
 
FLUKA Beginner’s Course 

Monte Carlo sampling 



Overview: 
General concepts: 
 Phase space  
 The Boltzmann equation 
 Monte Carlo foundations 
 Simulation vs. integration 
Sampling techniques 
 discrete 
 by inversion 
 by rejection 
Results and Errors: 
 Statistical errors (single histories, batches) 
 Figure of merit 
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Phase space: 
• Phase space: a concept of classical Statistical Mechanics 
• Each Phase Space dimension corresponds to a particle degree of 

freedom 
• 3 dimensions correspond to Position in (real) space: x, y, z 
• 3 dimensions correspond to Momentum: px, py, pz                                                    

          (or  Energy and direction: E, θ, ϕ) 
• More dimensions may be envisaged, corresponding to other possible 

degrees of freedom, such as quantum numbers: spin, etc. 
• Another degree of freedom is the particle type itself (electron, 

proton...) 
• Each particle is represented by a point in phase space 
• Time can also be considered as a coordinate, or it can be 

considered as an independent variable: the variation of the other 
phase space coordinates as a function of time constitutes a 
particle “history” 
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                The angular flux Ψ 
The angular flux Ψ is the most general radiometric quantity: 

                        particle phase space density × velocity  
                                               or also 
derivative of fluence Φ(x,y,z) with respect to 3 phase space 
coordinates: time, energy and direction vector 

 

 

Ψ is fully differential, but most Monte Carlo estimators integrate 
it over one or more (or all) phase space dimensions: coordinates, 
time, energy, angle 
Fluence  Φ, on the opposite, is the most integral radiometric 
quantity: 

 

where n = particle density in normal space, v = velocity, t = time 
 4 



           The Boltzmann Equation 
 All particle transport calculations are (explicit or implicit)  
     attempts to solve the Boltzmann Equation 

 It is a balance equation in phase space: at any phase space point,  
    the increment of angular flux Ψ in an infinitesimal phase space  
    volume is equal to  

 
  sum of all “production terms”  

minus 
sum of all “destruction terms” 

 Production:  
        Sources, Translational motion “in”, “Inscattering'', Particle Production,    
        Decay “in” 
 Destruction:  

    Absorption, Translational motion “out”, “Outscattering'', Decay “out” 
 
(For convenience, we merge into a single term Particle Production and Decay  
“in” and in a similar way we put together Absorption and Decay “out”) 
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       The Boltzmann Equation 

Σt = total macroscopic cross section = interaction probability per cm  
    = 1/λ t = σtNAρ/A  
λ t = interaction mean free path   σt = interaction probability per 
atom/cm2 

Σs = scattering macroscopic cross section = σsNAρ/A  
This equation is in integro-differential form. But in Monte Carlo it is 
more convenient to put it into integral form, carrying out the 
integration over all possible particle histories. 
A theorem of statistical mechanics, the Ergodic Theorem, says that 
the average of a function along the trajectories is equal to the 
average over all phase space. The trajectories “fill” all the available 
phase space. 

time dependent absorption 
source translation 

scattering 



        Visualizing a 2-D phase space... 

pE ,

r

Translational motion: change of position, 
no change of energy and direction 

Scattering: no change of position, 
change of energy and direction 

  In      Out 

  Inscattering   Outscattering 

dE/dx: change of position and energy 
(translation plus many small scatterings 

No arrows upwards! (except for thermal neutrons) 

7 



      The sources and the detectors 
• To solve the Boltzmann Equation, we must define one or more source  
    and one or more detectors  
•  A source is a region of phase space: one or more particle types, a range  
    of space coordinates, a distribution in angle, energy and time (but often  
    the source is simply a monoenergetic monodirectional point source ― a  
    “beam”!) 
•  Also a detector is a region of phase space, in which we want to find a  
    solution of the Boltzmann equation 
•  We can look for solutions of different type:  
 at a number of (real or phase) space points 
 averages over (real or phase) space regions 
 projected on selected phase space hyperplanes 
 time-dependent or stationary 
........ 

