Exercise 3: Geometry

Exercise 3: Geometry

\square Download the solution of ex2.inp from the website into a new ex3 directory and rename it to ex3.inp

- Open it using FLAIR
- Replace the finite cylinder with an infinite one
use a ZCC body for the cylinder
use two XYP planes, at $z=0$. and $z=10 . \mathrm{cm}$, to cut it re-define the regions TARGET and VOID
- Run

Exercise 3: Geometry

\square Segment the target into three pieces by two transverse cuts 1st segment: from $z=0$. to $z=1 . c m$ (new XYP needed)

2nd segment: from $z=1 . \mathrm{cm}$ to $z=2 . \mathrm{cm}$ (new XYP needed)
3rd segment: from $z=2 . \mathrm{cm}$ to $z=10 . \mathrm{cm}$ (no further bodies needed)
define the 3 target regions
assign them beer, ALUMINUM (pre-def), and LEAD (pre-def)

- Translate the target using start_translat
$x^{\prime}=x+2.718 \mathrm{~cm} ; z^{\prime}=z+3.14 \mathrm{~cm}$

Exercise 3: Geometry

\square activate the geometry debugging with a 1 mm grid (without FLAIR) from (x, y, z) $=(-6 ., 0 .,-6$.$) to (x, y, z)=(6 ., 0 ., 11$.
see in the manual the GEOEND card
\square Run and search for Geometry debugging in the .out file: enjoy the lack of errors!

- Perform the same operation using the dedicated

FLAIR Process/Debug frame

