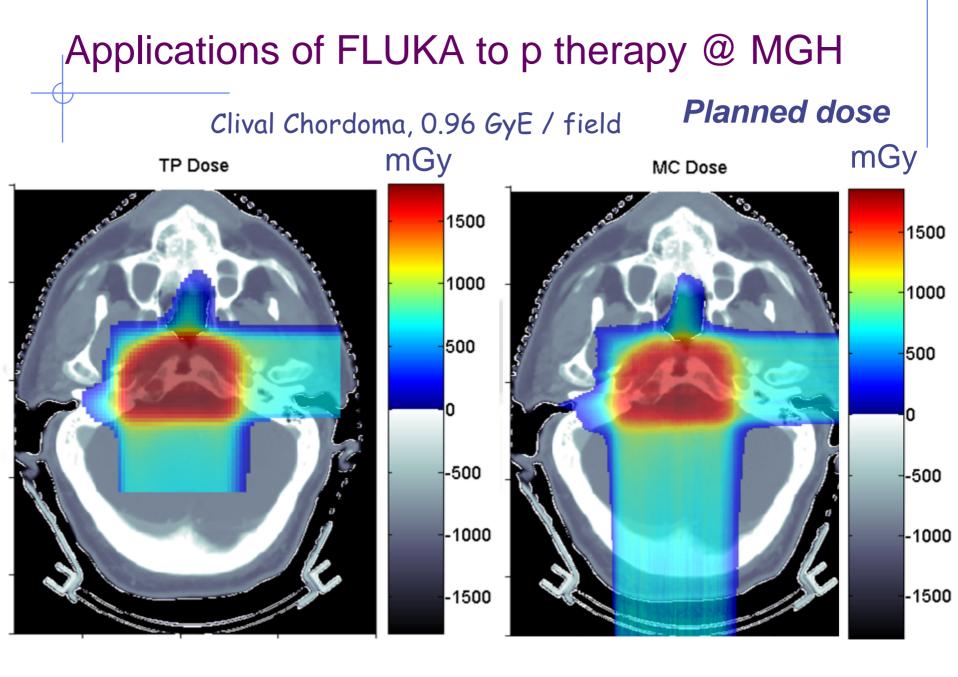

Prescribed dose: 1 GyE MC : ~ 5.5 10⁶ protons in 10 independent runs (11h each on Linux Cluster mostly using 2.2GHz Athlon processors)

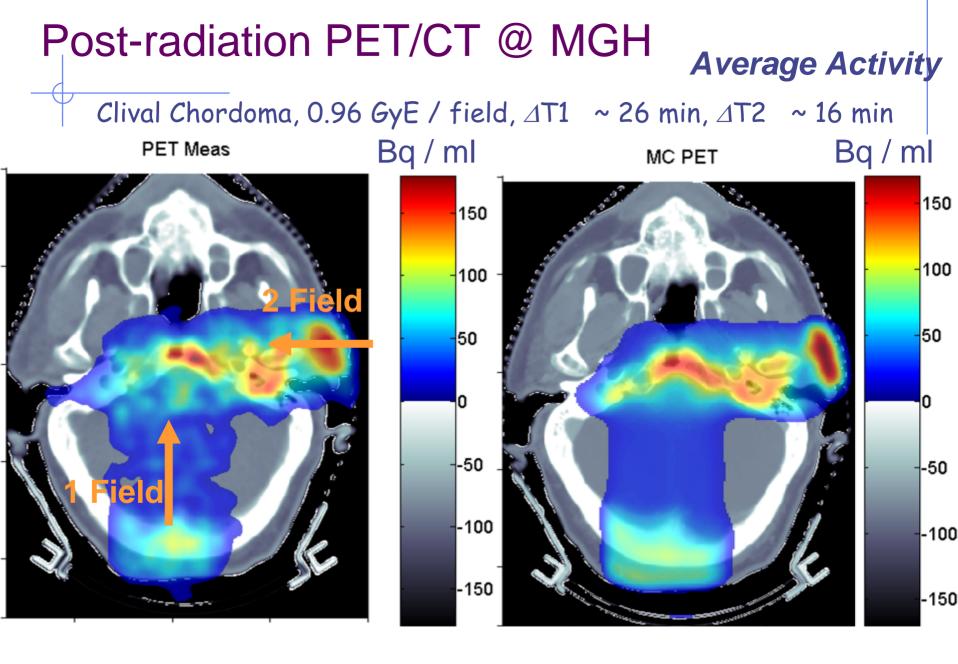

Applications of FLUKA to p therapy @ MGH


mGy

mGy

Parodi et PMB 52, 2007





Applications of FLUKA to p therapy @ MGH

Prescribed dose: 2 GyE MC : ~ 7.4 10⁷p in 12 independent runs (~ 130h each on 2.2 GHz Linux cluster)

K. Parodi et al, IJROBP 2007

K. Parodi et al, IJROBP 2007