EM interactions

Beginners' FLUKA Course
Topics

- General settings
- Interactions of leptons/photons
 - Photon interactions
 - Photoelectric
 - Compton
 - Rayleigh
 - Pair production
 - Photonuclear
 - Photomuon production
 - Electron/positron interactions
 - Bremsstrahlung
 - Scattering on electrons
 - Muon interactions
 - Bremsstrahlung
 - Pair production
 - Nuclear interactions
- Ionization energy losses
 - Continuous
 - Delta-ray production
- Transport
 - Multiple scattering
 - Single scattering

These are common to all charged particles, although traditionally associated with EM
E-M FLUKA (EMF) at a glance

Energy range for e^+, e^-, γ: 1 keV (100 eV for γ) - 1000 TeV

Full coupling in both directions with hadrons and low-energy neutrons

Energy conservation within computer precision

Up-to-date cross section tabulations from EPDL97 database

EMF is activated by default....and with most DEFAULTS options, except: EET-TRAN, NEUTRONs, SHIELDING

To de-activate EMF:

With EMF-OFF, E.M. energy is deposited on the spot

Consider also the DISCARD command

Production and transport of optical photons (Cerenkov, scintillation) is implemented. Since it needs user coding, it is not treated in this beginners course.
Transport thresholds

E.M particles are transported until their energy falls below a preset threshold. In FLUKA, this energy threshold can be set region by region.

HOW to choose?
It depends on the “granularity” of the geometry and/or of the scoring mesh and on the “interest” in a given region. Energy/range tables are very useful (see for instance http://physics.nist.gov)

Warning 1: to reproduce correctly electronic equilibrium, neighboring regions should have the same electron energy (NOT range) threshold. To be kept in mind for sampling calorimeters

Warning 2: Photon thresholds should be lower than electron thresholds (they travel more)

Warning 3: low thresholds are CPU eaters
Production Thresholds

Let’s introduce a concept that is treated again in the discussion of ionization energy losses: the separation between CONTINUOUS and DISCRETE energy deposition:

The simulation of all atomic interaction processes is not possible in all-purposes MCs, because

• the modeling of very low energy transfer would need detailed atomic/molecular physics
• the CPU time would diverge

→ 1) ONLY interactions resulting in a “substantial” energy transfer are simulated explicitly
→ 2) All other interactions are “condensed” in a continuous energy loss along the particle step

Condition 1) is implemented by setting a threshold for the energy of the produced secondary particles (“delta rays”)
Production Thresholds -II

For electromagnetic interactions: \textbf{BY MATERIAL!}

\begin{center}
\begin{tabular}{ccccccc}
EMFCUT & e Thresh & \gamma \text{Thresh} & Fudgem & Mat1 & Mat2 & Step & PROD-CUT \\
\hline
\end{tabular}
\end{center}

Fudgem is related to multiple scattering. \(\text{e} = 0 \) below 10 keV, \(\text{e} = 1 \) above

\textbf{Warning 1:} production and transport thresholds are set by default, depending on the DEFAULTS card. \textbf{DO NOT RELY} on them, choose those best suited for your problem

\textbf{Warning 2:} if prod-cut \ll transport cut, CPU is wasted in producing/dumping particles on spot. Sometimes it could be convenient to define several “equal” materials with different production thresholds (and different names)
Photon interactions
Photoelectric effect

- Detailed treatment of Fluorescence
- Photoelectron Angular distribution
- Approximate Auger effect
- Effect of photon Polarization

Fluorescence after photoelectric is activated only with a subset of DEFAULTS

CPU time vs. precision in small granularity

To activate/deactivate it:

EMFFLUO Flag Mat1 Mat2 Step

Flag > 0: Activate Flag < 0: De-activate

Warning: check consistency with production/transport thresholds
Compton and Rayleigh

- Account for **atomic bonds** using inelastic Hartree-Fock **form factors** (very important at low E in high Z materials)

- **NEW**: Compton with **atomic bonds and orbital motion** (as better alternative to form factors)
 - Atomic shells from databases
 - Orbital motion from database + fit
 - Followed by fluorescence

- Account for effect of photon **polarization**

Inelastic Form Factors, Compton profile and Rayleigh scattering are activated only with a subset of DEFAULTS. To activate/deactivate:

```
EMFRAY Flag  Reg1  Reg2  Step
```

Look in the manual for further details
Compton profile examples

green = free electron
blue = binding with form factors
red = binding with shells and orbital motion

Larger effect at very low energies, where, however, the dominant process is photoelectric.
Visible: shell structure near $E' = E$, smearing from motion at low E'
Polarization

By default, source photons are NOT polarized. Polarization can be set by

\[
\text{POLARIZA Pcosx Pcosy Pcosz Flag1 Fraction Flag2}
\]

Flag1 \(\Rightarrow\) Pol. direction wrt direction of motion, Fraction + flag2 \(\Rightarrow\) fraction of polarized/unpolarized or polarized/orthogonally polarized photons (see the manual for further details)

