

Induced Radioactivity

Beginners' FLUKA Course

FLUKA-Implementation – *History - 1*

1995 – Offline evolution:

An offline code (usrsuwev.f) is distributed together with FLUKA, which allows the offline computation of the time evolution of a radionuclide inventory obtained with RESNUCLE for arbitrary irradiation profiles and decay times.

2002 – Two step method:

The offline code has been adapted for online use, each time a residual nucleus is produced during a particle cascade. This allows storing information on radionuclides for certain irradiation parameters and cooling times into an external file. This information can then be read in order to compute residual dose rates due to induced radioactivity (two-step method). Results were benchmarked in numerous irradiation experiments.

2004 - Online:

This capability has been implemented into FLUKA with an exact analytical solution of the Bateman equations describing activity build-up and decay during irradiation and cooling down, for arbitrary irradiation conditions.

FLUKA-Implementation – *History - 2*

The generation and transport of decay radiation (limited to γ , β^- , β^+ , X-rays, and Conversion Electrons emissions for the time being) is now possible during the same simulation which produces the radio-nuclides (one-step method). A dedicated database of decay emissions has been written, using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency.

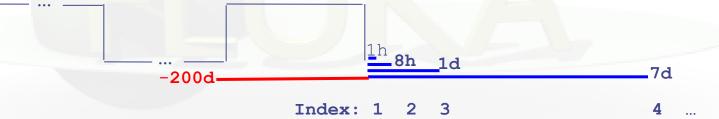
As a consequence, results for production of residuals, their time evolution and residual doses due to their decays can now be obtained in the same run, for an arbitrary number of decay times and for a given irradiation profile.

FLUKA-Implementation – *Main features*

- up to 4 different decay branching for each isotope/isomer
- all gamma lines down to 0.1-0.01% branching, including X-ray lines following conversion electron emissions
- all beta emission spectra down to 0.1-0.01% branching: the sampling of the beta+/- spectra including screening Coulomb corrections
- Auger and conversion electrons
- Isomers: the present models do not distinguish among ground state and isomeric states (it would require spin/parity dependent calculations in evaporation). A rough estimate (equal sharing among states) of isomer production can be activated in the RADDECAY option.
- Different transport thresholds can be set for the prompt and decay radiation parts, as well as some (limited) biasing differentiation (see later)

Input options

Input card: RADDECAY


requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

Input card: IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

Input card: DCYTIMES

definition of decay (cooling) times

Input card: DCYSCORE

associates scoring detectors (radio-nuclides, fluence, dose) with different cooling times

Input card: AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

* 1) reque RADDECAY *	st radioacti 1.0	ve decays	3.0	0	0000999999	
*	ition of irr 180days 1.5552E7	part/s	185days	0.0	-	part/s 5.9175E5
* 3) defin	ition of coo	ling time	S			
*	1hour	8hours	1day	7days	1month	4months
DCYTIMES	3600.	28800.	8.64E4	6.048E5	2.592E6	1.0368E7
*						
* 4) assoc	iate scoring	with dif	ferent cool	ing times		
DCYSCORE	1.0			1.0	1.0	USRBIN
USRBIN	10.0	201.	-70.0	150.0	200.0	5000.0fluence1
USRBIN	-250.0	-200.	0.0	80.0	80.0	1.0&
DCYSCORE	2.0			2.0	2.0	USRBIN
USRBIN	10.0	201.	-71.0	150.0	200.0	5000.0fluence2
USRBIN	-250.0	-200.	0.0	80.0	80.0	1.0&
RESNUCLE	3.0	-26.			FLOOR	TUN FLOO
RESNUCLE	3.0	-27.			WALL	TUN WALL
DCYSCORE	1.0			RESTUBE1	RESTUBE1	RESNUCLE
RESNUCLE	3.0	-75.			TUBE	RESTUBE1

request radioactive decays Decays: Active 🔻 RADDECAY 3.0 Patch Isom: Ŧ Replicas: h/µ Int; ignore 🔻 h/µLPB: ignore 🔻 ignore 🔻 h/u WW: ignore 🔻 e-e+ Int: e-e+ LPB; ignore 🔻 e-e+ WW: ignore 🔻 ignore 🔻 ignore 🔻 Low-n Bias: Low-n WW: 99999.0 decay cut: 0.0 prompt cut: Coulomb corr: Ŧ

definition of irradiation pattern

180days	part/s	185days	180d	ays part/	/s	
IRRPROFI			_∆t: 1.555	52E7	p/s:	5.9175E5
			∆t: 1.598	84E7	p/s:	0.0
			∆t: 1.555	52E7	p/s:	5.9175E5

• definition of cooling times

1hour	8hours	1day	7days 1month	4months				
DCYTIMES			t1: 3600.		t2:	28800.	t3:	8.64E4
			t4: 6.048E5		t5:	2.592E6	t6:	1.0368E7

Associate scoring with different cooling times

 associate scoring with diffe DCYSCORE 		nes 3600. ▼			Kind:	USRBIN 🔻
	-	Shielding 🔻	to Det:	•	Step:	
USRBIN			Unit:	70 BIN 🔻	Name:	Shielding
Type: X-Y-Z 🔻	Xmin:	-250.0	Xmax:	150.0	NX:	80.0
Part: ALL-PART 🔻	Ymin:	-200.	Ymax:	200.0	NV:	80.0
	Zmin:	0.0	Zmax:	5000.0	NZ:	1.0
DCYSCORE	Cooling t:	28800. 🔻			Kind:	USRBIN 🔻
	Det:	Target 🔻	to Det:	Target 🔻	Step:	
AUXSCORE	Туре:	USRBIN 🔻	Part:	•	Set:	EWT74 🔻
	Z:	0	A:	0	Isomer:	0
	Det:	Target 🔻	to Det:	•	Step:	
USRBIN			Unit:	71 BIN 🔻	Name:	Target
Type: X-Y-Z 🔻	Xmin:	-250.0	Xmax:	150.0	NX:	80.0
Part: DOSE-EQ	Ymin:	-200.	Ymax:	200.0	NY:	80.0
	Zmin:	0.0	Zmax:	5000.0	NZ:	1.0
RESNUCLE	Туре:	All 🔻	Unit:	26 BIN 🔻	Name:	TUN_FLOO
Max Z:	Max M:		Reg:	FLOOR 🔻	Vol:	
RESNUCLE	Type:	All 🔻	Unit:	27 BIN 🔻	Name:	TUN_WALL
Max Z:	Max M:		Reg:	WALL 🔻	Vol:	
DCYSCORE	Cooling t:	3600. 🔻			Kind:	RESNUCLE
		RESTUBE1 🔻	to Det:	RESTUBE1 🔻	Step:	
RESNUCLE	Type:	All 🔻	Unit:	75 BIN 🔻	Name:	RESTUBE1
Max Z:	Max M:		Reg:	TUBE 🔻	Vol:	

