

FLUKA Standard Output and Plotting

Beginners' FLUKA Course

The FLUKA Standard Output

• FLUKA provides a standard output file that contains plenty of useful information:

(fortran unit 11, *inp###.*out from rfluka)

It must be checked at least once when setting up a simulation and always in case of doubts/crashes
 (together with inp###.err and inp###.log files)

 Let's have a look to ex_3001.out (editor or flair output viewer: Process – Files – select ex_3001.out (w), or fless ex_3001.out)

Input echo

File Edit View	The data cards same order as t	they a	re in	serted	in the		-	pear ir	ר דַ
License/version License/version Nuclear Data Mulmix Output Requested Products/D Neutron Data D heutron Data D heutron Data D heutron Data	****** Next control card ***** FLUKA Course Exercise	TITLE	0.000	0.000	0.000	0.000	0.000	0.000	*
	* use names	everywhere	and free	format for ge	ometry				*
 Elvin Publica Fluka Particles Particle Thresholds Termination Condition: Mult. Coulomb Scatterii EM Showers Particle Importances Scoring Material Properties Regions Summary Initialization Time Output During Transpc Events by Region 	****** Next control card ***** * beam defin * Geometry * Materials * Materials		0.000	0.000	0.000	0.000	0.000	0.000	NEW-DEFA
- B Scattering Statistics ⊕ Sun Summary	***** Next control card *****	BEAM	-3.500	-8.2425E-02	2 -1.700	0.000	0.000	1.000	PROTON
	**** Density scaling factors st	tart at loca	ation	1 and end	at 4000	(I*4 addr.)	****		
	***** Next control card *****	BEAMPOS	0.000	0.000	-0.1000	0.000	0.000	0.000	
	***** Next control card ***** 1	GEOBEGIN	0.000	0.000	0.000	0.000	0.000	0.000	COMBNAME

TITLE is the first to appear, then all comment cards are listed together, followed by the beam related cards, etc...

Input echo – *Geometry output*

000

X FileViewer: ex3001.out

<u>F</u> ile <u>E</u> dit <u>V</u> iew						
ex3001.out License/version License/version with Echo Body data Body echo Begion data Begion echo Region echo Mulmix Output Requested Products/Dec Neutron Data	Interpreted body echo Body n. 1 SPH BLK Rot. 0.000000 Body n. 2 RPP VOI Rot. -1000.000 Body n. 3 ZCC TARG Rot. 2.718000 Body n. 4 XYP ZTlow Rot. 3.140000 Body n. 5 XYP ZThigh Rot. 13.14000	0 0 0 0	0.000000 -1000.000 25.00000	10000.00 1000.000 25.00000	-1000.000	1000.000
dp/dx Blank Common Beank Common Media Parameters EMF-FLUKA Beam Properties Particle Thresholds Emeter thresholds Enter thresholds Enter thresholds Enter thresholds	Body n. 6 XYP T1seg Rot. 4.140000 Body n. 7 XYP T2seg Rot. 5.140000	0 0 X FileV	redirectec Echo of	l (see GEO the comn	metry outpo BEGIN card nands is po nterpretatio). resented
=	Interpreted region echo Region n. 1 BLKHOLE 1 -2 Region n. 2 TARGS1		correspon names	dence bet	ween numb	pers and
 Body echo Region echo Nuclear Data Mulmix Output Requested Products/Det Neutron Data Ap/dx Blank Common Media Parameters EMF-FLUKA Fluka Particles Beam Properties Particle Thresholds Termination Conditions Mult. Coulomb Scattering EM Showers Particle Importances 	Region n. 3 -4 6 Region n. 3 TARGS2 -6 7 Region n. 4 TARGS3 -7 5 Region n. 5 INAIR -7 5 OR 2 -3 -7 5 OR 2 -4 0 -7 5 OR 2 -4 -3 -7 5 OR 2 -4 -3 -5 1 0 -5 1 1 OPTION 0 WAS USED IN CALCULATING VOLUMES VOLUMES VOLUMES -5 1 REG 1 2 3 3 -7 3 VOLUME 1.000E+00 1.000E+00 1.000E+00 1.000E+0	= 1.0)0 1.0	5 REGIONS 4 5 00E+00 1.000E+00 metry			* *

Nuclear data [1/3]

000

X FileViewer: ex4001.out

4522

9685549

9688309

9688310

9819257

9861545

9916600

10219521

9634777

Edit View File

aex4001.out *** Reading evaporation and nuclear data from unit: 14 License/version **** Nuclear data file for Fluka9x-20xy **** Nuclear Data Mulmix Output File version: 2011.1 Requested Products/Decay Copyright (C) 1990-2011 by Alfredo Ferrari & Paola Sala - Neutron Data -🛅 dp/dx -🛅 Blank Common *** Evaporation: using NNDC (1996) data *** Starting location in blank common of LVL data: Media Parameters Last location in blank common of LVL data: EMF-FLUKA
 EMF-FLUKA
 Fluka Particles Starting location in blank common of CE data: 9634778 Beam Properties Last location in blank common of CE data: -🗋 Particle Thresholds 🖹 Termination Conditions Starting location in blank common of alpha data: 9685550 Last location in blank common of alpha data: - Mult. Coulomb Scattering 🕒 EM Showers Starting location in blank common of gamma data: - Particle Importances Last location in blank common of gamma data: 🕀 🧰 Scoring - Material Properties Starting location in blank common of beta data: 9819258 - 🖹 Regions Summary - 🖹 Initialization Time Last location in blank common of beta data: Starting location in blank common of GDR data: 9861546 Output During Transport
 Events by Region Last location in blank common of GDR data: - Scattering Statistics Starting location in blank common of (q, x) data: 9916601 🗄 🤐 Run Summary Last location in blank common of (q,x) data: **** RIPL2/Ign. self-cons. T=0 N, Z-dep. level density used **** RIPL-2 / Ignyatuk level density en. dep. used **** with Moller, Nix self-cons set of parameters for T=oo **** **** Original Gilbert/Cameron pairing energy used **** Maximum Fermi momentum 💠 : 0.268371314 GeV/c **** **** Maximum Fermi energy 0.0376013778 GeV

> **** Average Fermi energy **** 0.022676846 GeV **** Average binding energy 0.00768006314 GeV **** **** Nuclear well depth 0.04528144 GeV

**** Excess mass for 11-B 0.00866803993 GeV **** information about the basic nuclear data file used

Some memory allocation details

Nuclear data [2/3]

000

X FileViewer: ex4001.out

<u>File E</u>dit ⊻iew

					-
aex4001.out ⊢⊜ License/version	**** Atomic	mass	for 40-Ca :	37.224926 GeV ****	
	**** Nuclea	r mass	for 40-Ca :	37.2147255 GeV ****	
Aulmix Output Bequested Products/Decay	**** Excess	mass	for 55-Fe :	-0.0574751087 Ge∀ ****	
- Neutron Data		n E. m.	for 55-Fe :	-0.0595041849 GeV ****	
⊣≌ dp/dx ⊣≌ Blank Common	**** Cam.El	. E. m.	for 55-Fe :	-0.0580860823 Ge∀ ****	
⊣∎ Media Parameters ⊣∎ EMF-FLUKA	**** My.&Sw	. E. m.	for 55-Fe :	-0.0575032495 GeV ****	
Fluka Particles	**** Atomic	mass	for 55-Fe :	51.1747131 GeV ****	
Particle Thresholds	**** Nuclea	r mass	for 55-Fe :	51.1614609 Ge¥ ****	
Termination Conditions Mult. Coulomb Scattering	**** Excess	mass	for 56-Fe :	-0.0606013089 Ge∀ ****	
⊢	**** Camero	n E. m.	for 56-Fe :	-0.0623576604 GeV ****	
🕂 🦳 Scoring	**** Cam.El	. E. m.	for 56-Fe :	-0.0608849637 Ge∀ ****	
Material Properties Begions Summary	**** My.&Sw	. E. m.	for 56-Fe :	-0.0604862086 GeV ****	
Initialization Time Output During Transport	**** Atomic	mass	for 56-Fe :	52.1030807 GeV ****	
Events by Region Scattering Statistics	**** Nuclea	r mass	for 56-Fe :	52.0898285 Ge V ****	
E Run Summary	**** Excess	mass	for 107-Ag:	-0.088405259 Ge∀ ****	
	**** Camero	n E. m.	for 107-Ag:	-0.0891378522 GeV ****	
	**** Cam.El	. E. m.	for 107-Ag:	-0.0886852369 Ge∀ ****	
	**** My.&Sw	. E. m.	for 107-Ag:	-0.0882571116 GeV ****	
	**** Atomic	mass	for 107-Ag:	99.5814896 GeV ****	
	**** Nuclea	r mass	for 107-Ag:	99.5576096 Ge V ****	
	**** Excess	mass	for 132-Xe:	-0.0892794058 Ge∀ ****	
	**** Camero	n E. m.	for 132-Xe:	-0.0898088515 GeV ****	
	**** Cam.El	. E. m.	for 132-Xe:	-0.0892864987 Ge∀ ****	
	**** My.&Sw	. E. m.	for 132-Xe:	-0.0894251093 Ge∀ ****	