Effect of photon polarization
Deposited dose by 30 keV photons on Water at 3 distances from beam axis as a function of penetration depth for 3 orientations wrt the polarization direction
Pair Production

- Angular and energy distribution of e^+, e^- described correctly (no “fixed angle” or similar approximation)
- No approximations near threshold
- Differences between emitted e^+ and e^- at threshold accounted for
Photonuclear interactions

Photon-nucleus interactions in FLUKA are simulated over the whole energy range, through different mechanisms:

- Giant Resonance interaction
- Quasi-Deuteron effect
- Delta Resonance production
- Vector Meson Dominance ($\gamma \equiv \rho, \Phi$ mesons) at high energies

Nuclear effects on the **initial state** (i.e. Fermi motion) and on the **final state** (reinteraction / emission of reaction products) are treated by the FLUKA hadronic interaction model (PEANUT) \Rightarrow INC + pre-equilibrium + evaporation/fission/breakup

The (small) photonuclear interaction probability can be enhanced through biasing.
Photonuclear interactions: options

Photonuclear interactions are **NOT activated** with any default.

To activate them:

<table>
<thead>
<tr>
<th>PHOTONUC Flag</th>
<th>Mat1</th>
<th>Mat2</th>
<th>Step</th>
</tr>
</thead>
</table>

Flag controls activation of interactions, with the possibility to select a subset of the photonuclear mechanisms.

Since the photonuclear cross section is very small, PHOTONUC should be always accompanied by LAM-BIAS with SDUM = blank (see lecture on biasing).

<table>
<thead>
<tr>
<th>LAM-BIAS</th>
<th>0.0</th>
<th>Factor</th>
<th>Mat</th>
<th>PHOTON</th>
</tr>
</thead>
</table>

Applications:

- electron accelerator shielding and activation
- neutron background by underground muons (together with muon photonuclear interactions (option **MUPHOTON**))
Photonuclear Interactions: benchmark

Yield of neutrons per incident electron as a function of initial e\(^{-}\) energy. Open symbols: FLUKA, closed symbols: experimental data (Barber and George, Phys. Rev. 116, 1551-1559 (1959))

Left: Pb, 1.01 \(X_0\) (lower points) and 5.93 \(X_0\) (upper)
Right: U, 1.14 and 3.46 \(X_0\)
Photonuclear int.: example

Reaction:
\[^{208}\text{Pb}(\gamma,x\text{ n})\]
\[20 \leq E_\gamma \leq 140 \text{ MeV}\]

Cross section for multiple neutron emission as a function of photon energy,
Different colors refer to neutron multiplicity \(\geq n \), with \(2 \leq n \leq 8 \)

Symbols: exp. data (NPA367, 237 (1981); NPA390, 221 (1982))

Lines: FLUKA
Photomuon production

Muon pair production by photons is **NOT activated** with any default setup. To activate it:

<table>
<thead>
<tr>
<th>PHOTONUC</th>
<th>Flag</th>
<th>Lambias</th>
<th>Mat1</th>
<th>Mat2</th>
<th>Step</th>
<th>MUMUPAIR</th>
</tr>
</thead>
</table>

Flag controls activation of interactions, with the possibility to select a subset of the photonuclear mechanisms. Biasing of photomuon production can be done directly with this card, setting what(2)
Electron/Positron interactions
Bremsstrahlung

- Energy-differential cross sections based on the Seltzer and Berger database, interpolated and extended to a finer energy mesh, tip, and larger energies.
- Finite value at tip energy.
- Extended to 1000 TeV taking into account the LPM (Landau-Pomeranchuk-Migdal) effect.
- Soft photon suppression (Ter-Mikaelyan) polarization effect.
- Special treatment of positron bremsstrahlung with ad hoc spectra at low energies.
- Detailed photon angular distribution fully correlated to energy.
Bremsstrahlung: benchmark

2 MeV electrons on Iron, Bremsstrahlung photon spectra measured (dots) and simulated (histos) at three different angles.
Bremsstrahlung: benchmark II

12 and 20.9 MeV electrons on a W-Au-Al target, bremsstrahlung photon spectra in the forward direction measured (dots) and simulated (histos)
Bremsstrahlung: benchmark III
Esposito et al., LNF 93-072

ADONE storage ring
1.5 GeV e⁻

Bremss. on the residual gas in the straight sections

Measured with TLD's matrices at different distances from the straight Section

Here: dose vs. horizontal position at different vertical positions, d=218cm
Other e^\pm interactions

Positron Annihilation

- At rest and in flight according to Heitler.
- In annihilation at rest, account for mutual polarization of the two photons.