Particle Types

Name	Number	Units	Description
DOSE	228	GeV/g	Dose (energy deposited per unit mass)
ACTIVITY	234	Bq/cm ³	Activity per unit volume
ACTOMASS	235	Bq/g	Activity per unit mass
SI1MEVNE	236		Silicon 1 MeV-neutron equivalent flux
HADGT20M	237		Hadrons with energy > 20 MeV
DOSE-EQ	240	pSv	Dose Equivalent (AUXSCORE)

Card: RADDECAY ^[1/2]

RADDECAY		1.0 0	3.0	000	0099999	0	
RADDECA		Decays: A		Patch Isom:	¥	Replicas:	3.0
h/µ Int: İ≬	r	h/μ LPB: İQ		h/µ WW:	ignore 🔻	e-e+ Int:	ignore 🔻
e-e+ LPB: ignore 🔻		e-e+ WW: ig	nore 🔻		ignore 🔻	Low-n WW:	ignore 🔻
		decay cut: 0	.0	prompt cut:	99999.0	Coulomb corr:	Ŧ
	= 1 Active	radioactive	-				
	= 1 Active	"activation stu (cooling) time considered at	udy case": tes. Daughte these (fixe	time evolut r nuclei as d) times	ion calcula well as as	ited analytica sociated radia	lly for <u>fix</u> ation is
HAT(1) ecays:	_	"activation stu (cooling) time	udy case": tes. Daughte these (fixe	time evolut r nuclei as d) times	ion calcula well as as	ited analytica sociated radia	lly for <u>fix</u> ation is

WHAT(2)> 0isomer "production" activatedPatch Isom:On

WHAT(3)

#

Replicas:

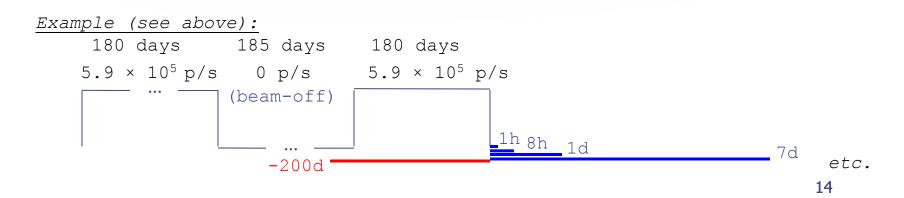
number of "replicas" of the decay of each individual nucleus

RADDECA h/µ Int: ig e-e+ LPB: ig	inore 🔺	Decays: Active ▼ h/µ LPB: ignore ▼ e-e+ WW: ignore ▼	Patch Isom: h/µ WW: Low-n Bias:	▼ ignore ▼ ignore ▼	Replicas: e-e+ Int: Low-n WW:	3.0 ignore ▼ ignore ▼
	,	decay cut: 0.0	prompt cut:	99999.0	Coulomb corr:	▼
WHAT(4) h/m Int Lov	v-n WW	switch for applying radiation or only to 9 digits, each respons Example:	particles f	rom radio	active deca	
		5th digit, e 000010000 000020000 000030000	to prompt to decay ra to both	radiation on		g applied
		Default: 111111111 (d	or blank as a	ibove)		
WHAT(5) decay cut: prompt cut:	# #	multiplication factor 10 digits, first five for radiation (see manual Special cases:	decay radiat			

Special cases:

0000099999 kill EM cascade for prompt radiation 9999900000 kill EM cascade for residual radiation

Card: IRRPROFI


* 2) defini * IRRPROFI	180days	irradiation s part/s 7 5.9175E5	185days	0.0	180days 1.5552E7	-	
180days IRRPROFI	part/s 185	∆t: 1. ∆t: 1.	80days part/s 5552E7 5984E7 5552E7	p/s: p/s: p/s:	5.9175E5 0.0 5.9175E5		
WHAT(1,3,5) ∆t:	#	irradiati	on time (se	econd)			
WHAT(2,4,6) p/s	#	Note: zer	tensity (pa o intensity is efine beam-	s accepte	d and can	-	
	Note:	Several ca intervals.	ards can be	combined	l up to a n	naximum of 2500) irradiation
Example (see	180 0	,	185 days 0 p/s (beam-off	180 day 5.9 × 1)			13

Card: DCYTIMES

		8hours	1day	7days	1month	4months	
DCYTIMES	3600.	28800.	8.64E4	6.048E5	2.592E6	1.0368E7	
1hour 8ho	ours 1day	7days 1 t1: 360	month 4month	s			

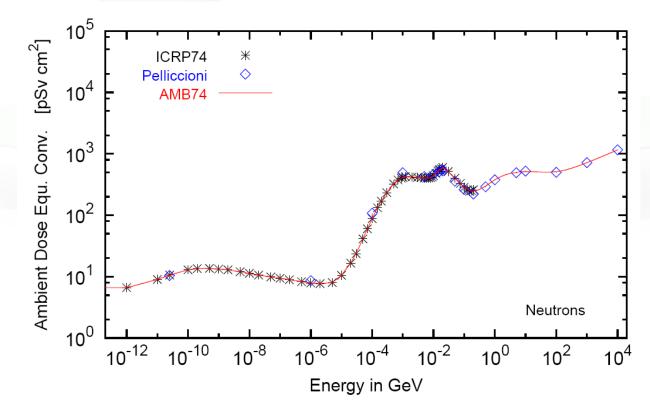
WHAT(1) - WHAT(6)cooling time (in seconds) after the end of the irradiationt1..t6Note: Several cards can be defined.