Nuclear data used in the program

Nuclear data [3/3]

000

X FileViewer: ex4001.out

<u>File Edit View</u>

	-
a ex4001.out	
License/version **** My.&Sw. E. m. for 235-U : 0.0413222089 GeV ****	
+ 1 Input Echo **** Atomic mass for 235-U : 218.942078 GeV ****	
Image: Second state ***** Atomic mass for 235-U : 218.942078 GeV ***** Image: Second state **** Atomic mass for 235-U : 218.942078 GeV ***** Image: Second state **** Atomic mass for 235-U : 218.942078 GeV *****	
He Mumix Output **** Nuclear mass for 235-U: 218.895767 GeV ****	
→ Neutron Data **** Excess mass for 238-U : 0.0473045185 GeV ****	
⊢ Blank Common #**** Cameron E. m. for 238-U : 0.0524553321 GeV ****	
→ Media Parameters ***** Cam. El. E. m. for 238-U : 0.0481762439 GeV ****	
- ☐ Fluka Particles **** My.&sw. E. m. for 238-U : 0.0473943055 GeV ****	
H Beam Properties H Particle Thresholds ***** Atomic mass for 238-U : 221.74295 GeV ****	
Termination Conditions	
- Mult. Coulomb Scattering ***** Nuclear mass for 238-U : 221.696655 GeV ****	_
Herein Particle Importances	
H Scoring	
Material Properties Material Properties H Regions Summary H Regions	
Image: Particular Summary ***** Fermi Break Up requested & activated **** Initialization Time Image: Particular Summary	
LB Output During Transport	
Cuput During Transport **** Neutrino generators initialized F T T ****	
E Scattering Statistics	
🗄 🤐 Run Summary	
*** Neutrino xsec file header: Neutrino Xsec file fromm ***	
*** Neutrino xsec file generated on: DATE: 9/10/ 8, TIME: 19:48:1 ***	
Minimum kinetic energy for BME : 1.0000E-03 (GeV/n)	
Overall minimum kinetic energy for ion nuclear interactions: 1.0000E-03 (GeV/n)	
*** Material WATER (# 26 automatically guessed by FLUKA, please check its correctness ***	
*** Material AIR (# 27 automatically guessed by FLUKA, please check its correctness ***	
**** Fluorescence data successfully retrieved from unit 13 ****	
7	

Material properties

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

∃ ⊖ 3ex4001.out	**** Subroutine Mulmix: medium n. 26 ****		
License/version	Number of elements = 2, Density= 1.00000) (q/cm**3)	Material properties,
⊕∰ Input Echo ⊢≌ Nuclear Data	OIZ Pa Fi	Rho i	
B Mulmix Output	Index Atomic Atomic Proporti		multiple scattering
Bequested Products/Decays	Number Weight by Numb	er by weight	
- Neutron Data	1 1.00000 1.00794 0.666667	0.111898	parameters
–⊡ dp/dx	2 8.00000 15.9994 0.333333	0.888102	parameters
🗕 🗗 Blank Common	PETT DE 3E100 DI 00D3 7 70700E.00 0 E1001E	+00 1.08102E-02	
- Media Parameters	ZTILDE, AE103, BLCCRA= 7.78788E+00 2.51981E	FUU 1.08102E-02	
-B EMF-FLUKA	**** Warning!!! Least square fit for blccre f		Lcce err. below 1% ****
Fluka Particles Beam Properties	**** Max. error is 1.1 %, for beta2 = 0.003	58 ****	
Particle Thresholds			This commission is a summaria
Termination Conditions	ZTILDE, AE103, BLCCRE= 6.63158E+00 2.51981E	+00 1.07635E-02	This warning is normal!
- Mult. Coulomb Scattering			27023E-05
- EM Showers			3.90013E-02 GeV, Hthnsz = 1.0000E+30 GeV
- Particle Importances	Particle n.: -6 Ecutm (prim. & sec.) = 3 Particle n.: -5 Ecutm (prim. & sec.) = 2		GeV, Hthnsz = 1.0000E+30 GeV GeV, Hthnsz = 1.0000E+30 GeV
phone Scoring	Particle n.: -4 Ecutm (prim. & sec.) = 2	.829 GeV 2.829 (GeV, Hthnsz = 1.0000E+30 GeV
Material Properties			GeV, Hthnsz = 1.0000E+30 GeV
Begions Summary			GeV, Hthnsz = 1.0000E+30 GeV GeV, Hthnsz = 1.0000E+30 GeV
- Initialization Time		9583 Gev 0.9583 ()511E-02 GeV 2.0511E-02 (
Output During Transport			GeV, Hthnsz = 1.0000E+30 GeV
Events by Region			GeV, Hthnsz = 1.0000E+30 GeV
B Scattering Statistics ⊕ Sun Summary			GeV, Hthnsz = 1.0000E+30 GeV
E G Hun Sunnary			GeV, Hthnsz = 1.0000E+30 GeV GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV
	Particle n.: 16 Ecutm (prim. & sec.) = 0.	5136 GeV 0.5136 (GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV
	Particle n.: 36 Ecutm (prim. & sec.) = 1	.341 GeV 1.341 (GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV
	Particle n.: 45 Ecutm (prim. & sec.) = 1	.889 GeV 1.889 (GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV
			GeV, Hthnsz = 1.0000E+30 GeV GeV, Hthnsz = 1.0000E+30 GeV g
			GeV, Hthnsz = 1.0000E+30 GeV

Radiation Decay

00

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

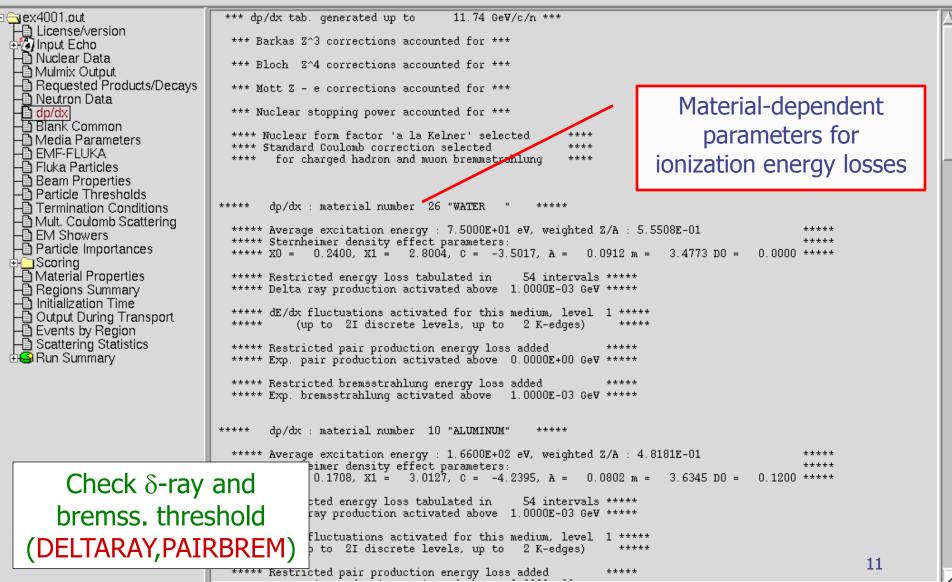
agex4001.out	**** Isotope tabulation data start at location 10219522 and end at	10242872 (I*4 addr.) ****
License/version → ⑦ Input Echo → ۩ Nuclear Data → <u>Mulmix Output</u> → <u>Requested Products/Decays</u> → <u>Neutron Data</u>	No radioactive products/decays requested	info on the decay radiation options
- a dp/dx - Blank Common - Media Parameters - EMF-FLUKA - Fluka Particles	Flags for applying biasing to prompt and/or decay radiation: Hadr/muon EM Prompt/Decay Prompt/Decay Inter./decay length: T F T F T Leading Particle : T F T F Importance and WW : T F T F T	Radiation biasing
 Beam Properties Particle Thresholds Termination Conditions Mult. Coulomb Scattering EM Showers Particle Importances Scoring Material Properties Regions Summary Initialization Time Output During Transport Events by Region Scattering Statistics Run Summary 	EM transport threshold multipliers: prompt decay 1.00E+00 1.00E+00	