•  For each solution we must define a detector 
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 Line integration of the Boltzmann Equation 

Let’s change coordinates along the line s in direction Ω: 

where q indicates the scattering integral 

  

 

P1(x1,y1,z1) 

(0,0,0) 

P0 (x0,y0,z0) 

s Ω




“source” and “detector” 
are two regions of phase 
space 

From source to detector without interaction 

source S 

detector 
 Ψ=Ψ0 

uncollided term Ψ0 

= optical thickness 

e-β = probability to reach detector  
without absorption nor scattering 

E, Ω 



source S 

detector 
    Ψ=Ψ1+Ψ0 

From source to detector with one scattering 

once-collided term Ψ1 
obtained by summing  
(= integrating) 
all contributions from  
phase space points 
reached by  
uncollided particles 

E,Ω 

E’,Ω’ 

(K: integral 
operator) 

Ψ0 

Ψ0 

Ψ0 



                 Neumann series 

The solution of the Boltzmann equation in  
integral form is obtained by summing: 

  the uncollided term Ψ0                                  
  the once-collided term Ψ1 = KΨ0 
  the twice-collided term Ψ2 = KΨ1 

etc... 
Each term is derived from the previous one,  
adding one scattering 
 
 
Notice that analytical shielding formulae are written as: 
 
 
 where D (dose) is assumed to be proportional to Φ (fluence) 
D0e-Σx is the uncollided term 
B (build-up factor) is the sum of all collided terms  

Neumann series: 
Ψ0 = Se−β  

Ψ1= K Ψ0  
Ψ2= K Ψ1  
................. 

 Ψn= K Ψn-1  



             Integration efficiency 
• Traditional numerical integration methods (e.g., Simpson) converge to the true 

value as N -1/n, where N = number of “points” (intervals) and n = number of 
dimensions 

• Monte Carlo converges as N -1/2, independent of the number of dimensions 
 

• Therefore: 
  n = 1  MC is not convenient 
  n = 2  MC is about equivalent to traditional methods  
  n > 2  MC converges faster (and the more so the greater the dimensions)  

• With the integro-differential Boltzmann equation the dimensions are the 7 of 
phase space, but we use the integral form: the dimensions are those of the 
largest number of “collisions” per history (the Neumann term of highest order)  

• Note that the term “collision” comes from low-energy neutron/photon transport 
theory. Here it should be understood in the extended meaning of “interaction 
where the particle changes its direction and/or energy, or produces new particles”  
 



         Mean of a distribution (1) 

 In one dimension: 
     Given a variable x, distributed according to a function f(x), the mean or  
     average of another function of the same variable A(x) over an interval [a,b] is 

given by: 
 

Or, introducing the normalized distribution f’ : 

A special case is that of  
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         Mean of a distribution (2) 
 In several dimensions: 
Given n variables x,y,z,... distributed according to the (normalized) functions 

f’(x), g’(y), h’(z)..., the mean or average of a function of those variables 
A(x,y,z,…) over an n-dimensional domain D is given by: 

 
 
 
 
 

Often impossible to calculate with traditional methods, but we can sample 
N values of A with probability f’·g’·h’...and divide the sum of the sampled 
values by N: 

Each term of the sum is distributed like A (Analog Monte Carlo) 
In this case the integration is also a simulation! 
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            Central Limit theorem 

Central limit theorem: 

For large values of N, the distribution of averages (normalized sums 
SN) of N independent random variables identically distributed 
(according to any distribution with mean and variance ≠ ∞) tends to a 
normal distribution with mean      and variance  A NA /2σ

2 
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       MC Mathematical foundation 
The Central Limit Theorem is the mathematical foundation of the Monte  
Carlo method. In words: 

Given any observable A, that can be expressed 
as the result of a convolution of random 
processes, the average value of A can be 
obtained by sampling many values of A according 
to the probability distributions of the random 
processes. 

 
MC is indeed an integration method that allows to solve multi-
dimensional integrals by sampling from a suitable stochastic 
distribution. 

The accuracy of MC estimator depends on the number of samples: 
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       Integration? Or simulation?  