Each cooling time is assigned an index, following the order in which it has been input. This index can be used in option DCYSCORE to assign that particular cooling time to one or more scoring detectors. A negative decay time is admitted: scoring is performed at the chosen time "during irradiation"

Card: DCYSCORE [1/2]

* Associate	scoring w	ith differe	nt cooling	times			
DCYSCORE	1.0			Target		US	SRBIN
USRBIN	10.0	201.	-70.0	150.0	200.0	5000.0Ta	arget
USRBIN	-250.0	-200.	0.0	80.0	80.0	1.0&	
DCYSCORE		Cooling t: 3600.	¥			Kind:	USRBIN 🔻
		Det: Shield	ling 🔻	to Det: 🔍 🔻		Step:	
USRBIN				Unit: 70	BIN 🔻	Name:	Shielding
Type: X-Y-Z 🖲	,	Xmin: -250.0)	Xmax: 150).0	NX:	80.0
Part: ALL-PAI	RT 🔻	Ymin: -200.		Ymax: 200).0	NY:	80.0
WHAT(4)WI Det to Det	HAT(5)	Detector Drop down			-	-	
WHAT(6) Step	#	step leng	ths in ass	igning ind	dices		
SDUM Kind		Type of e RESNUCLE		EVENTBIN,	USRBDX	, USRTRA	СК
Units: All qua	ntities are RESNU USRBIN	CLE Bq	per unit ti e rate / do		ample		

Card: DCYSCORE^[2/2]

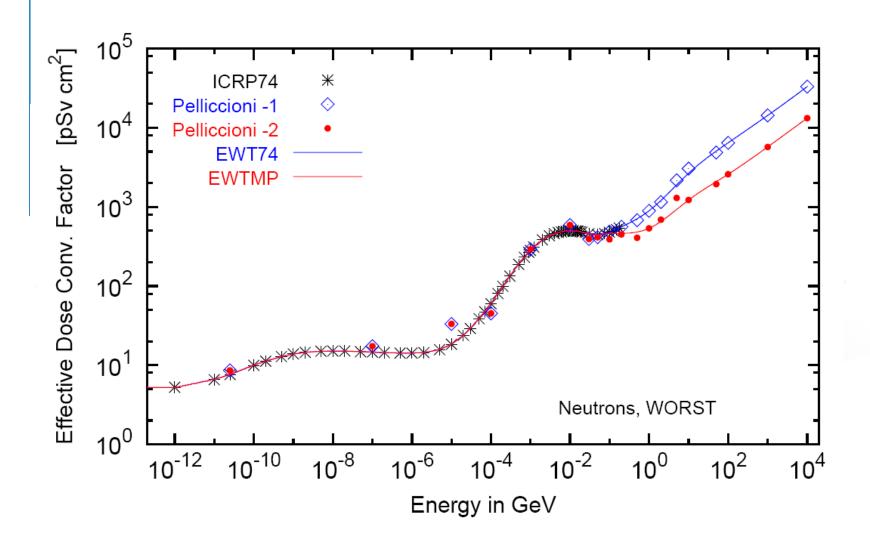

In the semi-analogue decay mode, estimators can include the decay contribution (on top of the prompt one) through association by DCYSCORE with a cooling time index ≤ -1.0

Card: AUXSCORE

* associate		with dose equivalent	conversion factors						
AUXSCORE	USRBIN	-	Target	EWT74					
AUXSCORE		Type: USRBIN ▼ Det: Target ▼	Part: PHOTON ▼ to Det: ▼	Set: EWT74 ▼ Step:					
WHAT(1) Type:			or to associate with estimator types (USRB						
WHAT(2) Part:	#	Particle or particle	particle or isotope to filter scoring Particle or particle family list. If empty then flair will prompt for Z, A, and State for filtering on specific isotopes						
WHAT(4,5) Det to Det		Detector range Drop down list to	select detector range	of type WHAT(1)					
WHAT(6) Step:	#	Step in assignin	indices of detecto	or range					
SDUM Set:			for dose equivalent available dose convers						

Conversion Coefficients

Conversion coefficients from fluence to ambient dose equivalent are based on ICRP74 values and values calculated by M.Pelliccioni. They are implemented for protons, neutrons, charged pions, muons, photons, electrons (conversion coefficients for other particles are approximated by these). AMB74 is the default choice for dose equivalent calculation.



For more info: <u>http://cern.ch/info-fluka-discussion/download/deq2.pdf</u>

Fluence to effective dose coefficients

- Conversion coefficients from fluence to effective dose are implemented for three different irradiation geometries:
 - anterior-posterior
 - rotational
 - WORST ("Working Out Radiation Shielding Thicknesses") is the maximum coefficient of anterior-posterior, posterior-anterior, rightlateral and left-lateral geometries. It is recommended to be used for shielding design.
- Implemented for radiation weighting factors recommended by ICRP60 (e.g., SDUM=ETW74) and recommended by M.Pelliccioni (e.g., SDUM=EWTMP). The latter anticipate the 2007 recommendations of ICRP.
- Implemented for protons, neutrons, charged pions, muons, photons, electrons (conversion coefficients for other particles are approximated by these)
- Zero coefficient is applied to all heavy ions

Fluence to effective dose coefficients

Card: RESNUCLEi [1/3]

