

FLUKA Beginner’s Course

Advanced Geometry

2

Contents

 body transformations

 lattice

 voxels

2

3

Geometry directives

3

Special commands enclosing body definition:

$Start_xxx

$End_xxx

They provide respectively a coordinate expansion/reduction, a

coordinate translation or a coordinate roto-translation of the

bodies embedded between the starting and the ending directive

lines.

where "xxx" stands for

“expansion“, "translat" or "transform"

4 4 4

 $Start_expansion ... $End_expansion

 it provides a coordinate expansion (reduction) factor f for all bodies embedded

within the directive

$Start_expansion 10.0
SPH Sphere 5.0 7.0 8.0 50.0

$End_expansion

transforms a sphere of radius 50 centered in (+5,+7,+8)

into a sphere of radius 500 centered in (+50,+70,-80)

Directives in geometry: expansion/reduction

f 0 0 0

0 f 0 0

0 0 f 0

0 0 0 1

Putting the body in its quadric form

 Axx x
2 + Ayy y

2 + Azz z
2 + Axy xy + Axz xz + Ayz yz + Ax x + Ay y + Az z + A0 = 0

 Axx Axy/2 Axz/2 Ax/2 x

 Axy/2 Ayy Ayz/2 Ay/2 y

 Axz/2 Ayz/2 Azz Az/2 z

 Ax/2 Ay/2 Az/2 A0 1

 the expansion/reduction matrix is T =

 and the transformed body equation is rT (T-1)T MQUA T-1 r = 0

or [x y z 1]
= 0 i.e. rT MQUA r = 0

5 5 5

 $Start_translat ... $End_translat

 it provides a coordinate translation Sx,Sy,Sz for all bodies embedded within the

directive

$Start_translat -5.0 -7.0 -8.0
SPH Sphere 5.0 7.0 8.0 50.0

$End_translat

transforms a sphere of radius 50 centered in (+5,+7,+8)

into a sphere of radius 50 centered in (0,0,0)

Directives in geometry: translation

1 0 0 Sx

0 1 0 Sy

0 0 1 Sz

0 0 0 1

the translation matrix is T =

6 6 6

 $Start_transform ... $End_transform

 it applies a pre-defined (via ROT-DEFI) roto-translation to all bodies embedded

within the directive

ROT-DEFI , 201.0, 0., +116.5650511770780, 0., 0., 0., cylrot

$Start_transform cylrot
QUA Cylinder 0.5 1.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -4.0

$End_transform

transforms an infinite circular cylinder of radius 2 with axis {x=-z,y=0}

into an infinite circular cylinder of radius 2 with axis {x=z/3,y=0} (clockwise rotation)

- it allows to rotate a RPP avoiding the use of the deprecated BOX !

- note that also the inverse transformation can be used T-1

$Start_transform -cylrot

Directives in geometry: roto-translation

 Sx

 R Sy

 Sz

0 0 0 1

the roto-translation matrix is T =

7

ROT-DEFIni
The ROT-DEFIni card defines roto-translations that can be applied, in addition to

bodies, to i. USRBIN & EVENTBIN and ii. LATTICE. It transforms the position of

the tracked particle i. before scoring with respect to the defined binning or ii. into the

prototype with the order:

 First applies the translation

 followed by the rotation on the azimuthal angle

 and finally by the rotation on the polar angle.

Xnew = Mpolar  Maz  (X + T)

WHAT(1): assigns a transformation index and the corresponding rotation axis I + J *
100 or I * 1000 + J

 I = index of rotation (WARNING: NOTE THE SWAP OF VARIABLES)

 J = rotation with respect to axis (1=X, 2=Y, 3=Z)

WHAT(2): Polar angle of the rotation (0 ≤  ≤ 180o degrees)

WHAT(3): Azimuthal angle of the rotation (-180 ≤  ≤ 180o degrees)

WHAT(4), WHAT(5), WHAT(6) = X, Y, Z offset for the translation

SDUM: Optional (but recommended) name for the transformation

7

8 8 8

 $Start_expansion and $Start_translat are applied when reading the geometry

 no CPU penalty (the concerned bodies are transformed once for ever at

inizialization)

 $Start_transform is applied runtime  some CPU penalty

 One can nest the different directives (at most one per type!) but, no matter

the input order, the adopted sequence is always the following:

 $Start_transform StupiRot

 $Start_translat -5.0 -7.0 -8.0

 $Start_expansion 10.0

 QUA WhatIsIt +1.0 +1.0 +1.0 0.0 0.0 0.0 -10.0 -14.0 -16.0 -2362.0

 $End_expansion

 $End_translat

 $End_transform

 Directives are not case sensitive (whereas roto-translation names are)

Directives in geometry: warnings

9 9 9

Identifying rotation angles

Let’s define the orientation of a body in the space
by a system of 3 orthogonal versors i’, j’, k’ , whose coordinates
are expressed with respect to the fixed reference frame X,Y,Z

Then [i’ j’ k’] = (in the ZXZ convention)

where c1=cos(ψ) c2=cos(θ) c3=cos(Φ) s1=sin(ψ) s2=sin(θ) s3=sin(Φ)

k’

i’
j’

here Φ = 45o θ = 30o ψ = -60o

The obtained Euler angles can be input as azimuthal angle of

three consecutive rotations (ROT-DEFI)

10

Lattice

FLUKA geometry has replication (lattice) capabilities

Only one level is implemented (no nested lattices are allowed)

 The user defines lattice positions in the geometry and

provides transformation rules from the lattice to the

prototype region:

1. in the input with the ROT-DEFI card

2. in a subroutine (lattic.f)

The lattice identification is available for scoring

Transformations include:

Translation, Rotation and Mirroring (the last only through

routine).

WARNING:WARNING:

10

11

Lattice
 The regions which constitute the elementary cell (prototype)

to be replicated, have to be defined in detail

 The Lattices (replicas/containers) have to be defined as
“empty” regions in their correct location.
WARNING:WARNING: The lattice region should map exactly the outer
surface definition of the elementary cell.

 The lattice regions are declared as such with a LATTICE
card at the end of the geometry input

 In the LATTICE card, the user also assigns lattice
names/numbers to the lattices. These names/numbers will
identify the replicas in all FLUKA routines and scoring

 Several basic cells and associated lattices can be defined
within the same geometry, one LATTICE card will be
needed for each set

 Non-replicas carry the lattice number 0

 Lattices and plain regions can coexist in the same problem

12

LATTICE card
After the Regions definition and before the GEOEND card the user can insert the
LATTICE cards

 WHAT(1), WHAT(2), WHAT(3)
Container region range (from, to, step)

 WHAT(4), WHAT(5), WHAT(6)
Name/number(s) of the lattice(s)

 SDUM
blank to use the transformation from the lattic routine
ROT#nn to use a ROT-DEFI rotation/translation from input
name the same as above but identifying the roto-translation by the name
 assigned in the ROT-DEFI SDUM (any alphanumeric string you like)

ExampleExample

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

LATTICE 6.00000 19.00000 101.0000 114.00

Region # 6 to 19 are the “placeholders” for the first set replicas. We assign to them lattice numbers
from 101 to 114

LATTICE TARGR1 TargRep 1tra

TARGR1 is the container region using transformation 1tra

12

13

Example

13

Empty
lattice container

Prototype
regions

14

Example

14

Replica

Prototype
regions

For every particle
entering the replica

Its coordinates are transformed to the
prototype, where FLUKA performs the tracking

15

Example

15

Empty
lattice cell

Prototype
cell

Final
replica

16

Transformation by input

 Rotations/Translations can be defined with the

ROT-DEFIni card

 Can be assigned to a lattice by name or with ROT#nnn SDUM

in the LATTICE card

 ROT-DEFIni cards can be consecutive (using the same index

or name) to define complex transformations

WARNING:WARNING:

 Since matrix multiplication is not commutative the order of the

Rotation/Translation operations in 3D is important.

16

17

Numerical Precision
 Due to the nature of the floating point operations in CPU, even if the

transformation looks correct the end result could be problematic

 This small misalignment between lattice/transformation/prototype could lead to

geometry errors

 Use as many digits as possible to describe correctly the prototype and lattice cells

as well as the transformation.

It is mandatory that the transformation applied to the container makes the latter

EXACTLY corresponding to the prototype

 One can use a FREE and FIXED card before and after the ROT-DEFI to input

more than 9 digits

 GEOBEGIN WHAT(2) allows to relax the accuracy in boundary identification

(USE WITH CAUTION)

17

Prototype

18

Lattice: Important remarks

 Materials and other properties have to be assigned only to the
regions constituting the prototype.

 In all (user) routines the region number refers to the
corresponding one in the prototype.

 The SCORE summary in the .out file and the scoring by
regions add together the contributions of the prototype region
as well as of all its replicas!

