

Materials

Advanced FLUKA Course

Materials under irradiation

- The prediction of the structural damage to materials under irradiation is essential to evaluate consequences due to long term employment of construction materials in nuclear reactors and charged particle accelerators.
- There are several effects and quantities that are important for studying the material behavior under irradiation and FLUKA is capable in predicting several of them:
 - Heating total energy deposition
 → could be used for temperature rise, stresses, deformations ...
 - Energy deposition due to EMF
 - Dose calculation
 - Gas production
 - Non Ionizing Energy Losses (NIEL)
 - Displacement per Atoms (dpa)
 - Silicon 1MeV Neutron Equivalent (Si1MeVEq)
 - Single Event Upsets to electronics (SEU)

- \rightarrow radiolysis calculations ... \rightarrow medical applications ...
 - material damage ...
 - electronics

For all the above you need to input the proper MATERIAL properties

Card: MATERIAL

Material definition

	Single-element ma		Alternate	mass			
	atomic number Z	atomic weight	density material (g/cm³) number		to use for dE/dx	number (A) nan	
*. MA	+1+ <mark>2</mark> . TERIAL 24.0	+3 51.9961	. +4 7.18	+5 26.0	+ <mark>6.</mark> 0.0	+7 0.0CHR	.+ OMIUM
MAT	ERIAL Z: 15	Name: PHOSPHO Am: 30.973761		# A:	dE/	p:2.2 dx: ▼	

Notes:

- if ρ<0.01: gas (default: at atmospheric pressure)
- Atomic Weight is calculated by the code using the internal database
 → it is better to leave empty
- Material number use it **ONLY** if you want to **override** a predefined one
- Mass Number to define specific **ISOTOPES**

Do not confuse with the Atomic weight

 Choose a name corresponding to the LOW-ENERGY neutron database Section 10.4 in the manual

Predefined ICRU materials

In the new version of FLUKA, the code contains several predefined materials with the composition suggested by ICRU

FLUKA	Material	FLUKA	Material
AIR	Dry air 20°C	BONECOMP	Compact bone
WATER	Water	BONECORT	Cortical bone
POLYSTYR	Polystyrene	MUSCLESK	Skeletal muscle
PMMA	Polymethyl methacrylate	MUSCLEST	Striated muscle
POLYETHY	Polyethylene	ADTISSUE	Adipose tissue
PLASCINT	Plastic scintilator	KAPTON	Kapton

- The materials can be used WITHOUT the need of an explicit MATERIAL / COMPOUND cards
- If the user defines a MATERIAL card in the input with the same name as the predefined ones IT WILL OVERRIDE THE PREDEFINED.

Card: ASSIGNMat

NANTEDIAL LA

Material Assignment

A (single-element or compound) material is assigned to each geometry region.

	MATERIAL from REGION		to REGION	step	field	decay run
	*+1 ASSIGNMA	+2+3. GOLD TARGS1	+4 TARGS3	+5	· .+6 0.0	+7+ BLCKHOLE
ASSIGNMA Mat: WATER V Mat(Decay): BLCKHOLE V		Reg: W Step:	ATERCNT 🔻	to Reg Field	: ¥ : ¥	

In the new version of FLUKA:

- WHAT(5) is controlling the magnetic & electric field for the prompt and radioactive decay product transport
- WHAT(6) is permitting to assign a different material for the radioactive decay product transport.
 Only VACUUM and BLCKHOLE are allowed

MAT-PROP

MAT-PROP	Туре: 🔻	Gas pressure:	RHOR:
Ionization:	Mat: 🔻	to Mat: 🔻	Step:

- Supply extra information on gaseous materials (pressure)
- Create materials with fictitious or effective density
- Override the default ionization potential

MAT-PROP	Type: DPA-ENER 🔻	DPA Eth:						
	Mat: 🔻	to Mat: 🔻	Step:					
• Set the DPA energy damage threshold (WARNING in eV)								
MAT-PROP	Type: USERDIRE							

MATTNUT	USENDINE +	USHWED +		
	Mat: 🔻	to Mat: 🔻	Step:	
The second second second		 Is a second secon	and the second sec	1

 Enable the call to USRMED routine when a particle enters in the desired materials

There is a last option (sdum=LOWNTEMP) to change the material temperature for the neutron treatment at thermal energies. HOWEVER *it cannot be applied with the new library with 260 groups*