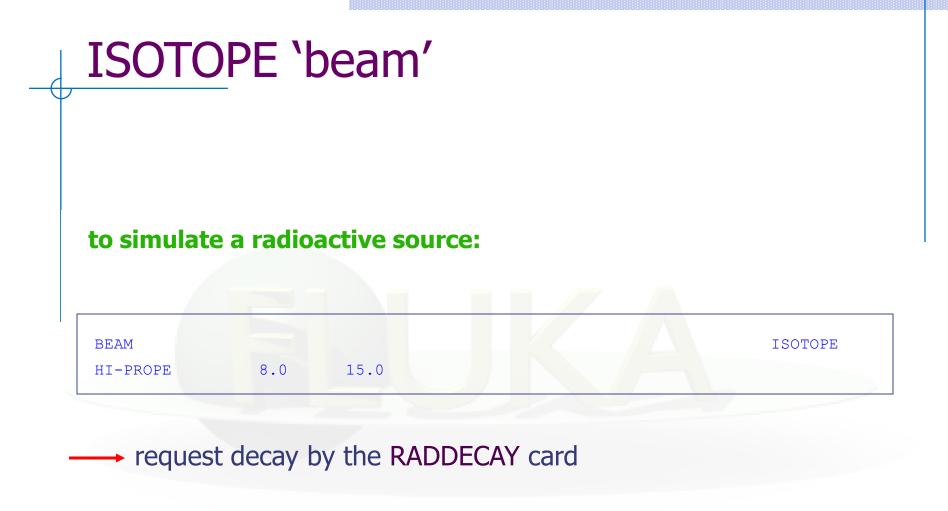
RESNUCLE	i :	3.0	-26.	0	0	FLOOR	TUN	_FLOO
RESNUCL Max Z:	.E	Ν	Type: All ▼ /lax M:		Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Vol:	TUN_FLOO
	Scoring	of resid	ual nuclei	or activity	on a re	egion basis		
WHAT(1)		type o	of produc	ts to be s	scored			
Type:	1.0	spallat	ion produ	cts (excep	t from l	ow-energy ne	eutron inte	eractions)
	2.0		ts from lo ation is av		neutro	n interactions	(provided	l the
	3.0				ed (if av	vailable, see a	above)	
				lt (= 1.0)				
	× 0.0	100000	the delud	10 (110)				
WHAT(2)		logica	l output	unit (Def	ault =	11.0)		
Unit:			and the second					
WHAT(3) Max Z:		Defaul		ng to the Z		f the residua element(s) o		
WHAT(4) Max M:		of the Defaul	residual n t: maximu		bution ccordin	(NMZ_min = g to the A, Z		ment(s) of t

Card: RESNUCLEi ^[2/3]

RESNUCLE Max Z:	Type: All ▼ Max M:	Unit: 26 BIN ▼ Reg: FLOOR ▼	Name: TUN_FLOO Vol:
WHAT(5) Floor:	scoring region numbe (Default 1.0)	r/name	
WHAT(6) Vol:	volume of the region i (Default = 1.0)	in cm ³	
SDUM Name:	character string ident (max. 10 characters)	ifying the detector	

Notes:

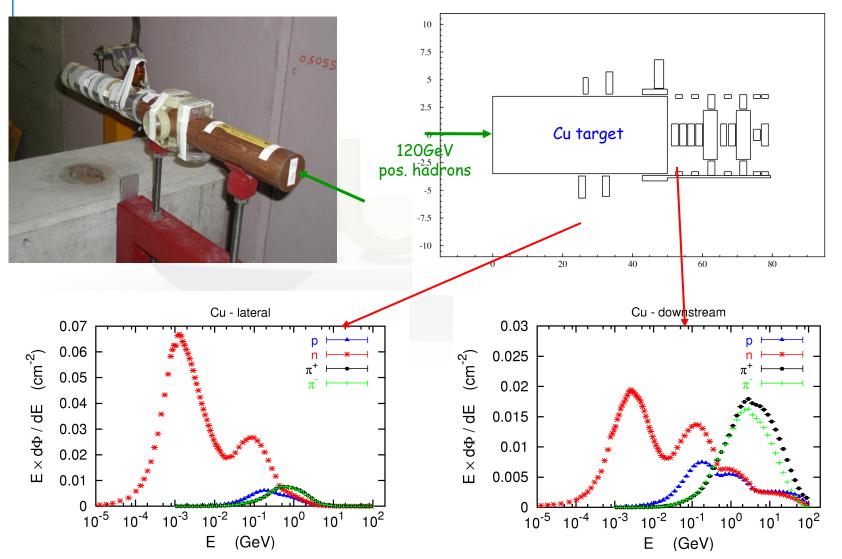
- 1. In the case of heavy ion projectiles the default NMZ, based on the region material, is not necessarily sufficient to score all the residual nuclei, which could include possible ion fragments.
- 2. Residual nuclei from low-energy neutron interactions are only scored if that information is available in the low-energy neutron data set (see Manual)
- 3. Starting with Fluka2006.3 protons are scored, together with ²H, ³H, ³He, ⁴He, at the end of their path. This is a change with respect to previous versions where protons were not scored.


Card: RESNUCLEi ^[3/3]

	**** Isotope ****		d as a fun (nuclei / «		ass Number '	* * * *
		,	inderer / (Sinc / pr/		
	A_min: 1 -	A_max	: 198			
	A:	186	1.5870372	E-08 +/-	9.9000000E+0)1 %
	A:	185	3.7605012	E-09 +/-	9.9000000E+0)1 %
	A:	184	1.4581326	E-08 +/-	9.900000E+0 9.900000E+0)1 %
	A:	183	1.0712972	E-08 +/-	9.900000E+0)1 %
					9.900000E+0	
	**** Isotope	e Yiel	d as a fu	nction of i	Atomic Number	~ ****
	****		nuclei / d			****
				, F-,		
1						
	Z_min: 1 -	7 max	. 78			
		_				
	Z:	74	5.2413383	E-08 +/-	9.900000E+0)1 %
	Z:	42	3.00727851	E = 07 + 7 - 100	9.900000E+0)1 %
	Z:				9.900000E+0	
	Z:				9.900000E+0	
	Z:	38	3.76050121	z = 0.9 + 1 - 100	9.900000E+0)1 %
		00	0.10000111			
+	**** Residual	l nucl	ei distrib	nution ***	* *	
	**** (nuc					
	(110)	/	/ P			
	A \ Z 68		69	70	71	72
					0.00E+00	
		· · · ·				

73 78 74 75 76 77 0.00E+00 1.59E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/-99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % 0.00E+00 3.76E-09 0.00E+00 0.00E+00 185 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/-99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % 184 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.46E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 +/- 0.0 % +/- 0.0 % +/- 0.0 % +/-99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % 0.00E+00 0.00E+00 1.07E-08 0.00E+00 0.00E+00 183 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/-99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 %

. . .