Scattering

- e^+: Bhabha
- e^-: Møller
Electron scattering:

Transmitted (forward) and backscattered (backward) electron angular distributions for 1.75 MeV electrons on a 0.364 g/cm2 thick Copper foil. Measured (dots) and simulated (histos) data.
The ATLAS EM “accordion” calo (standalone test beams)

Energy resolution 10-100 GeV:

\[\frac{\sigma}{E} = \frac{9.8 \pm 0.4\%}{\sqrt{E}} \]

\[\frac{\sigma}{E} = \frac{9.2 \pm 0.3\%}{\sqrt{E}} \]
Muon interactions
Bremsstrahlung and pair production

- At high energies, bremsstrahlung and pair production are important also for muons and charged hadrons. For instance, in Lead the muon energy loss is dominated by these processes above 300 GeV.

For muons and all charged hadrons:

- Bremsstrahlung: implemented in FLUKA including the effect of nuclear form factors
- Pair Production: implemented

Activation of these processes and thresholds of EXPLICIT γ and e^\pm production depend on the DEFAULTS chosen. They are controlled by the card

PAIRBREM Flag e Thresh γThresh Mat1 Mat2 Step

Below threshold, energy loss is accounted for in a continuous approximation.
Energy Deposition spectrum in the Atlas tile-calorimeter prototype

300 GeV muons on iron + scintillator structure
Energy Deposition spectrum in the Atlas tile-calorimeter prototype

300 GeV muons on iron + scintillator structure
Muon Photonuclear Reactions

- The cross section can be factorized (following Bezrukov-Bugaev) in virtual photon production and photon-nucleus reaction.
- Nuclear screening is taken into account.
- Only Virtual Meson Interactions are modeled, following the FLUKA meson-nucleon interaction models.
- Nuclear effects are the same as for hadron-nucleus interactions.

Schematic view of a \(\mu \) hadronic interaction. The interaction is mediated by a virtual photon. The final state can be more complex.
Muon photonuclear: options

μ photonuclear interactions are **NOT activated** with any default

To activate them:

|MUPHOTON Flag | 0.0 | 0.0 | Mat1 | Mat2 | Step|

Flag controls activation of interactions, with the possibility to simulate the interaction without explicit production and transport of secondaries (this gives the correct muon energy loss/straggling)

Since the μ photonuclear cross section is very small, MUPHOTON should be always accompanied by LAM-BIAS (see lecture on biasing)

|LAM-BIAS | 0.0 | Factor | Mat | MUON+ | MUON-|
Muon-induced neutron background in underground labs

Neutron production rate as a function of muon energy

Stars+line: FLUKA simulation with a fit to a power law.

Exp. points:
- abscissa → average μ energy at the experiment's depth:
 - A) 20 m.w.e.
 - B) 25 m.w.e.
 - C) 32 m.w.e. (Palo Verde)
 - D) 316 m.w.e.
 - E) 750 m.w.e.
 - F) 3650 m.w.e. (LVD)
 - G) 5200 m.w.e. (LSD)
Muon Capture

An exotic source of neutron background (See background at nTOF)

Basic weak process: $\mu^- + p \rightarrow \nu_\mu + n$

μ^- at rest + atom \rightarrow excited muonic atom \rightarrow x-rays + g.s muonic atom

Competition between μ decay and μ capture by the nucleus.

In FLUKA: Goulaud-Primakoff formula

$\Lambda_c \propto Z_{eff}^4$, calculated Z_{eff}, Pauli blocking from fit to data.

$\frac{\Lambda_c}{\Lambda_d} = 9.2 \cdot 10^{-4}$ for H, 3.1 for Ar, 25.7 for Pb

Nuclear environment (Fermi motion, reinteractions, deexcitation...) from the FLUKA intermediate-energy module PEANUT

Slow projectile, low energy transfer (neutron $E=5$ MeV on free p)

Experimentally: high energy tails in n-spectra

Beyond the simple one-body absorption

Good results from addition of two-nucleon absorption
Muon Capture II

Muon capture on Calcium

histograms: FLUKA calculations

Emitted:
0.62 neutrons/capture
0.27 protons/capture
Electromagnetic dissociation

\[
\sigma_{1\gamma} = \int \frac{d\omega}{\omega} n_{A_1}(\omega) \sigma_{\gamma A_2}(\omega), \quad n_{A_1}(\omega) \propto Z_1^2
\]

Note: Electromagnetic dissociation is already relevant for interactions of few GeV/n ions in heavy targets.
Electromagnetic dissociation: example

Left: $^{28}\text{Si}(\gamma,\text{tot})$ as recorded in FLUKA database, 8 interval Bezier fit as used for the Electromagnetic Dissociation event generator.
158 GeV/n Pb ion fragmentation

Fragment charge cross section for 158 AGeV Pb ions on various targets. Data (symbols) from NPA662, 207 (2000), NPA707, 513 (2002) (blue circles) and from C. Scheidenberger et al. PRC70, 014902 (2004), (red squares), yellow histos are FLUKA (with DPMJET-III) predictions: purple histos are the electromagnetic dissociation contribution.
Electromagnetic dissociation cross sections (total, 1nX, 2nX) for 30GeV/n Pb ions on Al, Cu, Sn, and Pb targets.

FLUKA: lines (calculated cross section as a function of target charge)

Exp. data: M.B.Golubeva et al.