Neutron data

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew


alex4001.out ⊢⊡ License≬version	Group cross sec Last location us	tions stora sed for gro	ge starts at up xsecs 1178	10352413 34019				4
 License/version Input Echo Nuclear Data Mulmix Output Requested Products/Decays Neutron Data dp/dx Blank Common Media Parameters EMF-FLUKA Fluka Particles Beam Properties Particle Thresholds Termination Conditions Mult. Coulomb Scattering 	Last location us Panini indep Number of primas Number of primas Number of secon Number of neutr Total xsec tabl Loc. of within of Number of media Number of Leg. Number of discr	*** Val endent Xsec ry groups ry downscat dary groups dary downsc bary downsc on+gamma gr e length group (g->g read coefficient	ues read from 260 ters 260 rs 30 42 atters 42 oups 302 335) xsec 34	the cross secti	on file *** w-energy correspond w energy he LOW-I	dence M neutron	lore info cross sec	on ction
EM Showers Particle Importances Scoring Material Properties Regions Summary	1	ing to an e	nergy threshol	Ld of: 1.00001E-	14 Ge¥ nted atomic dens	ities are meani	ingless when u	sed in a compo
Initialization Time Output During Transport Events by Region	Fluka medium number	Name	Xsec medium number	atomic density (at/(cm barn)		Id. 2	Id. 3	
Biscattering Statistics ⊡ - Gin Summary	1	BLCKHOLE	0	0.0000E+00	0	0	0	
a an oannary	2	VACUUM	1000	0.0000E+00	0	0	0	
	3	HYDROGEN	1	0.0000E+00	1	-2	296	
	6	CARBON	2	0.0000E+00	6	-2	296	
	7	NITROGEN	3	0.0000E+00	7	-2	296	
	8	OXYGEN	4	0.0000E+00	8	16	296	
	10	ALUMINUM	5	6.0240E-02	13	27	296	
	17	LEAD	7	3.2988E-02	82	-2	296	
	20	ARGON	6	0.0000E+00	18	-2	296	

Material Parameters – *dp/dx*

000

X FileViewer: ex4001.out

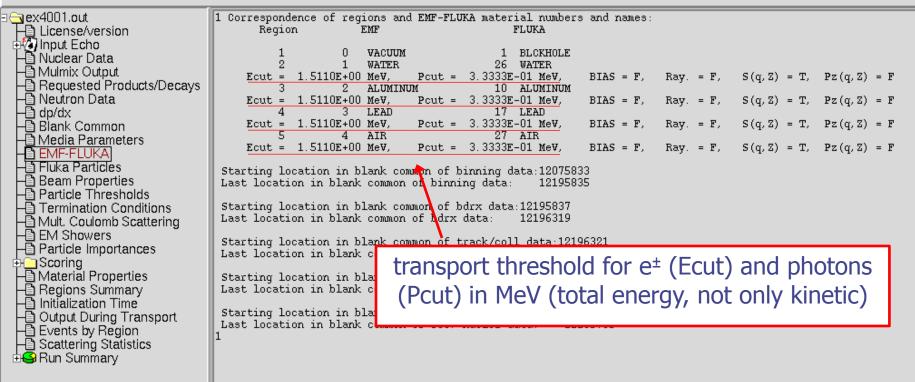
<u>File E</u>dit <u>V</u>iew

Material parameters – *Transport thresholds*

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew


🗟 ex4001.out 1 Quantities/Biasing associated with each media: License/version - Nuclear Data - Mulmix Output WATER Rho = 1.00000 q/cm**3 Rlc= 36.0830 CM Requested Products/Decays
 Neutron Data 1.51100 11737.8 Ae = MeV Ue = MeV 0.333333 11737.3 Ap = MeV Up = MeV -🛅 dp/dx -🛅 Blank Common dÊ/dx fluctuations activated for this medium, level 1 below the threshold for explicit secondary electron production (up to 2I discrete levels, up to 2 K-edges) 🖹 Media Parameters -🛅 EMF-FLUKA -🖺 Fluka Particles ALUMINUM Rho = 2.69900 g/cm**3 Rlc= 8.89633 CM - Beam Properties - Particle Thresholds - Termination Conditions 1.51100 Ae = MeV Ue = 11737.8 MeV 0.333333 11737 3 Ap = MeV Up = MeV dE/dx fluctuations activated for this medium, level 1 production threshold for - Mult. Coulomb Scattering - EM Showers - Particle Importances below the threshold for explicit secondary electron production (up to 2I discrete levels, up to 2 K-edges) e[±] in MeV (total energy, LEAD 🗄 🦲 Scoring Rho = 11.3500 q/cm**3 Rlc= 0.561207 CM Material Properties
 Regions Summary
 Initialization Time not only kinetic) 1.51100 11737.8le₹ Ae = MeV Ue = 11737.3 0.333333 MeV MeV Ap = Up = dE/dx fluctuations activated for this medium, level 1 Output During Transport
 Events by Region
 Scattering Statistics below the threshold for explicit secondary electron production upper limit for e^{\pm} in MeV (up to 2I discrete levels, up to 🕺 K-edges) AIR 🗄 🤐 Run Summary . Rh zoom Ae ALUMINUM Ap dE q/cm**3 2.69900 Rlc= 8.89633 Rho. CM bel 1.51100 11737.8 MeV Ue = MeV Ae = (up Ap = 0.333333 MeV Up = 11737.3MeV dE/dx fluctuations activated for this medium, level 1 below the threshold for explicit secondary electron production 2I discrete levels, up to 2 K-edges) (up to same for photons 12

Material parameters – *EMF-FLUKA*

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

FLUKA Particles

000

File

Edit View

exhaustive list of **FLUKA** particles

🕞 ex4001.out License/version 🗄 🕼 Input Echo - Nuclear Data - Mulmix Output Requested Products/Decay 🕒 Neutron Data -🛅 dp/dx -🗎 Blank Common 🖹 Media Parameters 🕒 EMF-FLUKA E Fluka Particles Beam Properties - Particle Thresholds - Termination Conditions -🛅 Mult. Coulomb Scattering - EM Showers - Particle Importances 🗄 🦲 Scoring Material Properties
 Begions Summary
 Initialization Time Output During Transport
 Events by Region
 Scattering Statistics 🗄 🧐 Run Summary

=== Output before the actual run - Particle properties: ===

=== Transportable Fluka particles: ===

ays	Particle	Number	Mass (GeV/c**2)	Mean Life (s)	Charge		Discard Flag(=1)		PDG id	
	4-HELIUM 3-HELIUM TRITON DEUTERON HEAVYION OPTIPHOT RAY PROTON APROTON APROTON ELECTRON POSITRON NEUTRIE ANEUTRIE	-65 -43 -22 -10 123456	(GeV/c**2) 3.7273803 2.8083922 2.8089218 1.8756134 0.000000 0.000000 0.000000 0.9382723 0.9382723 0.9382723 0.005110 0.0005110 0.000000 0.000000	(\$) 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18 1.000E+18	2 2 1 0 0 1 -1 -1 0 0	number 4 3 2 0 0 1 -1 0 0 0 0 0 0	Flag(=1) 0 0 0 0 0 0 0 0 0 0 0 1 1	Flag 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9999 9999 9999 9999 9999 9999 2212 -2212 -2212 11 -11 12 -12	
	PHOTON NEUTRON ANEUTRON MUON+ MUON-	7 8 9 10 11	0.0000000 0.9395656 0.9395656 0.1056584 0.1056584	1.000E+18 889. 889. 2.197E-06 2.197E-06	0 0 1 -1	0 1 -1 0 0	0 0 0 0 0	1 1 1 1	22 2112 -2112 -13 13	

... continues on your screen!