Please activate the following two cards if residuals are of interest								
→ swi	ch to activate the evaporation o	of heavy fragments (up to A=24)						
→ swi	ch to activate the evaporation c	of heavy fragments (up to A=24)						
-PHYSICS	ch to activate the evaporation o	of heavy fragments (up to A=24)						

Benchmarks

Benchmark experiment

Irradiation of samples of different materials to the stray radiation field created by the interaction of a 120 GeV positively charged hadron beam in a copper target

Benchmark Experiment

Measurement and calculation of

1.Specific activities2.Residual dose equivalent rates

for different cooling times

Benchmark experiment – Instrumentation 1

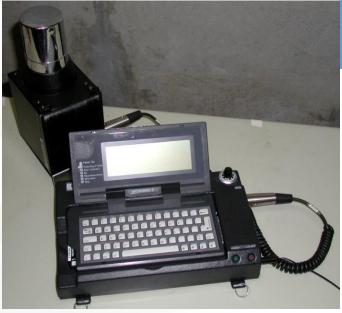
Low-background coaxial High Precision Germanium detector (Canberra)

- use of two different detectors (90 cm³ sensitive volume, 60% and 40% relative efficiency)

Genie-2000 (Ver. 2.0/2.1) spectroscopy software by Canberra and PROcount-2000 counting procedure software

- include a set of advanced spectrum analysis algorithms, *e.g.*, nuclide identification, interference correction, weighted mean activity, background subtraction and efficiency correction
- comprise well-developed methods for peak identification using standard or usergenerated nuclide libraries. HERE: use of user-generated nuclide libraries, based on nuclides expected from the simulation and material composition

Efficiency calibration with LABSOCS


- allows the creation of a corrected efficiency calibration by modelling the sample taking into account self-absorption inside the sample and the correct detector geometry

Reference: M. Brugger, S. Roesler, et al., Nuclear Instruments and Methods A 562 (2006) 814-818

Benchmark experiment – *Instrumentation 2*

Portable spectrometer Microspec

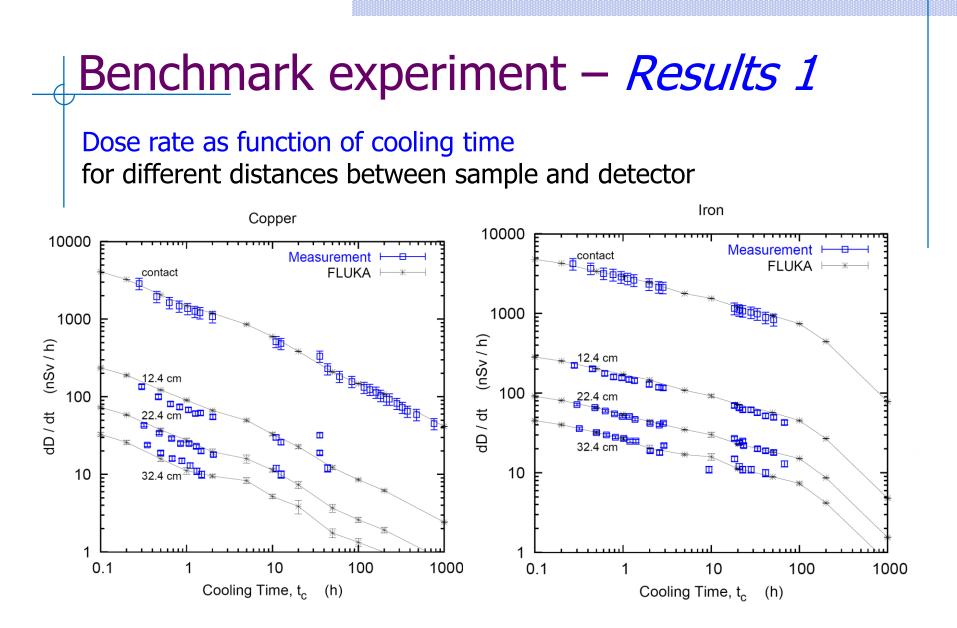
- NaI detector, cylindrical shape, 5 x 5 cm
- folds spectrum with detector response ("calibrated" with ²²Na source)
- physical centre of detector determined with additional measurements with known sources (⁶⁰Co, ¹³⁷Cs, ²²Na) to be 2.4 cm

