

SimpleGeo's visual debugger

Running a few examples

- Two types of errors
- Overlapping regions FLUKA won't crash but the results may be not what you had intended.

Undefined regions program crash

SimpleGeo's approach

Basic idea is similar to FLUKA:

Test if particles at specified positions encounter an unambiguous and well-defined region description

The "black magic":

How do you define those positions that should be tested?

ATTENTION: The debugger checks the geometry only!!! It does not include diagnostics for misaligned values in the input file!

Examples

Grid debugging

- Definition of a region of interest (ROI) via XMin, XMax, YMin, YMax, ZMin, ZMax
- 2. Specification of how many steps should be taken in each direction

The problem:

Errors located in between the equidistant step sizes cannot be found by definition!

Other methods

• Monte Carlo sampling of the region

Due to the randomness the probability to find very small errors exists. Drawback: Tendency to cluster at low sampling rates. Uniformity is reached only by a large number of samples.

• Quasi-Monte Carlo sampling of the region

Faster convergence towards uniformity.Drawback: Very complex mathematics involved (but this can be compensated for by highly optimized sampling routines).

Monte Carlo sampling (500 points)

Quasi Monte Carlo sampling (500 points)

* Images courtesy of R. Dodier, Wikipedia http://en.wikipedia.org/wiki/Low-discrepancy_sequence

Algorithms available in SimpleGeo

Grid sampling

- Equidistant points in each direction X, Y, Z
- Stochastic sampling (Monte Carlo method)
 - Uniform distribution of points in a box
- Importance sampling
 - Exponential distribution of points in a sphere
- Quasi Monte Carlo (recommended) (low discrepancy, jittered stratified, latin hypercube)
 Quasi-random distribution of points in a box

A first example

- 1. Import ngen_e1.inp from the folder data/Debugging
- 2. Activate the automatic build on the toolbar
- 3. Reset the camera clicking on the toolbar 🔌 🏹
- 4. You will now see the surrounding blackhole

Γ٦

 Turn off the visibility of the blackhole
 (Click on the checkbox next to the region named 001_Diff or click on the gray sphere and press the Space key)

Debugging methods

Examples

A first example

- 6. Select region 002_Diff in the CSG tree
- 7. We want to debug everything inside this region
- Expand the region and select the primitive named 2, which is the source primitive of reference node R_2 and surrounds our region of interest (ROI)
- Note the position & extension they form our ROI

Position		Properties	Properties				
X-Rel.	-670.00	Material	Concrete				
Y-Rel.	-350.00	Size-X	870.00				
Z-Rel.	-200.00	Size-Y	750.00				
Rot. X	0.00	Size_7	460.00				
Rot. Y	0.00	0120-2	700.00				
Rot. Z	0.00						

Debug the geometry

- 10. Open the debugger via the menu "File" "Debug geometry"
- 11. Enter the coordinates of our ROI or load them from the file ngen_e1.sdb
- 12. Click on the bug to start

Deb X Y Z Ref X Nur Larr	From -670 -350 -200 erence point 0 mber of sample	hm]cm]cm]cm	X Y Z Y	Grid sampling To 200 400 260 0 100000 15] cm] cm] cm]	Steps Steps Steps Z Radius	100 100 100 100	Start	Visualize Stop Close
	Save	Load	1	Settings					

The result

- Debugging can be stopped anytime. All errors found so far will be displayed.
- After some time the following overlaps will be found:

• Click on one of the entries and the respective region will be automatically selected in the CSG tree

The result

- Select "View" "Overlay sketch" to render all regions inside our ROI
- Click on the "Visualize" button in the debugger dialog

Taking a closer look

- Regions #12 and #13 are problematic
 refine the ROI for debugging
- 1. Select 012_Union in the CSG tree
- Double click on the right mouse button to open the context menu, and select Node-info.
- 1. The values of Box min & Box max are the extensions of the bounding box.
- 2. Click on "Use values for debugging" to transfer the bounding box values to the debugger.

Item	Value			OK
Name	012 _Union			
Туре	Union			
Comment	no comment			
Relative region index	12			
Box min	-75.001000 -75.001000 -75.001000			
Box max	75.001000 75.001000 75.001000			
Absolute position	0.000000 0.000000 0.000000			
Absolute rotation	0.000000 0.000000 0.000000			
Volume	5051188.846362 cm3			
Object handle	0×131b5b8			
Reference handle	0x0			
Solid handle	0x13ecfb0			
Father handle	0x36cb40		12.20	
Material handle	0v13139d0		×	
<		>		

Taking a closer look

- 5. Turn off the visibility of all regions except 012_Union and 013_Union
- 6. Select Low discrepancy or Latin Hypercube as the debugging algorithm and start the debugger.

There is an error in the region description of region # 12, which lacks a cut plane.

A second example

- 1. <u>Close the debugger</u>, create a new scene and import ngen_e2.inp from the folder data/Debugging
- 2. Activate the automatic build on the toolbar
- 3. Reset the camera clicking on the toolbar
- 4. You will now see the surrounding blackhole

 Turn off the visibility of the blackhole (Click on the checkbox next to the region named 001_Diff or click on the gray sphere and press the Space key)

A second example

- 6. Load the debug parameters from ngen_e2.sdb
- 7. Start the debugger

A huge amount of overlaps is found in 007_Int and 008_Int.

Hint: Select 007_Int in the CSG tree and then select 008_Int. You will see that both have the same red contours. This means that they are identical!

A third example

- 1. <u>Close the debugger</u>, create a new scene and import ngen_e4.inp from the folder data/Debugging
- 2. Activate the automatic build on the toolbar
- 3. Reset the camera clicking on the toolbar
- 4. You will now see the surrounding blackhole
- 5. Turn off the visibility of the blackhole
 (Click on the checkbox next to the region named 001_Diff or click on the gray sphere and press the Space key)

A third example

- 6. Load the debug parameters from ngen_e3.sdb
- 7. Start the debugger

Final remarks

Which algorithm is the best?

- The best is a total, uniform coverage of the region.

possible only with infinitely many steps