...and many more

=== Generalised particles (201-233) (for scoring): ===

Generalised particle	Number
ALL-PART	201
ALL-CHAR	202
ALL-NEUT	203
ALL-NEGA	204
ALL-POSI	205
NUCLEONS	206
NUC&PI+-	207
ENERGY	208
PIONS+-	209
BEAMPART	210
EM-ENRGY	211
MUONS	212
E+&E-	213
AP&AN	214

Input interpreted summary – *Beam*

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

🖯 aex4001.out === Output before the actual run - Beam properties === License/version 🗄 🕼 Input Echo - Nuclear Data - Mulmix Output Fluka incident beam properties: Requested Products/Decays
 Requested Products/Decays
 Neutron Data
 dp/dx
 Blank Common Beam particle: PROTON Id: 1 (Fluka) 2212 (PDG) Charge: 1 Baryon n.: 1 (GeV/c^2) Mean life: 1.0000E+18 (s) Weight: 1.000 Mass: 0.9383 4.337961 (GeV/c) Average beam momentum Average beam kinetic energy: 3.500000 (GeV) - Media Parameters Momentum deviation at FWHM (gaussian): 0.0824250 (GeV/c) - EMF-FLUKA - Fluka Particles Beam hit position 0.00000000 0.00000000 -0.100000000CM Beam direction cosines: 0.00000000 0.00000000 1.00000000 Beam Properties Beam spot FWHM X-width (Rectangular): 0.0000 CM - Particle Thresholds - Termination Conditions Beam spot FWHM Y-width (Rectangular): 0.0000 CM Beam FWHM angular divergence (Gaussian): 1.7000 (mrad) - Mult. Coulomb Scattering (Spatial distribution, polarization, and angular direction and distribution are given in the beam frame of reference) - EM Showers - Particle Importances Beam reference frame (world coordinates): 🗄 🦲 Scoring Beam X axis: 1.00000000 0.00000000 0.00000000 Material Properties
 Regions Summary
 Initialization Time 0.00000000 1.00000000 0.00000000 Beam Y axis: 0.00000000 0.00000000 1.00000000 Beam Z axis: Output During Transport
 Events by Region
 Scattering Statistics The nominal beam position belongs to region: 5(INAIR lattice cell: 0(🗄 🤐 Run Summary . Check where the beam is starting

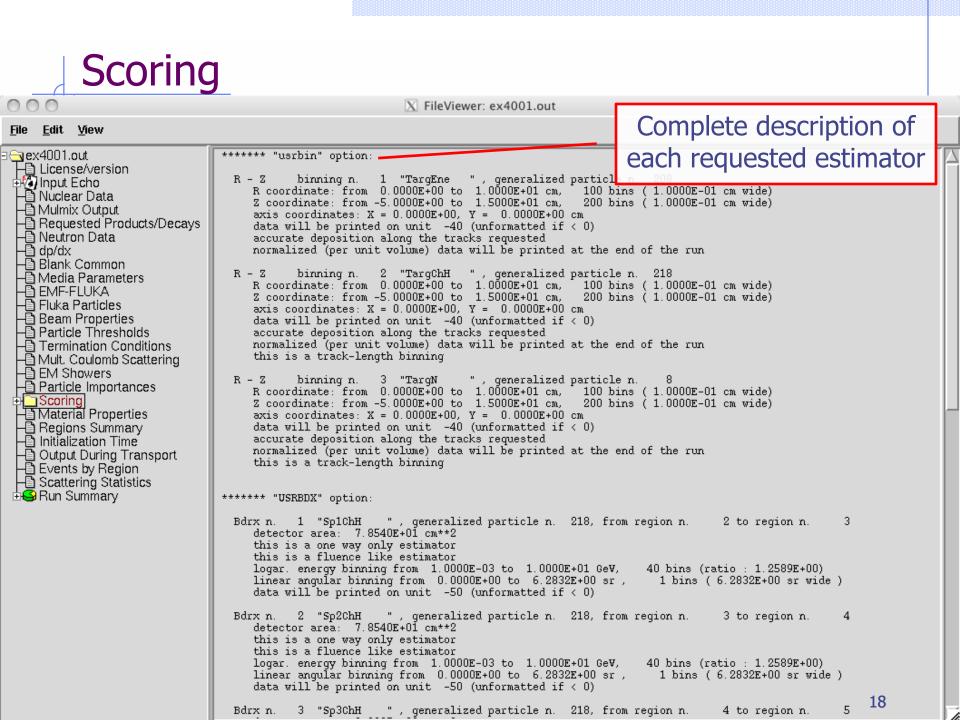
Input interpreted summary – *Thresholds*

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

🖯 aex4001.out === Particle transport thresholds: License/version Global cut-off kinetic energy for particle transport: 1.000E-02 GeV 🗄 🕼 Input Echo The cut-off kinetic energy is superseded by individual particle thresholds if set - Nuclear Data - Mulmix Output - Requested Products/Decays Cut-off kinetic energy for 4-HELIUM transport: 1.000E-02 GeV -🖹 Neutron Data -🛅 dp/dx -🖺 Blank Common Cut-off kinetic energy for 3-HELIUM transport: 1.000E-02 GeV Cut-off kinetic energy for TRITON transport: 1.000E-02 GeV - Media Parameters EMF-FLUKA
 EMF-FLUKA
 Fluka Particles Cut-off kinetic energy for DEUTERON transport: 1.000E-02 GeV Beam Properties Cut-off kinetic energy for PROTON transport: 1.000E-02 GeV Particle Thresholds Termination Conditions Cut-off kinetic energy for APROTON transport: 1.000E-02 GeV - Mult. Coulomb Scattering - EM Showers Cut-off kinetic energy for ELECTRON transport defined in the Emfcut card - Particle Importances Cut-off kinetic energy for POSITRON transport defined in the Emfcut card 🗄 🦲 Scoring Material Properties
 Begions Summary
 Initialization Time Cut-off kinetic energy for NEUTRIE transport: 0.000E+00 GeV Cut-off kinetic energy for ANEUTRIE transport: 0.000E+00 GeV - Output During Transport - Events by Region Cut-off kinetic energy for PHOTON transport defined in the Emfcut card - Scattering Statistics Cut-off kinetic energy for NEUTRON transport: 1.000E-14 GeV 🗄 🤐 Run Summary Cut-off kinetic energy for ANEUTRON transport: 1.000E-05 GeV Cut-off kinetic energy for MUON+ transport: 1.000E-02 GeV Cut-off kinetic energy for MUONtransport: 1.000E-02 GeV Cut-off kinetic energy for KAONLONG transport: 1.000E-02 GeV Cut-off kinetic energy for PION+ transport: 1.000E-02 GeV Cut-off kinetic energy for PIONtransport: 1.000E-02 GeV Cut-off kinetic energy for KAON+ transport: 1.000E-02 GeV Cut-off kinetic energy for KAONtransport: 1.000E-02 GeV Cut-off kinetic energy for LAMBDA transport: 1.000E-02 GeV


Input interpreted summary – TC, MCS, EM

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

🕞 ex4001.out === Termination conditions: === License/version Maximum cpu-time allocated for this run: 10000000000000000.00 sec 🗄 🕼 Input Echo - Nuclear Data - Mulmix Output Minimum cpu-time reserved for output: 10000.00 sec Maximum number of beam particles to be followed: 1000 Maximum number of stars to be generated: infinite EMF-FLUKA
 EMF-FLUKA
 Fluka Particles
 Beam Properties
 Particle Thresholds
 Committee Thresholds === Multiple Coulomb scattering: === Moliere Coulomb scattering for primaries: 🚽 т Moliere Coulomb scattering for secondaries: T Termination Conditions 🖹 Mult. Coulomb Scattering Hadrons/muons: EM Showers Flag for MCS check with boundary normals: F Particle Importances Flag for Coulomb single scattering(s) at boundaries: F (# of Coulomb single scattering(s) at boundaries: 🗄 🦲 Scoring 1) - Material Properties - Regions Summary - Initialization Time Flag for single scatterings below min. (Moliere) energy: F Output During Transport
 Events by Region
 Scattering Statistics === Electromagnetic Showers: === 🗄 🤐 Run Summary EM showers are treated by the EMF (A.Fasso`, A.Ferrari, P.R. Sala) code Electrons/positrons: Flag for MCS check with boundary normals: F Flag for Coulomb single scattering(s) at boundaries: F (# of Coulomb single scattering(s) at boundaries: 1) Flag for single scatterings below min. (Moliere) energy: F