Reference: M. Brugger et al., Radiat. Prot. Dosim. 116 (2005) 12-15

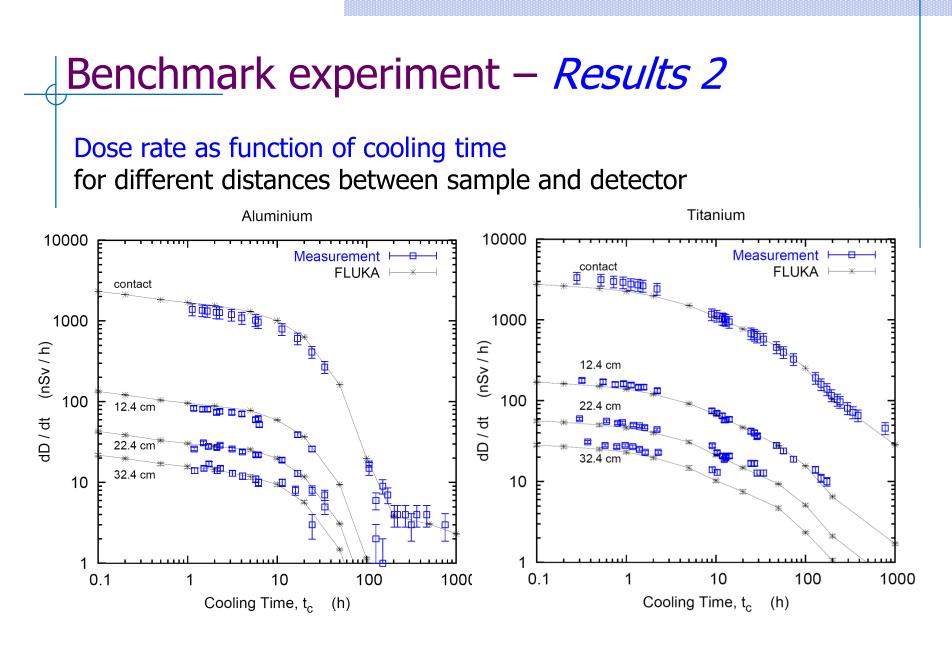
lsotope	Copper	'	Iron		Titaniur	n	Stainle	ess	Steel	Alur	nin	um	Col	ncr	ete
⁷ Be 53.29d	1.47 ± 0.19	М	1.65 ± 0.22		1.50 ± 0.19		0.98 ± 0.24	м	C,N	0.71 ± 0.09		AI	1.17 ± 0.14		0, C
	0.84 ± 0.25		0.90 ± 0.15						,						, -
²² Na 2.60y			0.70 ± 0.13	м	0.85 ± 0.11					0.76 ± 0.07		AI	0.86 ± 0.09		Ca,(Si,Mg)
²⁴ Na 14.96h	0.42 ± 0.03		0.48 ± 0.02		0.63 ± 0.02		0.37 ± 0.02		Fe,(Cr,Si)	0.81 ± 0.03		AI,Mg	0.62 ± 0.02		Ca,(Si,Al)
²⁷ Mg 9.46m					0.79 ± 0.14	м			, (, ,	1.52 ± 0.25		Al,Mg			
²⁸ Mg 20.91h	0.25 ± 0.04	-	0.23 ± 0.03	-	0.31 ± 0.02	-	0.29 ± 0.10	M-	Fe.Ni.Si)			,	0.29 ± 0.02	-	Ca,(Si)
²⁸ AI 2.24m	0.25 ± 0.03	-	0.21 ± 0.02	-	0.31 ± 0.02	-	0.29 ± 0.10	-					0.29 ± 0.03	-	Ca,(Si)
²⁹ AI 6.56m					0.93 ± 0.25	м			,,,						
³⁸ S 2.84h					0.60 ± 0.12	-									
^{m34} Cl 32.00m			0.91 ± 0.19	М	1.19 ± 0.16		0.77 ± 0.15		Fe,Cr,(Mn)				1.25 ± 0.07		Ca
³⁸ CI 37.24m			0.61 ± 0.08		0.60 ± 0.01		0.58 ± 0.07		Fe,Cr,(Mn)						
³⁹ CI 55.60m			0.64 ± 0.11	М	0.73 ± 0.08		0.66 ± 0.12		Fe,Cr,(Mn)						
	0.39 ± 0.06		0.46 ± 0.05		0.47 ± 0.04	-	0.38 ± 0.05		Fe,Cr,(Mn)				0.98 ± 0.14		Са
³⁸ K 7.64m													1.76 ± 0.20	-	Са
⁴² K 12.36h	0.66 ± 0.10		0.83 ± 0.06		0.95 ± 0.05		0.76 ± 0.09		Fe,Cr,(Mn)				1.21 ± 0.08		Ca
⁴³ K 22.30h	0.81 ± 0.10	-	0.77 ± 0.05		0.85 ± 0.03		0.74 ± 0.04		Fe,Cr,(Mn)				1.16 ± 0.05		Ca
⁴⁴ K 22.13m															
⁴⁵ K 17.30m															
	0.59 ± 0.16		0.56 ± 0.17	М	0.73 ± 0.12		0.51 ± 0.15	M	Fe,Cr,(Mn)				0.79 ± 0.12		Ca
⁴³ Sc 3.89h	0.40 ± 0.07	-	1.01 ± 0.14		1.28 ± 0.28	-	0.93 ± 0.15		Fe,Cr,(Mn)						
⁴⁴ Sc 3.93h			1.06 ± 0.06		0.88 ± 0.05		0.96 ± 0.08		Fe,Cr,(Mn)				0.83 ± 0.06		Fe,(Ti)
^{m44} Sc 58.60h	0.95 ± 0.12		1.20 ± 0.09		2.13 ± 0.12		1.24 ± 0.09		Fe,Cr,(Mn)	1.08 ± 0.17		Fe,Mn	1.67 ± 0.22		Fe,(Ti)
⁴⁶ Sc 83.79d	0.81 ± 0.07		0.86 ± 0.07		0.93 ± 0.08		0.89 ± 0.08		Fe,Cr,(Mn)	0.79 ± 0.18		Mn,(Ti,Fe)	0.88 ± 0.10		Fe,(Ti)
⁴⁷ Sc 80.28h	1.09 ± 0.14		1.17 ± 0.10	-	0.87 ± 0.07		1.06 ± 0.09		Fe,Cr,(Mn)	1.04 ± 0.15		Mn, (Ti, Fe)	1.00 ± 0.09		Fe,Ti,(Ca)
			1.47 ± 0.10		1.10 ± 0.04		1.42 ± 0.08		Fe,Cr,(Mn)				1.36 ± 0.25		Fe, Ti, (Ca)
⁴⁸ V 15.97d	1.16 ± 0.08		1.45 ± 0.06		1.11 ± 0.07		1.44 ± 0.11		Fe,Cr,(Mn)	1.07 ± 0.13		Fe,Mn	1.63 ± 0.16		Fe
⁴⁸ Cr 21.56h	0.92 ± 0.14		0.97 ± 0.07				1.02 ± 0.08		Fe,(Cr)				1.06 ± 0.23	М	Fe
⁴⁹ Cr 42.30m	1.00 ± 0.22	М	1.24 ± 0.12	-			1.06 ± 0.12		Fe,(Cr)						
⁵¹ Cr 27.70d	1.06 ± 0.13		1.15 ± 0.12		0.64 ± 0.24	М	1.24 ± 0.16		Fe,Cr	0.86 ± 0.16		Fe,Mn	1.33 ± 0.22		Fe
⁵² Min 5.59d	0.68 ± 0.05		1.15 ± 0.04				1.09 ± 0.03		Fe,(Mn)	0.88 ± 0.07		Fe, Mn	1.39 ± 0.07		Fe
	1.68 ± 0.35		1.24 ± 0.09				1.12 ± 0.10		Fe,(Mn)				1.75 ± 0.79	М	Fe
⁵⁴ Mn 312.12d	1.13 ± 0.12		1.01 ± 0.10				1.08 ± 0.11		Fe,(Mn)	0.96 ± 0.12		Mn, Fe	1.06 ± 0.13		Fe
⁵⁶ Mn 2.58h	0.81 ± 0.06		0.99 ± 0.05				1.33 ± 0.10		Fe	1.53 ± 0.25		Mn	1.03 ± 0.25		Mn,Fe
⁵² Fe 8.28h			1.09 ± 0.13				0.99 ± 0.19	М	Fe,(Mn)						
⁵³ Fe 8.51m															
⁵⁹ Fe 44.50d															
⁵⁵ Co 17.53h	0.66 ± 0.09		0.76 ± 0.04				1.03 ± 0.05		Fe,Ni						
56 -			1.13 ± 0.10												
⁵⁶ Co 77.27d	1.04 ± 0.08		1.15 ± 0.10				1.37 ± 0.11		Fe,Ni				0.80 ± 0.20	М	Fe
57		_	1.79 ± 0.15											-	
⁵⁷ Co 271.79d	0.85 ± 0.09		0.38 ± 0.09	-			1.16 ± 0.13		Ni	0.66 ± 0.24	М	Cu,Zn,Ni			
⁵⁸ Co 70.82d	0.91 ± 0.09		0.31 ± 0.08	М			0.98 ± 0.10		Ni	0.82 ± 0.19		Cu,Zn,Ni			
⁶⁰ Co 5.27y	0.90 ± 0.08							-							
⁶¹ Co 99.00m	0.68 ± 0.08														
⁶² Co 90.00s															
⁵⁷ Ni 35.60h	0.76 ± 0.11						1.44 ± 0.07		Ni						
⁶⁵ Ni 2.52h	1.46 ± 0.29														
⁶⁰ Cu 23.70m	0.78 ± 0.08							-							
⁶¹ Cu 3.33h	0.87 ± 0.25							-							
⁶⁴ Cu 12.70h	0.63 ± 0.10							-							
⁶² Zn 9.19h	1.05 ± 0.23							-							
⁶³ Zn 38.47m								-							
⁶⁵ Zn 244.26d								_							
	0.97 ± 0.20														