CORRFACT: Region dependent – 1

CORRFACT	xρ (dE/dx):	xp other:		
	Reg: 🔻	to Reg: 🔻	Step:	

- CORRFACT card allows to alter material density for dE/dx and nuclear processes
- First two inputs specify a density scaling factor (restricted to the interval [2/3,3/2]) for charged particle ionization processes (WHAT(1)) and for all other processes (WHAT(2)) to the region(s) specified by the inputs WHAT(4-6)
- This is especially important in ion beam therapy to force the MC to follow the same semi-empirical Hounsfield Units-range calibration curve as the Treatment Planning System (TPS) for dosimetric comparisons.
- Typically, a user has to deal with a CT stoichiometric calibration, i.e. a segmentation of the CT scan (expressed in Hounsfield units (HU)) into materials of defined elemental composition (for example Schneider *et al* 45 2000).

CORRFACT: Region dependent – 2

 A "nominal density", e.g., using the density at the center of each HU interval (Jiang et al MP 2004) is assigned to each material. But "real density" (and related physical quantities) varies continuously with HU values.

Н

Schneider et al PMB 45 2000

Forcing FLUKA to follow the same range calibration curve as TPS for protons @ MGH

The CORRFACT ionization scaling factors (WHAT(2) in the CORRFACT card) were obtained from the ratio between TPS and FLUKA (+Schneider et al "mass" density)

Parodi et al MP 34, 2007, Parodi et PMB 52, 2007

STERNHEIme card

STERNHEI	Cbar:	X0:	X1:	
Mat: 🔻	a:	m:	δ0:	

- Below the δ-ray threshold, energy losses are treated as "continuous", with some special features:
 - Fluctuations of energy loss are simulated with a FLUKA-specific algorithm
 - The energy dependence of cross sections and dE/dx is taken into account exactly
 - Latest recommended values of ionization potential and density effect parameters implemented for elements (Sternheimer, Berger & Seltzer), but can be overridden by the user with (set yourself for compounds!) the

STERNHEI C X0 X1 a m $\delta 0$ MAT

 In addition, the card MAT-PROP can be used a to override the value of the average ionization potential used by the program MAT-PROP Gasp Rhosc Iion Mat1 Mat2 Step

dpa: Displacements Per Atom

Is a measure of the amount of radiation damage in irradiated materials

For example, 3 dpa means each atom in the material has been displaced from its site within the structural lattice of the material an average of 3 times

- Displacement damage can be induced by all particles produced in the hadronic cascade, including high energy photons. The latter, however, have to initiate a reaction producing charged particles, neutrons or ions.
- The dpa quantity is directly related with the total number of defects (or Frenkel pairs)

$$dpa = \frac{1}{\rho} \sum_{i} N_{i} N_{F}^{i}$$

 ρ atoms/cm³

- N_i particles per interaction channel i
- N_fⁱ Frenkel pairs per channel

Frenkel pairs

Т

Frenkel pairs N_{F} (defect or disorder), is a compound crystallographic defect in which an interstitial lies near the vacancy. A Frenkel defect forms when an atom or ion leaves its place in the lattice (leaving a vacancy), and lodges nearby in the crystal (becoming an interstitial)

$$N_{NRT} \equiv N_F = \kappa \frac{\xi(T)T}{2E_{th}}$$

$$N_{NRT}$$
Defects by Norgert, Robinson and Torrens
 $\kappa = 0.8$ is the displacement efficiency
T kinetic energy of the primary
knock-on atom (PKA)
 $\xi(T)$ partition function (LSS theory)
 $\xi(T)$ T directly related to the NIEL
(non ionizing energy loss)
 E_{th} damage threshold energy
interstitial vacancy

E_{th} Damage Threshold Energy

 E_{th} is the value of the threshold displacement energy averaged over all crystallographic directions or a minimum energy to produce a defect

Element	Eth(eV)	Element	Eth(eV)
Lithium	10	Со	40
C in SiC	20	Ni	40
Graphite	3035	Cu	40
Al	27	Nb	40
Si	25	Мо	60
Mn	40	W	90
Fe	40	Pb	25