Materials – *Scattering lengths*

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

∃	=== Material co	ompositions: ==	:=						
License/version Input Echo Nuclear Data Mulmix Output Requested Products/Decays Neutron Data Dydx	Material Number&Name	Atomic Number	Atomic Weight	Density	Inelastic Scattering Length for PROTON at Beam energy	Elastic Scattering Length for PROTON at Beam energy	Radiation Length	Inelastic Scattering Length for neutrons at Threshold Momentum	
🗕 🗃 Blank Common			/	g/cm**3	cm	cm	cm	cm	
Media Parameters EMF-FLUKA Fluka Particles Particle Thresholds Particle Thresholds Termination Conditions Mult. Coulomb Scattering EM Showers Particle Importances Scoring Material Properties Regions Summary Initialization Time Output During Transport Events by Region Scattering Statistics Scattering Statistics Run Summary	3 HIDRUGEN	type s	b the beam c c i f i e c i f i e i i i i i i i i i i	0. B 3/0E-04	0.1000E+31 0.1000E+31 0.7040E+06 0.3506E+06 39.41 39.52 0.7054E+05 0.6438E+05 55.31 36.71 15.55 13.97 14.12 43.04 9.239 13.25 15.97 10.44 97.58 0.6692E+05 71.73 20.91 9.055 25.79 13.87 81.49 ensitie	$\begin{array}{c} 0.\ 10000 \pm 31\\ 0.\ 10000 \pm 31\\ 0.\ 10000 \pm 31\\ 0.\ 1418 \pm 07\\ 0.\ 6310 \pm 07\\ 77.\ 65\\ 110.\ 5\\ 0.\ 1872 \pm 06\\ 0.\ 1624 \pm 06\\ 117.\ 7\\ 75.\ 04\\ 25.\ 41\\ 23.\ 26\\ 21.\ 47\\ 86.\ 54\\ 13.\ 14\\ 18.\ 79\\ 22.\ 54\\ 15.\ 03\\ 212.\ 4\\ 0.\ 1186 \pm 06\\ 127.\ 1\\ \hline \hline Compo\\ interpretoto to the second se$	eted	0.1000E+31 0.1000E+31 0.8508E+09 0.6024E+34 17.26 18.23 0.3319E+05 0.3013E+05 26.58 17.24 9.128 8.423 10.59 20.38 7.012 9.852 12.03 7.390 47.77 0.3754E+05 36.39	
	27 AIR	7.262	14.55	0.1205E-02	0.6931E+05	0.1810E+06	0.3039E+05	0.3262E+05	
	Material	Number	Atom content	Partial D					
	CARBON NITROGEN OXYGEN ARGON	6 7 8 20	0. 15019E-03 0. 78443 0. 21075 0. 46712E-02	0.14939E-(0.90994E-(0.27925E-(0.15454E-(06 03 03			19	The second se

Regions summary

0 0

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

a 😋 ex 4001. out === Regions: materials and fields === License/version Region N. and Name Material N. and Name Magn. /El. Field (on/off) 🗄 🕼 Input Echo (Mat. N. and Name Magn./El. Field (on/off) for radioactive products) -🛅 Nuclear Data Minimum and Maximum step size (cm) - 🖻 Mulmix Output 1 BLKHOLE BLCKHOLE OFF 0.00000E+00 9.99852E+04 1 Requested Products/Decays (1)BLCKHOLE OFF 🕒 Neutron Data 9.99852E+04 2 TARGS1 26 WATER OFF 0.00000E+00 🕒 dp/dx WATER (26) OFF) 9.99852E+04 TARGS2 10 ALUMINUM OFF 0.00000E+00 -🖹 Blank Common (10)ALUMINUM OFF 🖹 Media Parameters TARGS3 LEAD 0.00000E+00 9.99852E+04 17 OFF 🖹 EMF-FLUKA (17 LEAD OFF) -🖹 Fluka Particles 5 INAIR 27 AIR OFF 0.00000E+00 9.99852E+04 🖹 Beam Properties (27 AIR. OFF) - Particle Thresholds Termination Conditions Mult. Coulomb Scattering - EM Showers - Particle Importances 🗄 🧰 Scoring - Material Properties Useful way to check Regions Summary Initialization Time material assignment -🖹 Output During Transport - Events by Region - Scattering Statistics 🗄 🤐 Run Summary Minimum/Mximum step sizes (set with STEPSIZE option otherwise default vaues are set)

Initialization time / Run informations

000

X FileViewer: ex4001.out

<u>F</u> ile	<u>E</u> dit <u>V</u> iew								ovent number	timo
🗆 😋 e	x4001.out	=== End of	the outp	ut assoc:	iated	with the	input ===		event number, t	time, 📃 🚽
	License/version								united and search server	
	Input Echo								random seed, ave	erage
	Nuclear Data	Total time u	used for	initiali	zation	n: 3.43	3			
	Mulmix Output	I TOCAL CIME C		Interari.	200101	1. 0.40			time used per pri	mary
	Requested Products/Decays								une useu per pri	
	Neutron Data								a substant a la la substant de la substant	
	dp/dx								available during the r	run
	Blank Common									
	Media Parameters									
	EMF-FLUKA						4			
	Fluka Particles	1NUMBER OF BE		NUMBER			APPROXIMAT			NUMBER OF STARS
	Beam Properties	PARTICLES HA	NDLED	PARTICLI	ES LEE	'T'	OF BEAM PAU THAT CAN S		BY A BEAM PARTICLE 10000.0 SECONDS	CREATED
	Particle Thresholds Termination Conditions						HANDLED	LIPP DE	FOR PRINTOUT)	
	Mult. Coulomb Scattering						100000			
	EM Showers	NEXT SEEDS:	0	0		0	0 0	0	181CD 3039 0 0	
	Particle Importances	1			999				3.0002594E-03 1.0000000E+30	1
	Scoring	NEXT SEEDS:	C63	0	980	0	0 0 981	, O	181cD 3039 0 0 4.1494131E-03 1.0000000E+30	19
	Material Properties	20 NEXT SEEDS:	2D145	0	960	n	0 0	, 0	4.1494131E-03 1.000000E+30 181CD 3039 0 0	19
	Regions Summary	40	20140	Ŭ	960	Č .	96I	-	5.8991313E-03 1.0000000E+30	47
	Initialization Time	NEXT SEEDS:	AE22F	0		0	0 0	0	181cD 3039 0 0	
	Output During Transport	60			940		94	-	6.7989667E-03 1.0000000E+30	94
	Events by Region	NEXT SEEDS:	1407A3	0	000	0	0 0	, O	181CD 3039 0 0	104
	Scattering Statistics	80 NEXT SEEDS:	199F1E	0	920	0	92) 0 0	, 0	6.2740505E-03 1.0000000E+30 181cD 3039 0 0	124
	Run Summary	IO0	199116	U	900	0	U U 901		6.8789625E-03 1.0000000E+30	172
	· /	p 200						-	2.0000002.00	2.5

Results – *Scoring* Results of SCORE options for all region: **very useful** for debugging and for cross-check with estimators 000 X FileViewer: ex4001.out Edit View File 🔄 ex4001.out volume 1Region # name ALL-PART Star Density BEAMPART Star Density ENERGY EM-ENRGY Density Density License/version in cubic cm GeV/cm**3 GeV/cm**3 Stars/cm**3 Stars/cm**3 /one beam particle /one beam particle /one beam particle /one beam particle 2.928199323E+00 1 BLKHOLE 1.000000000<u>+</u>+00 0.00000000E+00 0.00000000E+00 4.557256612E-02 -🖹 Mulmix Output 2 TARGS1 1.000000000E 00 1.70000000E-02 8.00000000E-03 3.488408038E-03 1.713414203E-04 - Requested Products/Decays 5.70000000E-02 3.10000000E-02 8.922057690E-03 7.317583684E-04 3 TARGS2 1.00000000E+00 -🛅 Neutron Data 1.00000000E+00 1.56300000E+00 3.82000000E-01 3.983831246E-01 1.144531387E-01 4 TARGS3 🖹 dp/dx 5 INAIR 1.00000000E+0 8.50000000E-02 1.00000000E-02 9.016724646E-03 1.290495432E-03 Blank Common Total (integrated over volume) 1.722000000E+00 4.31000000E-01 1.622193000E-01 3.348009638E+00 Media Parameters EMF-FLUKA ***** Next control card ***** 0.000 0.000 STOP 0.000 0.000 0.000 0.000 Fluka Particles Beam Properties - Particle Thresholds # inelastic interactions of Termination Conditions Mult. Coulomb Scattering primary particles - EM Showers Particle Importances Scoring - Material Properties - Regions Summary The volume is not automatically evaluated, - Initialization Time Output During Transport you have to specify it in the geom. description Events by Region Scattering Statistics 😂 Run Summary