 
 

Why, then, is MC often considered a simulation 
technique? 

• Originally, the Monte Carlo method was not a  
   simulation method, but a device to solve a  
   multidimensional integro-differential equation by   
   building a stochastic process such that some  
   parameters of the resulting distributions would  
   satisfy that equation 
• The equation itself did not necessarily refer to a  
   physical process, and if it did, that process was not  
   necessarily stochastic 
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        The Monte Carlo method  

 
 

Invented by John von Neumann, Stanislaw Ulam and  
Nicholas Metropolis (who gave it its name), and  
independently by Enrico Fermi 

 

N. Metropolis            S. Ulam                 J. von Neumann          E. Fermi 
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The ENIAC 
Electronic Numerical Integrator And Computer  20 



         Simulation: in special cases 

 
 
• It was soon realized, however, that when the   
   method was applied to an equation describing a  
   physical stochastic process, such as neutron  
   diffusion, the model (in this case a random walk)  
   could be identified with the process itself 
• In these cases the method (analog Monte Carlo)  
   has become known as a simulation technique,  
   since every step of the model corresponds to an  
   identical step in the simulated process 
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               Particle transport 
 Particle transport is a typical physical process described by 

probabilities (cross sections = interaction probabilities per unit 
distance) 

 Therefore it lends itself naturally to be simulated by Monte Carlo 

 Many applications, especially in high energy physics and medicine, 
are based on simulations where the history of each particle 
(trajectory, interactions) is reproduced in detail  

 However in other types of application, typically shielding design, the 
user is interested only in the expectation values of some quantities 
(fluence and dose) at some space point or region, which are 
calculated as solutions of a mathematical equation 

 This equation (the Boltzmann equation), describes the statistical 
distribution of particles in phase space and therefore does indeed 
represent a physical stochastic process  

 But in order to estimate the desired expectation values it is not 
necessary that the Monte Carlo process be identical to it 
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      Integration without simulation 
 In many cases, it is more efficient to replace the actual 

process by a different one resulting in the same average 
values but built by sampling from modified distributions 

 Such a biased process, if based on mathematically 
correct variance reduction techniques, converges to the 
same expectation values as the unbiased one 

 But it cannot provide information about the higher 
moments of statistical distributions (fluctuations and 
correlations)  

 In addition, the faster convergence in some user-
privileged regions of phase space is compensated by a 
slower convergence elsewhere 
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             Analog Monte Carlo 

In an analog Monte Carlo calculation, not only the mean of the 
contributions converges to the mean of the actual distribution, but also 
the variance and all moments of higher order: 
 

Then, partial distributions, fluctuations and correlations are all 
faithfully reproduced: in this case (and in this case only!) we have a 
real simulation 
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Random sampling: the key to Monte Carlo 

The central problem of the Monte Carlo method: 
Given a Probability Density Function (pdf), f(x), generate a sample of 

x ’s distributed according to f(x)  (x can be multidimensional) 

The use of random sampling techniques is the distinctive feature of Monte Carlo 

Solving the integral Boltzmann transport equation by Monte Carlo consists of: 
• Geometry and material description of the problem 

• Random sampling from probability distributions of the outcome of physical   
   events  

f(x) 

x 
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          (Pseudo)random numbers 
 The basis of all Monte Carlo integrations are random numbers, i.e. random 

values of a variable distributed according to a pdf  
 In real world: the random outcomes of physical processes 
 In computer world: pseudo-random numbers 
 The basic pdf is the uniform distribution: 

 •   Pseudo-random numbers (PRN) are sequences that reproduce the  
     uniform distribution, constructed from mathematical algorithms  
     (PRN generators).  •   A PRN sequence looks random but it is not: it can be successfully   
     tested for statistical randomness although it is generated  
     deterministically •   A pseudo-random process is easier to produce than a really random  
     one, and  has the advantage that it can be reproduced exactly •   PRN generators have a period, after which the sequence is identically  
      repeated. However, a repeated number does not imply that the end of  
      the period has been reached. Some available generators have  
      periods >1061 
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        Sampling from a distribution 
Sampling from a discrete distribution: 

Suppose we have a discrete random variable x , that can assume  
values  x1, x2, … , xn , …  with probability p1, p2, … , pn , …   
 Assume ∑i pi = 1, or normalize it 
 Divide the interval [0,1) in n subintervals, with limits 

         y0 = 0,  y1 = p1,  y2 = p1+p2, … . 
 