 The lattice identity can be recovered runtime by the lattice
number, as set in the LATTICE card or available through the
GEON2L routine if is defined by name

 In particular, the LUSRBL user routine allows to manage the
scoring on lattices in the special USRBIN/EVENTBIN
structure.

18

19

The USRBIN/EVENTBIN special binning

EVENTBIN or USRBIN with WHAT(1)=88 :

Special user-defined 3D binning. Two variables are

discontinuous (e.g. region number), the third one is continuous,

but not necessarily a space coordinate.

Variable Type Default Override Routine

1st integer region number MUSRBR

2nd integer lattice cell number LUSRBL

3rd float zero FUSRBV

19

20

Tips & Tricks

 Always remember that the transformation must bring the container onto

the prototype and not viceversa!

 You can always divide a transformation into many

ROT-DEFI cards for easier manipulation.

 Rotations are always around the origin of the geometry, and not the

center of the object.

 To rotate an object, first translate the object to the origin of the axes

 Perform the rotation

 Move it by a final translation to the requested position.

Of course with the inverse order since everything should apply to the replica

 In order to define the replica body, you can clone the body enclosing the

prototype (assigning it a new name!) and apply to it the $Start_transform

directive with the inverse of the respective ROT-DEFI transformation.

20

21

Tips & Tricks
GEOBEGIN
...
RPP CollProt -540.0 -460.0 -20.0 20.0 100.0 300.0
$start_transform –rotColl *

RPP CollRepl -540.0 -460.0 -20.0 20.0 100.0 300.0
$end_transform
...
GEOEND
ROT-DEFI, 1.0, 0.0, 0.0, 0.0, 0.0, -350.0, rotColl [A]
ROT-DEFI, 201.0, 0.0, -15.0, 0.0, 0.0, 0.0, rotColl [B]
ROT-DEFI, 1.0, 0.0, 0.0, -500.0, 0.0, 200.0, rotColl [C]

A-1

C-1

B-1

* Remember: if R=CBA, then R-1=A-1B-1C-1

21

22

(Tips & Tricks)

 The Geometry transformation editor in flair can read and
write ROT-DEFI cards with the transformation requested

 An easy way of creating a replica and the associated
transformation is the following:

1. Select the body defining the outer cell of the prototype

2. Clone it with (Ctrl-D) and change the name of the clones. Click on
“No” when you are prompted to change all references to the
original name.

3. Open the Geometry transformation dialog (Ctrl-T)

4. Enter the transformation of the object in the listbox

5. Click on “Transform” to perform the transformation on the clone
bodies

6. Click on “Invert” button to invert the order of the transformation

7. Enter a name on the “ROT-DEFIni” field and click
“Add to Input” to create the ROT-DEFIni cards

8. Now you have to create manually the needed regions and the
LATTICE cards 22

23

The FLUKA voxel geometry

It is possible to describe a geometry in terms of “voxels”,

i.e., tiny parallelepipeds (all of equal size) forming a 3-

dimensional grid

23

24

An example

24

25

Another example, for medical applications

Voxel geometries are especially useful to import CT scan of a human
body, e.g., for dosimetric calculations of the planned treatment in
radiotherapy

mGy mGy

[K. Parodi et al., 2007] 25

26 26

 The CT scan contains integer values “Hounsfield Unit” reflecting
the X-ray attenuation coefficient mx

 HUx = 1000 (mx-mH20) / mH20 , typically -1000  HU  3500

 We will use loosely the word “organ” to indicate a group of voxels
(or even more than one group) made of the same “tissue”
material (same HU value or in a given HU interval)

 The code handles each organ as a CG region, possibly in
addition to other conventional “non-voxel” regions defined by the
user

 The voxel structure can be complemented by parts written in the
standard Combinatorial geometry

 The code assumes that the voxel structure is contained in a
parallelepiped. This RPP is automatically generated from the
voxel information.

Concepts

27 27

 To describe a voxel geometry, the user must convert his
CT scan or equivalent data to a format understood by
FLUKA

 This stage should :
 Assign an organ index to each voxel. In many practical cases,

the user will have a continuum of CT values (HU), and may
have to group these values in intervals

 Each organ is identified by a unique integer ≤32767. The organ
numbering does not need to be contiguous (i.e. “holes” in the
numbering sequence are allowed.)

 One of the organs must have number 0 and plays the role of the
medium surrounding the voxels (usually vacuum or air).