Results – Statistics of Coulomb scattering

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

■ ← ex4001.out	<pre>**** Total number of not-performed scatterings in FLUKA: 888 **** Total number of scatterings with no LDA in FLUKA: 12251 **** Ratio of rejected/accepted samplings from the Moliere's distribution in FLUKA: 0.0000 **** (Total multiple scatterings: 9.5186E+04: Total single scatterings: 0.0000E+00)</pre>
 Nuclear Data Mulmix Output Requested Products/Decays Neutron Data dp/dx Blank Common Media Parameters EMF-FLUKA Fluka Particles Beam Properties Particle Thresholds Termination Conditions Mult. Coulomb Scattering EM Showers Particle Importances Scoring Material Properties Regions Summary Initialization Time Output During Transport Events by Region Scattering Statistics Run Summary 	<pre>**** (Total multiple scatterings: 9.5186E+04: Total single scatterings: 0.0000E+00) **** Total number of not-performed scatterings in EMF : 123 **** Total number of scatterings with no LDA in EMF : 666 **** Ratio of rejected/accepted samplings from the Moliere's distribution in EMF : 0.0000 **** (Total multiple scatterings: 3.6342E+05: Total single scatterings: 0.0000E+00) ****</pre>

Results – *Statistics of the run*

X FileViewer: ex4001.out

File <u>E</u>dit <u>V</u>iew

000

a ex4001.out ⊢≧ License/version	Total number of primaries run: 1000 for a we !!! Please remember that all results are normalized p	eight of: 1.000000E+03
⊕ liput Echo	The main stack maximum occupancy was 81 out of	
- Nuclear Data		
B Regulated Braduets (Departs	Total number of inelastic interactions (stars):	1722
⊢ ☐ Requested Products/Decays ⊢ ☐ Neutron Data	Total weight of the inelastic interactions (stars):	L.722000E+03
–B dp/dx		
Blank Common	Total number of elastic interactions: 158	
– ☐ Media Parameters ⊢] EMF-FLUKA	Total weight of the elastic interactions: 1.582000E+(13
High Elwir-FLORA		
Beam Properties	Total number of low energy neutron interactions: Total weight of the low energy neutron interactions: 2	20821 2 082621E+04
Particle Thresholds		
Termination Conditions Mult Coulomb Scottering	Total CPU time used to follow all primary particles:	6.843E+00 seconds of:
Halt. Coulomb Scattering EM Showers	Average CPU time used to follow a primary particle:	6.843E-03 seconds of:
Particle Importances	Maximum CPU time used to follow a primary particle:	4.699E-02 seconds of:
⊕		1 000= 00 1 6
Begions Summary	Residual CPU time left:	1.000E+30 seconds of:
- Initialization Time		
Output During Transport		
Events by Region Scattering Statistics	*	The second se
□ Summary		
- Totals/CPU time	THE A	
H = f stars		2
H [™] # of secondaries in stars		3
# of decay products	7 6 5	
# of particles decayed		S
H # of stopping particles H # of part. from low en. neutrons		to not
Energy balance	CPU time	IS NOT

CPU time is not real time!

Run summary: *detailed statistics*

000

X FileViewer: ex4001.out

<u>File E</u>dit <u>V</u>iew

⊡ 🔁 ex4001.out	Number of stars generated per beam particle:	\Box
License/version	Prompt radiation Radioactive decays	
🕸 Input Echo	1.7220E+00 (100.%) 0.0000E+00 (100.%)	
Hi Nuclear Data	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by 4-HELIUM	
- 🖹 Mulmix Output	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by 3-HELIUM	
Requested Products/Decays	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by TRITON 1.0000E-03 (0.1%) 0.0000E+00 (0.0%) generated by DEUTERON	
- Neutron Data	1.0000E-03 (0.1%) 0.0000E+00 (0.0%) generated by DEUTERON 0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by HEAVYION	
- dp/dx	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by OPTIPHOT	
-Blank Common	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by RAY	
- Media Parameters	6.4300E-01 (37.3%) 0.0000E+00 (0.0%) generated by PROTON	
-B EMF-FLUKA	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by APROTON	
- Fluka Particles	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by ELECTRON	
Beam Properties	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by POSITRON	
Particle Thresholds	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by NEUTRIE	
	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by ANEUTRIE	
Termination Conditions	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by PHOTON	
Halt. Coulomb Scattering	8.9700E-01 (52.1%) 0.0000E+00 (0.0%) generated by NEUTRON 0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by ANEUTRON	
-B EM Showers	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by MUON+	
Particle Importances	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by MUON-	
⊕ 🔄 Scoring	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by KAONLONG	
Haterial Properties	5.0000E-02 (2.9%) 0.0000E+00 (0.0%) generated by PION+	
Regions Summary Initialization Time	1.3000E-01 (7.5%) 0.0000E+00 (0.0%) generated by PION-	
- Initialization Time	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by KAON+	
🕒 Output During Transport	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by KAON-	
Events by Region	1.0000E-03 (0.1%) 0.0000E+00 (0.0%) generated by LAMBDA	
Scattering Statistics	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by ALAMBDA	
E S Run Summary	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by KAONSHRT 0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by SIGMA-	
Totals/CPU time	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by SIGMA- 0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by SIGMA+	
	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by SIGMAZER	
H^{3} # of secondaries in stars	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by PIZERO	
- # of secondaries in stars	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by KAONZERO	
	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by AKAONZER	
# of decay products	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by RESERVED	
# of particles decayed	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by NEUTRIM	
# of stopping particles	0.0000000000 (0.0%) 0.00000000 (0.0%) generated by ANEUTRIM	
# of part. from low en. neutrons	0.0000E+00 (8.0%) 0.000(E+00 (0.0%) generated by RESERVED	
🖵 Energy balance	0.0000E+00 (0.0%) 0.000 Detailed statistics per each particle	
	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by ASIGMALE	
	0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by ASIGMA+ 0.0000E+00 (0.0%) 0.0000E+00 (0.0%) generated by XSIZERO	-
	C. SOUDETOD (0.0%) C. SOUDETOD (0.0%) GENELACEN DY ASIZENO	1

Energy Balance

000

X FileViewer: ex4001.out

<u>File Edit View</u>

3 😋 ex4001.out - 🗋 License/version Input Echo ☐ Nuclear Data -🛅 Mulmix Output Requested Products/Decays Neutron Data – 🛅 dp/dx – 🕒 Blank Common - Media Parameters -🖺 EMF-FLUKA 🕒 Fluka Particles - Beam Properties - Particle Thresholds Termination Conditions - Mult. Coulomb Scattering EM Showers Particle Importances 🗄 🦲 Scoring - Material Properties - BRegions Summary 🕒 Initialization Time -🖹 Output During Transport Events by Region - Scattering Statistics 🕞 Run Summary -🖹 Totals/CPU time - A of stars + of secondaries in stars # of fissions - # of decay products + of particles decayed + a of stopping particles # of part. from low en. neutrons Energy balance

(100.%) GeV available per beam particle divided into 3.5000E+00 Prompt radiation Radioactive decays 2.9309E-01 8.4%) 0.0000E+00 (0.0%) GeV hadron and muon dE/dx 3.3%) 1.1665E-01 0.0000E+00 (0.0%) GeV electro-magnetic showers 8.8952E-03 (0.3%) 0.0000E+00 (0.0%) GeV nuclear recoils and heavy fragments 0.0000E+00 0.0000E+00 (0.0%) GeV particles below threshold 0.0%) 0.0000E+00 (0.0000E+00 0.0%) 0.0%) GeV residual excitation energy 1.1821E-03 0.0000E+00 (0.0%) 0.0%) GeV low energy neutrons 2.9282E+00 0.0000E+00 ((83.7%) 0.0%) GeV particles escaping the system 1.6105E-02 0.0000E+00 (0.0%) GeV particles discarded (0.5%) 0.0000E+00 (0.0%) 0.0000E+00 (0.0%) GeV particles out of time limit 1.3589E-01 3.9%) GeV missing