 Generate a uniform pseudo-random number   
 Find the i th y-interval such that 
                       y i -1 ≤ ξ < y i 

 

 Select X  = x i as the sampled value 
 Since ξ is uniformly random: 
 

 

Note the use of the 
cumulative probability! 
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       Sampling from a distribution 
    Example: simulate a throw of dice: 

 

x1 = 2, x2 = 3, x3 = 4, ..., x11 = 12 
y0 = 0, y1 = 1, y2 = 1+2 = 3, y3 = 3+4 = 7, ..., y11 = 35+1 = 36  
Normalize: 
y0 = 0, y1 = 1/36 = 0.028, y2 = 3/36 = 0.083, y3 = 0.194, ..., y11 = 1 
Get a pseudorandom number ξ , e.g.: 0.125 
ξ is found to be between y2 = 0.083 and y3 = 0.194 
So, our sampled dice throw is x3 = 4 
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        Sampling from a distribution 
Sampling from a generic continuous distribution: 

 Integrate the distribution function, f(x), analytically or numerically, 
and normalize to 1 to obtain the normalized cumulative distribution: 

 
 
 
 
 Generate a uniform pseudo-random number ξ 
 Get a sample of  f(x) by finding the inverse value X = F–1(ξ), 

analytically or most often numerically by interpolation (table look-
up) 

 Since ξ is uniformly random: 
 
 

Again, we use the cumulative 
probability: remember, MC is 
integration! 
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    Sampling from a distribution 
Example: sampling from an exponential distribution (this is frequently  
needed in particle transport, to find the point of 
 next interaction or the distance to decay) 
 

 
 
 
 

 

• Cumulative distribution: 

 • Normalized: 

• Sample a uniform ξ є [0,1), e.g.: 0.745  

 

 
• Sample t by inverting: 

• But ξ is distributed like 1 – ξ. Therefore our sampled value is: 

•  If we are sampling the next interaction point, we will make a step of  

     0.294 mfp 

f(x) = e-x/λ , x є [0,∞)  
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Sampling from a distribution: 
the rejection technique 

The rejection technique 

• Some distributions cannot be easily sampled by integration and  
   inversion. 

• Let f’(x) be one such distribution (normalized) that we want to sample  

• Let g’(x) be another normalized distribution function that can be  
   sampled, such that Cg’(x) ≥ f’(x), for all x ∈ [xmin , xmax] 

• Generate a uniform pseudo-random number ξ1 ∈ [0,1) to sample X   
   from g’(x) 

• Generate a second pseudo-random number ξ2 

• Accept X as a sample of f’(x) if ξ2 < f’(X)/Cg’(x) , otherwise re-sample  
    ξ1  and ξ2 

 



    Sampling with the rejection technique 
• The probability of X  to be sampled from g’(x) is g’(X), the one that ξ2  passes   
   the test is f’(X)/Cg’(X) : therefore the probability to have X sampled and  
   accepted is the product of probabilities  g’(X) f’(X)/Cg’(X) = f’(X)/C 

• The overall efficiency (probability accepted/rejected) is given by 

f’(x) is normalized • Proof that the sampling is unbiased (i.e. X is a correct sample from f’(x)):  
    the probability P(X) dX of sampling X is given by: 

• g’(X) is generally chosen as a uniform (rectangular) distribution or  

   a normalized sum of uniform distributions  

  (a piecewise constant  function)  f(x) 

x 

Cg’(x) 



    The rejection technique: example 
Let be f’(x) = (1+x2), x ∈ [-1,1] 
We choose g’(x) to be constant, and: 
       Cg’(x) = max(f’(x)) = 2 
To normalize it:  
 