R = Ratio FLUKA/Exp

0.8 < R < 1.2


0.8 < R ± Error < 1.2

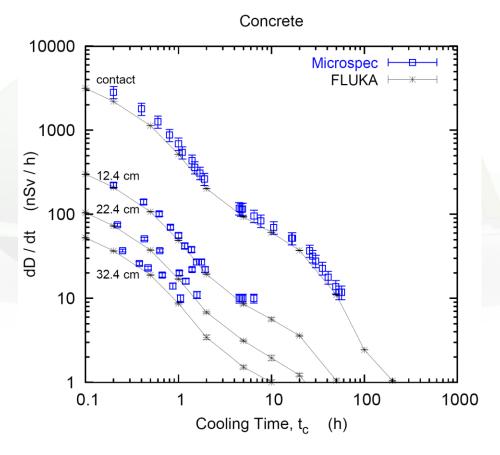
Exp/MDA < 1

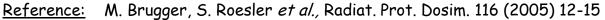

R + Error < 0.8 or R - Error > 1.2

<u>Reference:</u>

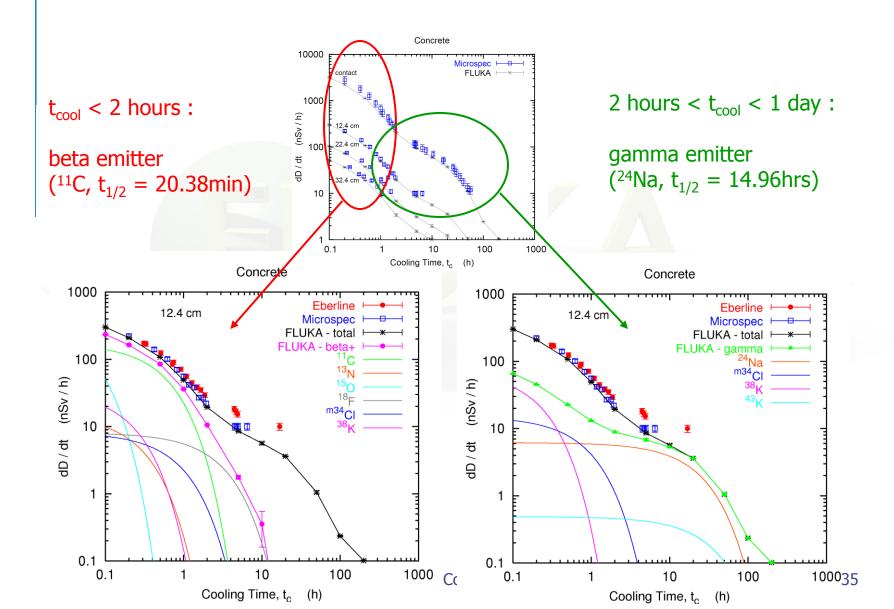
M. Brugger, S. Roesler *et al.*, Nuclear Instruments and Methods A 562 (2006) 814-818 31

<u>Reference:</u> M. Brugger, S. Roesler *et al.*, Radiat. Prot. Dosim. 116 (2005) 12-15