Particles below threshold:

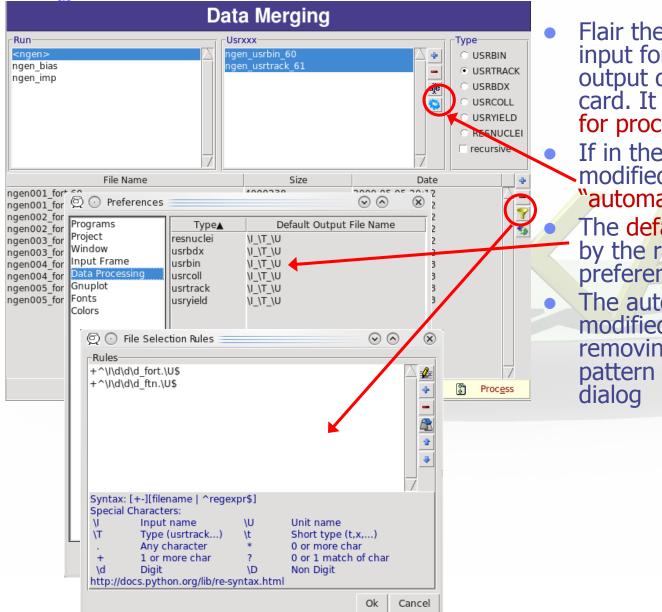
- Hadrons and muons below threshold are ranged out unless the threshold >100 MeV;
- e[±]/γ (EM- showers are not included).
 Escaping the system: going to *blackholes*.
 Discarded particle (i.e. neutrinos).

Missing Energy: Calculated by difference:

- pure EM problems it should be 0;
- in hadronic problems it is the energy spent in endothermic nuclear reactions (≈ 8 MeV/n), or gained in exothermic (i.e. mostly neutron capture): it is –total Q.

Error message

000


X FileViewer: fluka_11407/ex4001.out

<u>File E</u>dit <u>V</u>iew

E ILKa_11407/ex4001.c I License/version P Input Echo I Dicense Contended to the second se	***** Next control card *****	USRBDX	10.00	1.0000E-03	40.00	0.000	0.000	0.000	&
Bern Summary	***** Next control card *****	USRBDX	99.00	218.0	-50.00	4.000	5.000	329.9	Sp3ChH
	***** Next control card *****	USRBDX	10.00	1.0000E-03	40.00	0.000	0.000	0.000	&
	***** Next control card *****	USRBDX	99.00	218.0	-54.00	3.000	4.000	78.54	Sp2ChHA
	***** Next control card *****	USRBDX	10.00	1.0000E-03	40.00	0.000	0.000	3.000	&
	***** Next control card *****	USRTRACK	-1.000	218.0	-55.00	4.000	628.3	40.00	TrChH
	***** Next control card *****	USRTRACK	10.00	1.0000E-03	0.000	0.000	0.000	0.000	&
	***** Next control card *****	USRYIELD	124.0	209.0	-57.00	4.000	5.000	1.000	YieAng
	***** Next control card *****	USRYIELD	180.0	0.000	18.00	10.00	0.000	3.000	&
	***** Next control card *****	RESNUCLE	3.000	-60.00	0.000	0.000	4.000	0.000	activ
	***** Next control card *****	START	1000.	0.000	0.000	0.000	0.000	0.000	
	Total time used for input readi	.ng: 4.999	E-03 s						

**** Region n. 4 (TARGS3) has no assigned material, run stopped **** Abort called from PRCHCK reason NO MATERIAL ASSIGNED TO A REGION Run stopped! STOP NO MATERIAL ASSIGNED TO A REGION

Flair: Data Processing

Flair the first time scans the input for possible unformatted output data for each scoring card. It creates automatic rules for processing (merging). If in the mean time you have modified the input click the

- modified the input click the "automatic" scan
- The default names are generate by the rules specified in the preference dialog
- The automatic rules could be modified by manually adding or removing files or by advanced pattern matching with the filter dialog

Plot List

Plot List The The The The The The The The The The The The The The Plot List Plot List Plot S can be created in the "Plot" It is important to set a unique filename for each plot. The Filter button creates automatically one plot for each processed unit Double click on a plot, or hit Enter or click the Edit icon to display the plotting dialog						
Provide Types For geometry plots Geometry For geometry plots USR-1D To plot double differential quantities from cards USR-2D To plot double differential from USRBDX RESNUCLE To plot double differential from USRBDX USRRDUMP To plot the output of USERDUMP. Useful for			Plot List			
 Plot Types Geometry USRBIN USR-1D USR-2D USR-2D To plot double differential from USRBDX RESNUCLE USERDUMP To plot the output of USERDUMP. Useful for 	<u>geometry</u> nTC enedep Der fluence Par	posited Energy rticle Fluence	Title	USRBIN USR-1D	_	list frame. Either Add new plots or Clone from existing ones. It is important to set a unique filename for each plot. This filename will be used for every auxiliary file that the plot needs (changing the extension) The Filter button creates automatically one plot for each processed unit Double click on a plot, or hit Enter or click the Edit icon to display the plotting dialog
 Geometry USRBIN USR-1D USR-2D To plot single differential quantities from cards USRBDX, USRTRACK, USRCOLL, USRYIELD USR-2D To plot double differential from USRBDX RESNUCLE USERDUMP To plot the output of USERDUMP. Useful for 	Plot Types					"Slow Double Click"
	 Geometri USRBIN USR-1D USR-2D RESNUC 	For plo To plo USRBD To plo CLE To plo JMP To plo	otting the output of t single differential of X, USRTRACK, USRCOL t double differential t 1d or 2d distribution t the output of USEF	quantities from ca L, USRYIELD from USRBDX ons of RESNUCLEi RDUMP. Useful for	i	

Plotting Frames

USRsss Single Differential Plot

Plot		
Title: USR-1D ngen_usrtrack_61	Options:	
File: ngen_usrtrack_61_plot	.eps 🛛 🔻 🛃 Display: 0 🚔 Line Typ	e: 🗸 🗸
Axes Labels	Size / Multiplot	t
X:	Opt:	
Y:	Opt: 🛛 🔽 legend Width: 🛛	Height:
Axes Range		
✓ log X: -	□ log X2: - □	show Get
✓ log Y: -	□ log Y2: - □	show Reset
	and the second	
	Aller and a second seco	1
Gnuplot commands		Plot
		5 Replot
		🛃 Save

All plot types share some common fields:

Title + options, Filename, Axis Labels, Legends (Keys) and Gnuplot Commands.

Plot button (Ctrl-Enter) will generate all the necessary files to display the plot, ONLY if they do not exist.

Re-Plot will force the creation of all files regardless their state

Check the gnuplot manual to provide additional customization commands: e.g. To change the title font to Times size=20, add in the Opt: field the command: font 'Times,20'

General Tips

- To set some default parameters for gnuplot create a file called ~/.gnuplot
- The output window displays all the commands that are sent to gnuplot. As well as the errors. In case of problem always consult the output window!
- In the Gnuplot commands you can fully customize the plot by adding manually commands. Please consult the gnuplot manual for available commands
- All buttons and fields have tool tips. Move the cursor on top of a field to get a short description

Geometry Plotting

e,	1.00				10	10	de.	0						iter.	e) et	ef.		
Ce	enter							_		_								
		x:	0.0				∆x:	0.0	I		∆u:	0.0			Move			
		y:	0.0				∆y:	0.0	I		∆v:	Δv: 0.0		Move [u,v]		1		
		z:	0.0				∆z:	0.0	I						Reset			
Ba	sis																	
u:	0.0		0.0			1.0				X -	y _	y-z	-u	Ang:	0.0	φ:		Polar
v:	0.0		1.0			0.0				X -	z	swap	-V		Rotate	e		Reset
Ex	tends —					i ⊢Gri	d		-Optio	ms-				Sty	le		- Ty	pe —
Δu	: 50.0	f: 2.0))	ſ	Get	Nu:	200		🔲 bo	unda	arie:	s 📕 la	bels		Palette		Ma	terial
Δ٧	: 50.0		x	1/f	Reset	Nv:	200		Vecto	or Sc	ale:	0.1		Font	t:		Z-1	/ 🔻
10	and the second	100				,												

- For geometry plotting the following information is needed (Fields with white background):
 - Center (x,y,z) point defining the center of your plot
 - Basis (U,V): Two perpendicular axis vectors defining the new system
 - Extends (DU, DV) of the plot. The total width/height will be twice the extends
 - Scanning grid (NU, NV): how many points to scan
 - Plotting type (Only borders, Regions, Materials, ...)