 
 
We obtain C = 2/g’(x) = 4 
 
Generate two uniform pseudo-random 
numbers ξ1, ξ2 ∈ [0,1) 
Sample X uniformly: X = –1 + 2ξ1  
Test:  
if (1+X2)/Cg’(x) = (1+X2)/2 > ξ2, accept X 
otherwise re-sample ξ1, ξ2  

X 

The efficiency is the ratio of the red area to the total 



Sampling a uniform isotropic radiation field 

Several problems (e.g. concerning  
cosmic rays or phantom dosimetry 
require to simulate a uniform isotropic  
radiation field over a region of space 
 
This can be obtained as follows: 
 select a random point on the surface 

a sphere of radius R surrounding the 
region  

 sample a random inward direction 
from a cosine distribution 

 send the particle from point R in the 
selected direction 
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Sampling a uniform isotropic radiation field 

Why the cosine distribution? 
 
The solid angle dΩ ’ subtended by  

the element of sphere surface at  

 random point P0  from a generic  

 point P1  is = dΩ cosθ , where dΩ  

 is the solid angle subtended in the  

 direction of the normal in P0 

θ 

P1 

P0 

• 

• 

• 



  Particle transport Monte Carlo 
Application of Monte Carlo to particle transport and interaction: 
 
 Each particle is followed on its path through matter 
 At each step the occurrence and outcome of interactions are decided 

by random selection from the appropriate probability distributions 
 All the secondaries issued from the same primary are stored in a 

“stack” or “bank” and are transported before a new history is started 
 The accuracy and reliability of a Monte Carlo depend on the models 

or data on which the probability distribution functions are based 
 Statistical accuracy of results depends on the number of “histories" 
 Statistical convergence can be accelerated by “biasing" techniques. 
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   Particle transport Monte Carlo 
Assumptions made by most MC codes: 
 Static, homogeneous, isotropic, amorphous media and geometry  
     Problems: e.g. moving targets*, atmosphere must be represented by 

discrete layers of uniform density, radioactive decay may take place in a 
geometry different from that in which the radionuclides were produced*.  

     * These restrictions have been overcome in FLUKA 

 Markovian process: the fate of a particle depends only on its actual 
present properties, not on previous events or histories 

 Particles do not interact with each other 
     Problem: e.g. the Chudakov effect (charges cancelling in e+e– pairs) 

 Particles interact with individual electrons / atoms / nuclei / 
molecules  

     Problem: invalid at low energies (X-ray mirrors) 

 Material properties are not affected by particle reactions 
     Problem: e.g. burnup 
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Practical implementations 

P1 P2 P3 P4 P5 P6 P7 P8 P9 .. PN 

Track through geometry 
Random distance to interaction 

Continuous processes 
Estimators 

particle exits the problem before interaction 
Estimators 

particle dies 
(below transport threshold, 

discarded..) 
Estimators 

Interaction 
Generate secondary particles  

Estimators 

fill the “stack” with particle ID, E, x, θ…. 

take one particle from stack 
and follow it 

Empty stack:  
end “history” 
start with new 
primary 

So
ur

ce
: 

ge
ne

ra
te

 t
he

  
pr

im
ar

y 
pa

rt
ic
le
 



              Statistical Errors: 
• Can be calculated for single histories (not in FLUKA), or for 

batches of several histories 

• Distribution of scoring contributions by single histories can be 
very asymmetric (many histories contribute little or zero) 

• Scoring distribution from batches tends to Gaussian for             
N → ∞, provided σ2 ≠ ∞ (thanks to Central Limit Theorem) 

• The standard deviation of an estimator calculated from batches 
or from single histories is an estimate of the standard deviation 
of the actual distribution (“error of the mean”) 