 The user assigns to each NONZERO organ a voxel-region
number. The voxel-region numbering has to be contiguous and
starts from 1.

Procedure

28 28

Procedure
 The information is input to FLUKA through a special unformatted

file *vxl containing:

 The number of voxels along each coordinate axis

 The number of voxel-regions, and the maximum organ number

 The voxel dimension along each coordinate axis

 A 3D matrix specifying the organ to which each voxel corresponds

 in Fortran list-oriented format, with the x coordinate running faster
than y, and y running faster than z.

 val(1) corresponds to 1,1,1 == organ # of first voxel
 … …
 val(Nx) corresponds to Nx,1,1
 val(Nx+1) corresponds to 1,2,1
 … …

 val(2*Nx) corresponds to Nx,2,1
 …
 val(Ny*Nx) corresponds to Nx,Ny,1
 … …
 val(Nz*Ny*Nx) corresponds to Nx,Ny,Nz == organ # of last voxel

 A list of the voxel-region number corresponding to each organ

29

Input file: geometry description

29

Prepare the usual FLUKA input file.

The geometry is written like a normal Combinatorial Geometry input, but

in addition a VOXELS card must be inserted right after the

GEOBEGIN card and before the Geometry title card

 WHAT(1), WHAT(2), WHAT(3) = x, y, z coordinates chosen as the origin

of the “voxel volume”, i.e. the corner of a RPP extending from WHAT(1)

to WHAT(1) + NX*DX, … and containing all the voxels

 WHAT(4) possible ROT-DEFI transformation applying to the RPP

 (WHAT(5), WHAT(6): not used)

 SDUM = name of the voxel file

 (extension will be assumed to be .vxl)

VOXELS -20.0 -30.0 -40.0 transf ct

30

Input file: geometry description

One will have

 The usual list of NB bodies, not including the RPP corresponding to

the “voxel volume” (see VOXELS card above). This RPP will be

generated and added automatically by the code as the (NB+1) th

body, with one corner in the point indicated in the VOXELS card,

and dimensions NX*DX, NY*DY and NZ*DZ as read from the voxel

file.

 The usual list of NR regions, with the space occupied by the body

named VOXEL or numbered NB+1 (the “voxel volume”) subtracted.

In other words, the NR listed regions must cover the whole available

space, except the space corresponding to the “voxel volume”. This

is easily obtained by subtracting the body VOXEL (or NB+1) in the

relevant region definitions, even though this body is not explicitly

input at the end of the body list.

30

* vacuum inside
VACI 5 +SHI +SHTB -SHBT -VOXEL

31

Voxel Regions

The code will automatically generate NO+2 additional

regions, where NO = number of non-zero organs:

Name Number Description

VOXEL NR+1 sort of a “cage” for all voxels. Nothing

should ever be deposited in it. The user

shall assign VACUUM to it.

VOXEL001 NR+2 containing all voxels belonging to organ

number 0. There must be at least 2 of

such voxels, but in general they should be

many more. Typical material assignment

to this region is air

VOXEL002 NR+3 corresponding to organ 1

VOXEL003 NR+4 corresponding to organ 2

VOXEL### NR+2+NO corresponding to organ NO

31

32

Voxel Material Assignment

The assignment of materials shall be made by the card
ASSIGNMAt (and in a similar way for other region-
dependent options) referring to the first NR regions in the
usual way, and to the additional voxel regions using the
correspondence to organs.

32

ASSIGNMA BLCKHOLE BLKH
ASSIGNMA VACUUM VACO
ASSIGNMA ALUMINUM AL
ASSIGNMA VACUUM VACI
ASSIGNMA VACUUM VOXEL
ASSIGNMA VACUUM VOXEL001
ASSIGNMA TITANIUM VOXEL002
ASSIGNMA AIR VOXEL003
ASSIGNMA COPPER VOXEL004
ASSIGNMA CALCIUM VOXEL005
ASSIGNMA CARBON VOXEL006
ASSIGNMA AIR VOXEL007

cage
0 Organ

6 “Non-
zero”
organs

33

Summary of the relevant input cards

$Start_expansion $End_expansion

$Start_translat $End_translat (inside the geometry input)

$Start_transform $End_transform

 to manipulate bodies

ROT-DEFI

 to define roto-translations

LATTICE (inside the geometry input)

 to declare a region as a replica placeholder and associate it to a given
transformation

VOXEL (inside the geometry input)

 to introduce a voxel geometry

33