Typical values used in NJOY99 code

• FLUKA way

MAT-PROPWHAT(1) $= E_{th} (eV)$ WHAT(4,5,6)= Material rangeSDUM= DPA-ENER

atoms

v(T)=1 for $E_{th} < T < 2E_{th}$

 $v(T)=T/2E_{th}$ for $2E_{th} < T < E_{c}$

 $v(T) = E_c/2E_{th}$ for $T > E_c$

Schematic relation between the number of displaced atoms in the cascade and the kinetic energy T of the primary knock-on atom

Energy is equally shared between two atoms after the first collision Compensates for the energy lost to sub threshold reactions

к displacement efficiency

- κ=0.8 value deviates from the hard sphere model (K&P), and compensates for the forward scattering in the displacement cascade
- The displacement efficiency κ can be considered as independent of T only in the range of T \leq 1–2 keV. At higher energies, the development of collision cascades results in defect migration and recombination of Frenkel pairs due to overlapping of different branches of a cascade which translates into a decrease of κ (T).
- From molecular dynamics (MD) simulations of the primary cascade the number of surviving displacements, N_{MD} , normalized to the number of those from NRT model, N_{NRT} , decreases down to the values about 0.2–0.3 at T \approx 20–100 keV. The efficiency in question only slightly depends on atomic number Z and the temperature. $N_{MD}/N_{NRT} = 0.3-1.3$

$$N_{MD} / N_{NRT} = 0.3 - 1.3 \left(-\frac{9.57}{X} + \frac{17.1}{X^{4/3}} - \frac{8.81}{X^{5/3}} \right)$$

where $X \equiv 20 T$ (in keV).

Lindhard partition function ξ ^[1/3]

 The partition function gives the fraction of stopping power S that goes to NIEL

$$\xi(T) = \frac{S_n}{S}$$
 where $S = \frac{dE}{dx} = \frac{dE_n}{dx} + \frac{dE_e}{dx} = S_n + S_e$

- Lindhard, Robinson assumption:
 - The incident particle has energy E, and due to the interactions during the slowing down the energy is transferred to atoms E_n and to electrons E_e $E = E_e + E_n$

The equation that has to be satisfied is

$$\int d\sigma_{ne} \left[E_n \left(E - T_n - \sum_i T_{ei} \right) - E_n \left(E \right) + E_n \left(T_n - U \right) + \sum_i E_{ne} \left(T_{ei} - I_i \right) \right] = 0$$

where $d\sigma_{n,e}$ are the differential cross-sections corresponding to particle scattering on nuclei and electrons, $T_n(T_{ei})$ energy transfer to nuclei (electrons), U energy in atomic(lattice) binding, I_i ionization energies

Lindhard partition function ξ ^[2/3]

 Approximations used: Electrons do not produce recoil nuclei with appreciable energy, lattice binding energy is neglected, etc...

$$(S_n + S_e)E'_n(E) = \int E_n(T)\frac{d\sigma_n}{dT}dT$$

where

$$S_{ne}(E) = \int T_{ne} d\sigma_{ne}$$

approximated to

$$\xi(T) = \frac{1}{1 + F_L \cdot \left(3.4008 \cdot \varepsilon(T)^{1/6} + 0.40244 \cdot \varepsilon(T)^{3/4} + \varepsilon(T)\right)}$$

$$F_{L} = 30.724 \cdot Z_{1} \cdot Z_{2} \sqrt{Z_{1}^{2/3} + Z_{2}^{2/3}}$$

$$\varepsilon(T) = \frac{T}{0.0793 \frac{Z_{1}^{2/3} \cdot \sqrt{Z_{2}}}{(Z_{1}^{2/3} + Z_{2}^{2/3})^{3/4}} \cdot \frac{(A_{1} + A_{2})^{3/2}}{A_{1}^{3/2} \sqrt{A_{2}}}} \begin{bmatrix} Z, A \text{ charge and mass} \\ 1 \text{ projectile} \\ 2 \text{ medium} \\ T \text{ recoil energy (eV)} \end{bmatrix}$$

 $N_F = i$

Nice feature: It can handle any projectile Z₁,A₁ whichever charged particle

Lindhard partition function ξ ^[3/3]

 $N_F = \kappa$

Restricted Nuclear Stopping Power

- Lindhard approximation uses the unrestricted NIEL. Including all the energy losses also those below the threshold E_{th}
- FLUKA is using a more accurate way by employing the restricted nuclear losses

$$S(E, E_{th}) = N \int_{E_{th}}^{\gamma E} T\left(\frac{d\sigma}{dT}\right) dT$$

where:

 $\begin{array}{lll} S(E,E_{th}) & \text{is the restricted energy loss} \\ N & \text{atomic density} \\ T & \text{energy transfer during ion-solid interaction} \\ d\sigma/dT & \text{differential scattering cross section} \end{array}$

$$\gamma = \frac{4M_{1}M_{2}}{(M_{1} + M_{2})^{2}}$$

maximum fraction of energy transfer during collision

FLUKA Implementation ^[1/2]

Charged particles and heavy ions

• During Interactions

During transport

- Calculate the restricted and unrestricted nuclear stopping power for the average energy at the middle of the step with calls to DEDXNU and SNRDFR and add it to TKNIEL and TKEDPA global variables
- For electrons Bremsstrahlung, sample randomly a recoil energy from the distribution of the recoils (uncorrelated with the event) Treat the recoil as a normal particle (*work on progress*)

Below threshold

 Calculate the TKNIEL(=TKEDPA) by using the Lindhard partition function

FLUKA Implementation ^[2/2]

Neutrons

- High energy E_n>20 MeV
 - Like CP, calculate the recoil.
 - Treat recoil as a normal particle

• Low energy $E_n \leq 20$ MeV (group-wise)

 Calculate the NIEL from NJOY, then add it to TKNIEL and TKEDPA global variables

• Low energy $E_n \leq 20$ MeV (point-wise, where available)

Calculate the recoil if possible
 Treat the recoil as a normal particle

Photons

 Pair production, sample randomly a recoil for a distribution (uncorrelated with the event) Treat the recoil as a normal particle

dpa: Recipe

FLUKA is using a more accurate treatment during the particle transport. While below the transport threshold is employing the Lindhard approximation with the NRT model, it is strongly advisable to use as low thresholds as possible:

Thresholds:

- All Hadrons
- Neutrons
- Leptons

Material Damage:

1 keV down to thermal (10⁻¹⁴ GeV) 50-100 keV would be ok

Set with MAT-PROP the damage threshold for all materials under

consideration. All other will use the default of 30 eV!!!!

Scoring:

Use USRBIN with DPA-SCO or NIEL

dpa: Limitations

- Due to the group treatment of low-energy neutrons, there is no direct way to calculate individual recoils at each interaction.
- Therefore the evaluation is based on the **NIEL** factors calculated by **NJOY**, which in turn is based on the Unrestricted Nuclear losses from using the NRT model.

Main Radiation Effects on Electronics

	Category	Effect			
Single EventSingle Event Upseteffects(SEU)		Memory bit flip (soft error) Temporary functional failure			
(Random in time)	Single Event Latchup (SEL)	Abnormal high current state Permanent/destructive if not protected			
Cumulative effects	Total Ionizing Dose (TID)	Charge build-up in oxide Threshold shift & increased leakage current Ultimately destructive			
(Long term)	Displacement damage	Atomic displacements Degradation over time Ultimately destructive			

Radiation Physics/Effects/Monitoring

Corresponding FLUKA Estimators

(Category	Scales with simulated/measured quantity		
Single EventSingle Event Upseteffects(SEU)		High-energy hadron fluence (>20 MeV)* [cm-2]		
(Random in time)	Single Event Latchup (SEL)	High-energy hadron fluence (>20 MeV)** [cm-2]		
Cumulative effects	Total Ionizing Dose (TID)	Ionizing Dose [GeV/g]		
(Long term)	Displacement damage	1 MeV neutron equivalent [cm-2] {NIEL}		

 * Reality is more complicated (*e.g.*, contribution of thermal neutrons)
 ** Energy threshold for inducing SEL is often other than 20 MeV (*e.g.*, 5-20MeV, see scoring lecture and discussion on future scoring possibility)

Main Sources of Radiation at Accelerators

Losses

- Collimators and collimator like objects , Dumps
- Scales with beam intensity

Collisions

- In experimental areas
- Scales with luminosity (collision rate)

Beam-gas

- All areas along the accelerator
- Scales with both intensity and residual gas density

n_ToF (old) target: Dose Rate Survey

Neutron Time-of-Flight facility at CERN-PS. It is underwent a major upgrade, including a new target. Old target: 4 years of operation (\approx 5•10¹⁹ @ 20 GeV), 3 years of cooling. Checked for activation and results compared with simulations

Inside the pit: using a laser attached to the crane to control the position of the remote detector (attached to the hook)

Around the target: same method, starting at 3 meters distance & going towards the target surface.