• How good is such an estimate depends on the type of estimator 
and on the particular problem (but it converges to the true value 
for N → ∞) 
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           Statistical Errors 
 The variance of the mean of an estimated quantity x (e.g., fluence), 

calculated in N  batches, is: 

 mean of squares – square of means 
                        N – 1 

where: 
ni = number of histories in the i th batch 
n = Σni = total number of histories in the N batches 

xi = average of x in the i th batch:  

where xij is the contribution to x of the jth history in the ith batch 
In the limit N = n, ni =1, the formula applies to single history 
statistics 40 



           Statistical Errors 
Practical tips: 

• Use always at least 5-10 batches of comparable size (it is not at  
   all mandatory that they be of equal size) 
• Never forget that the variance itself is a stochastic variable  
   subject to fluctuations 
• Be careful about the way convergence is achieved: often  
   (particularly with biasing) apparently good statistics with few  
   isolated spikes could point to a lack of sampling of the most  
   relevant phase-space part 
• Plot 2D and 3D distributions! In those cases the eye is the best  
   tool in judging the quality of the result 
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       Statistical errors, systematic errors, and... mistakes  

Statistical errors, due to sampling (in)efficiency  
  Relative error       Quality of Tally  (from an old version of the MCNP Manual) 
   50 to 100%           Garbage 
   20 to 50%   Factor of a few 
   10 to 20                Questionable 
       < 10%                 Generally reliable  
 Why does a 30% σ mean an uncertainty of a “factor of a few”?  
    Because σ in fact corresponds to the sum (in quadrature) of two uncertainties: 

one due to the fraction of histories which don’t give  
    a zero contribution, and one which reflects the spread of the  
    non-zero contributions 
 The MCNP guideline is empirically based on experience, not on a mathematical 

proof. But it has been generally confirmed also working  
    with other codes 
 Small penetrations and cracks are very difficult to handle by MC, because the 

“detector” is too small and too few non-zero contributions can be sampled, even 
by biasing  
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       Statistical errors, systematic errors, and... mistakes 
Systematic errors, due to code weaknesses 

Apart from the statistical error, which other factors affect 
the accuracy of MC results?  

 physics: different codes are based on different physics models. 
Some models are better than others. Some models are better in a 
certain energy range. Model quality is best shown by benchmarks 
at the microscopic level (e.g. thin targets) 

 artifacts: due to imperfect algorithms, e.g., energy deposited  in 
the middle of a step*, inaccurate path length correction for multiple 
scattering*, missing correction for cross section and dE/dx change 
over a step*, etc. Algorithm quality is best     shown by 
benchmarks at the macroscopic level (thick targets, complex 
geometries) 

 data uncertainty: an error of 1% in the absorption cross  section 
can lead to an error of a factor 2.8 in the  effectiveness of a thick 
shielding wall (10 attenuation     lengths). Results can never be 
better than allowed by available experimental data! 

 



      Statistical errors, systematic errors, and... mistakes 

Systematic errors, due to user ignorance 
 Missing information: 

 material composition not always well known. In particular 
concrete/soil composition (how much water content? Can be 
critical) 

 beam losses: most of the time these can only be guessed.    Close 
interaction with engineers and designers is needed 

 presence of additional material, not well defined (cables, 
supports...) 

 Is it worth to do a very detailed simulation when some parameters 
are unknown or badly known?  

Systematic errors, due to simplification 
 Geometries that cannot be reproduced exactly (or would require too 

much effort) 
 Air contains humidity and pollutants, has a density variable with 

pressure  
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Statistical errors, systematic errors, and... mistakes 

Code mistakes (“bugs”) 
 MC codes can contain bugs: 

 Physics bugs: I have seen pair production cross sections fitted by a 
polynomial... and oscillating instead of saturating at high energies, non-
uniform azimuthal scattering distributions, energy non-conservation... 

 Programming bugs (as in any other software, of course)  
User mistakes 

 mis-typing the input: Flair is good at checking, but the final responsibility is 
the user’s 

 error in user code: use the built-in features as much as possible! 
 wrong units 
 wrong normalization: quite common 
 unfair biasing: energy/space cuts cannot be avoided, but must be done with 

much care 
 forgetting to check that gamma production is available in the neutron cross 

sections (e.g. Ba cross sections) 
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