Geometry plotting

- All input fields with light-yellow background are used to perform operations on the previous fields. e.g. to rotate the basis-vectors
- When the "Plot" button is pressed, flair will create a temporary input file containing only the geometry and the related information together with the appropriate PLOTGEOM card. It will start a FLUKA run, and on exit it will convert the PLOTGEOM file in a format that gnuplot understands

USRBIN

- With the USRBIN plotting frame you can perform:
 - 2D projection or region/lattice plot
 - 1D projection or region/lattice plot
 - 1D maximum trace
 - 1D trace scan

of the data or errors from USRBIN data.

Binning Detect	tor			
File: tutori	al_usrbin_50	🗃 Title:		
Cycles:	Primaries:	Weight:	Time:	
Binning Info—				
Det:		▼ X:	Min:	
Туре:		Y:	Max:	
Score:		Z:	Int:	
Projection & L	imits	2D Histogram 1	D Histogram Region	
2 B				in the second se
		Contraction of Contract, Specific Street, Specific Street		The second se

- Set the usrbin summary file in the File: field
- Select from Det: the detector to use.
- All the available detector information will be displayed
- The information Mininum, Maximum and Integral will be filled after the plot! WARNING is always the projection min/max

USRBIN (2D plot)

THE REPORT OF	A COMPANY OF A COMPANY		200 L 2 2 2
Projection & Limits	Type:	2D Projection	▼
○ X: 🛛 🛛 🖢	▼ Get Color	r Band	Geometry
○ Y: 🔰 🗍 🚍	🔻 🗆 swap 🛛 Mi	in: 1e-13 Max:	0.001 Use: geometry 🔻
• Z: 🛛 🛛 🕇	▼ □ errors CP	PD: 3 🛢 Colors:	30 🛢 Pos: 0
Norm:	✓ log Palett	te: FLUKA 👿 🔽 Rou	ind Axes: Auto 🔻
English a presentation			

- Select the "2D Projection" type
- Select the projection axis, limits, and rebinning
- swap: will exchange the plotting X and Y axis
- errors: will plot the (uncorrelated) error values as color plot
- Get: will get the projection limits from the gnuplot window
- Norm: is the normalization value or expression. You can even define a function to use as normalization using as argument x: e.g. 5*x**2+4*x
- log: select linear or log in the color bar axis

USRBIN (2D plot) cont.

	A DOMESTIC OF A DOMESTIC		
Projection & Limits	Type: 2D Projectio	on 🛛 🔻	
○ X: 🛛 🔽 🕄	▼ Get Color Band		Geometry
○ Y: 🛛 🔽 🕄	▼ 🗆 swap Min: 1e-13	Max: 0.001	Use: geometry
• Z:	V 🗆 errors CPD: 3 🚍	Colors: 30 🚔	Pos: 0
Norm:	✓ log Palette: FLUKA	▼ 🔽 Round	Axes: Auto
Despirit a provincia			

• The Minimum, Maximum, Colors and CPD (Colors per decade) are interconnected.

log10(Max) = log10(Min) + Colors/CPD

- Once the value is changed in one field, the Max will be calculated accordingly
- Palette: offers a possibility to the user to choose from various predefined palettes. The user can define his own palette using the "set palette" command from the "Gnuplot commands" text box

USRBIN (2D plot) cont..

Superimpose the geometry can be done either automatically or manually.

- Auto: Select –Auto- in the Use: field of the Geometry and the program will try to draw the geometry at the middle of the limits on the projection axis. To change the position modify the Pos: value
- Manual: The dropdown listbox will display also a list of all geometry plots in the flair project. Select the one you prefer and the plotting axis. The manual mode can be used in special cases when the usrbin file do not contain the absolute coordinates
- The color palette is predefined in flair, but the user can modify it with the "set palette" gnuplot command. See gnuplot help page for more info.

USRBIN (1D-plots)

	A REAL PROPERTY AND A REAL PROPERTY.	and the second s
Projection & Limits	Type: 1D Projection	n 🔻
⊂ X: 🔽 🔽 🗐	▼ Get Plotting Style	
⊂ Y: 🔽 🔽 🗮	▼ swap With: steps	▼ Type: 1 € Type: 1 €
• Z: 🛛 🔽 1 🛢	▼	▼ Width: 1 € Size: 1 €
Norm:	✓ log Smooth:	▼ Color: ▼ Style: 0 €
terrapid contraction		

1D Projection

 Select the projection axis from "Projection & Limits" as before WARNING: When making projections the error is typically underestimated.

1D Max

• Same as the 1D Projection, but displays only the maximum value on each slice. (eg. on a Z-projection, it will display the maximum on each X-Y slice)

1D Trace H or V

 Displays the position of the maximum and also the FWHM on either the horizontal or vertical plane (requires the usbmax.c prg)
 Plotting Style: (see USR-1D) 38

USR-1D Single Differential Plot

		and the second s
Detectors		Detector Info
Proton #Proton	∐ aį̇́e	File: tutorial_usrcoll_51_tab.lis 📴 Det: Block: 0 韋
Neutron	+	Show: 👅 graph 🛛 🖉 legend Norm: 7e12
#Neutron		X: Low [xl] ▼ Y: Y * <xgeo> ▼ Using:</xgeo>
		Plotting Style Lines Points
		With: steps 🔻 Type: 1 🚭 Type: 1 🕀
	•	Axes: x1y1 V Width: 1 🚭 Size: 1 🚊
	7 🔹	Smooth: V Color: V Style: 0 =
Install second		

- USR-1D is able to plot the 1D single differential information from the USRBDX, USRCOLL, USRTRACK and USRYIELD cards (The 2D information is not handled).
- The file type in use should have the extension **__tab.lis** and are generated by the FLUKA data merging tools (See Data Frame)
- You can superimpose many scoring output in a single plot.

USR-1D Single Differential Plot

The basic steps to create a plot are:

- Add or Clone a _tab.lis file, in the Detectors listbox.
- Select the detector to be used from the Det: dropdown listbox
- Set a name in the Name: field. Names starting with # will not be displayed as keys in the plot
- Select the X: and Y: information to plot as well the Style: X,Y,Style have different values.
 Note: Different combination will be interpreted in different way from gnuplot, resulting to maybe unwanted results
- You have the possibility to select:
 - Plotting axes
 - Smoothing of the plot
 - Color, line type, width, point sizes etc. (Enter the command "test" in the gnuplot command and hit "Plot" you will get a plot of all possible types)
 - Predefined styles

USR-1D Plots

- X: choices: [xl, xh refer to the limits of each individual bin of the histogram]
 - GeoMean [sqrt(xl*xh)]
 - Mean [(xl+xh)/2]
 - Low [xl]
 - High [xh]
- Y: choices:
 - Y
 - Y × <X>
 - Y × <Xgeo>
 - $Y \times XI$
 - $Y \times Xh$
 - $Y \times DX$

Geometrical mean. Should be used if X is scored as a log-histogram Normal mean. For linear scoring Low value of the bin High value of the bin

Y-bin value as given by FLUKA
Y-bin value multiplied by the mean X value of the bin (Isolethargic)
Y-bin value multiplied by the geometrical X-mean of the bin (Isolethargic)
-//- with the X-low value of the bin -//- with the X-high value of the bin -//- with the width of the bin

USR-1D Plots

Y:

- Style: has a huge list of choices as given by gnuplot. You can consult gnuplot manual for the description of the options. Some suggested settings are the following:
 - To make a line/scatter plot with or without errors
 - GeoMean (if scored in log), Mean (if scored in linear) X:
 - $Y \times \langle Xgeo \text{ or } X \rangle$, for isolethargic plotting
 - Style: lines, linespoints, dots, errorbars, yerrorbars, errorlines...
 - To make a histogram
 - X: Xlow [xl] **Y**:
 - what ever choice you want to plot
 - Style: steps
 - or X: Xhigh [xh] Style:
 - <u>hi</u>steps

USR-1D Plots

- You have the possibility to superimpose plots. Useful if you want to show a histogram with the errorbars superimposed.
- You can selected angular slices from USRBDX data using the "Block" option
- You can superimpose experimental data or any other data file and override all options using the "Using:" input field