(fully remote, thus possibility to wait & get enough statistics while performing continuous measurements)

N_ToF target: Findings & Changes wrt the initial (dismaying) comparisons

- Pit & Target
 - update of geometry (container, support, 30cm, steel faces), in summary extra steel parts originally not included
- Pit
 - chemical composition of concrete and aluminium (open)
 - new survey with special dose rate meter and laser controlled distance
 more accurate measurements (and proof that contamination is a negligible contribution to residual dose rates)
- Target
 - detailed survey with *special dose rate meter* (up to a factor 2 difference with the initial measurements done in a hurry)
 - chemical composition *stainless steel cobalt content*
 - important influence on residual dose rate distribution (up to a factor of 25 in the possible concentration range)
 - a cobalt content of 0.1% results in a very good agreement with simulations (this concentration value is confirmed by existing steels at CERN)

Residual Dose Rates at ~10cm

Location		1 st FLUKA Simulations 04. 2007 [mSv/h]	Upgra Simula [mS	aded ations v/h]	Measurement 27.09.2007 [mSv/h]	urement Ratio)9.2007 Measurement/ iSv/h]		/FLUKA	
@ 10 cm	Point	Co1 [0.01%]	Co1 [0.01%]	Co4 [0.1%]	Oct. 2007	First	Co1 [0.01%]	Co4 [0.1%]	Main Material
Entrance	(1)	6.7	5.9	7.3	11	1.6	1.9	1.5	Pb
	(3)	3.6	5.8	51.8	52	14.4	9.0	1.0	SS
	(4)	2.1	1.7	14.8	21	10.0	12.4	1.4	SS/Pb
Exit	(3)	4.4	3.5	8.6	16	3.6	4.6	1.9	Pb/SS
	(14)	4.7	4.0	39.5	40	8.5	10.0	1.0	SS/Pb
Right	(1)	1.7	1.3	11.3	20	11.8	15.4	1.8	Pb -> SS!
	(5)	3.3	4.2	44.8	33	10.0	7.9	0.7	SS
Left	(1)	1.1	0.8	7.8	10	9.1	12.5	1.3	Pb -> SS!
	(3)	2.5	3.1	33.5	42	16.8	13.5	1.3	SS

Entrance

Exit

(8)

(9)

(10)

(11) (14)(15)

(13)

(1)

(2) (3) (4) (5) (6) (7)

Left

Examples of steels used at CERN

- Cast No E33408, Nippon Steel, Inspection Certificate (F.Bertinelli, used for LHC)
- Density 7.252 g/cm³

Isotope	CERN-Spec	EA	EMPA
Fe	63.31	63.96	62.823
С	0.09	0.1	0.094
Cr	17.82	17.54	18
Mn	11.4	11.28	11.6
N	0.3	0.32	nb
Ni	6.58	6.23	6.7
Р	0.02	0.016	0.022
Si	0.38	0.37	0.39
Мо	0.1	0.09	0.08
S	-	0.001	< 0.001
Cu	-	0.09	0.08
0	-	0.002	nb
Ti	-	-	< 0.01
V	-	-	0.07
Co	-	-	0.11
Nb	-	-	0.01
W	-	-	0.01

- CERN store 44.57.10.420.4
 SCEM: 44.57.10.420.4, INOX RNDS.304L
- Density 7.908 g/cm³

Isotope	CERN-Spec	EIG
Fe		69.1924
Cr	17-20	18.62
Ni	10-12.5	8.32
С	< 0.03	-
Si	< 1	0.648
Mn	< 2	1.52
Р	< 0.045	0.0302
S	< 0.03	0.037
Mo		0.567
Cu		0.393
AI		0.277
Co		0.172
V		0.0704
w		0.0407
Са		0.0368
Na		0.033
Mg		0.0166
Sn		0.0147
Nb		0.0083
As		0.0029

EA: ICP-AES (AES=Atomic Emission Spectrometry)
EMPA: WD-XRF (wavelength-dispersive X-ray fluorescence spectrometry)
EIG: XRF

Oct 13th, 2008