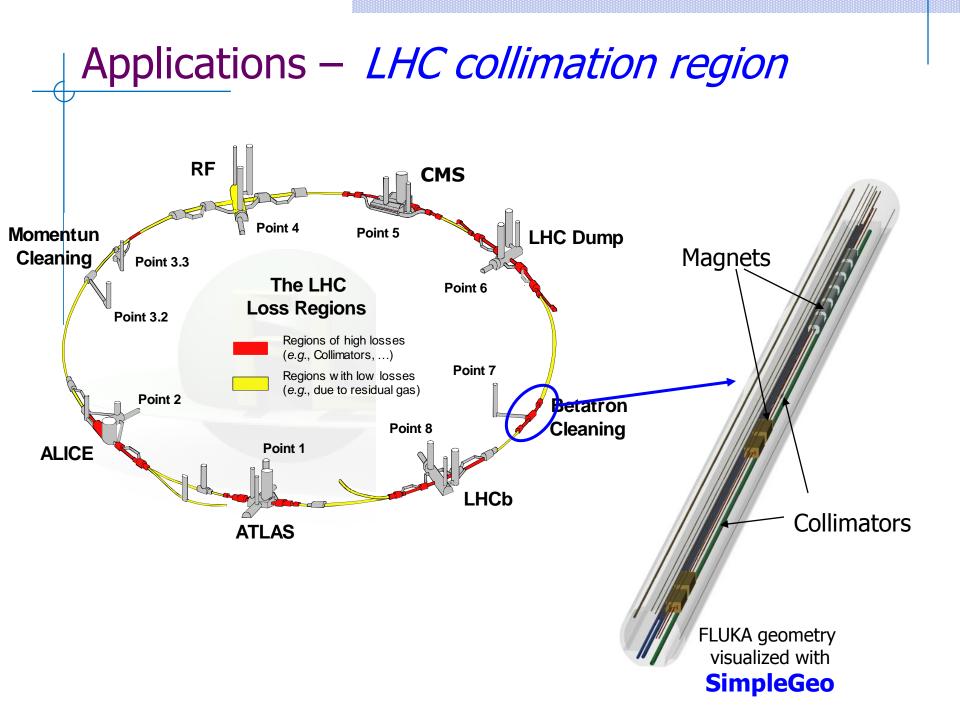


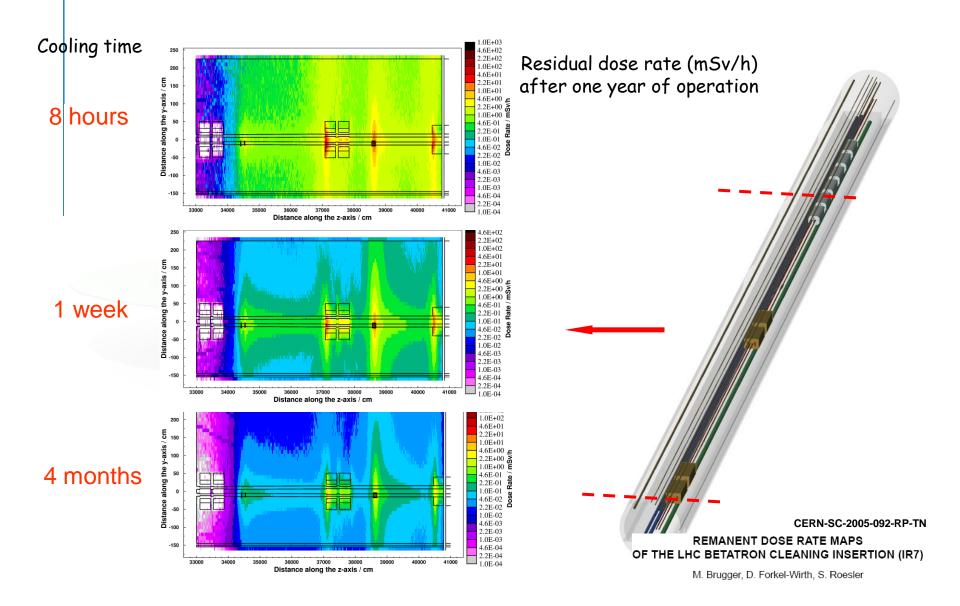

Reference: M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

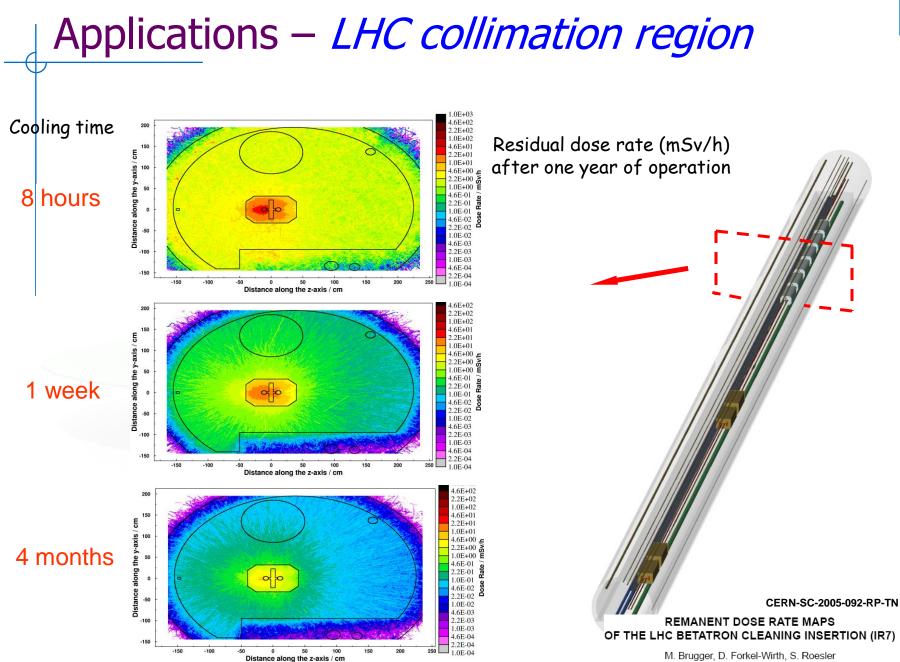
Benchmark experiment – Results 3

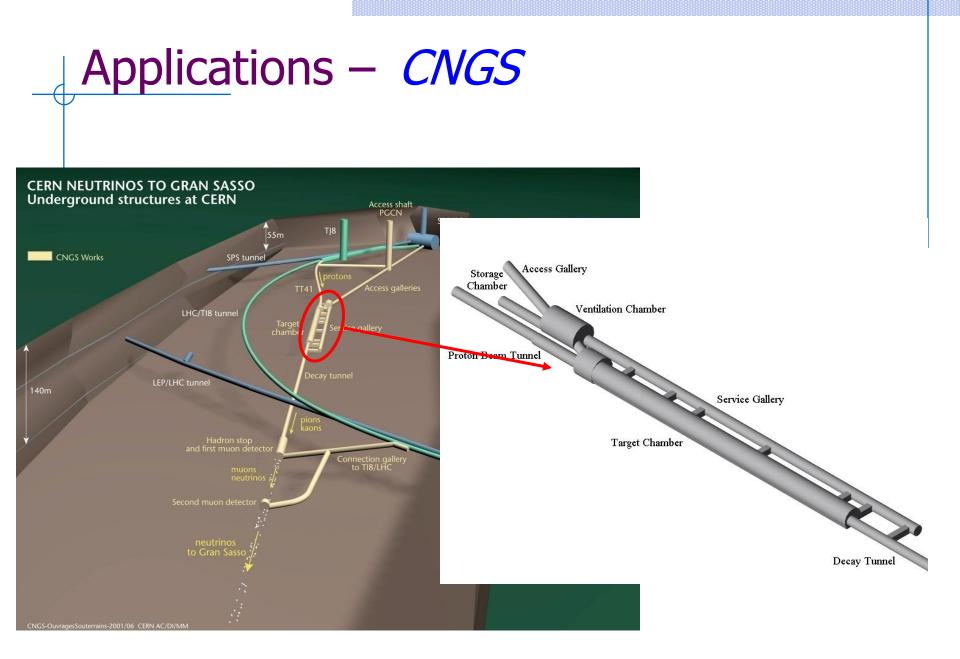

Dose rate as function of cooling time

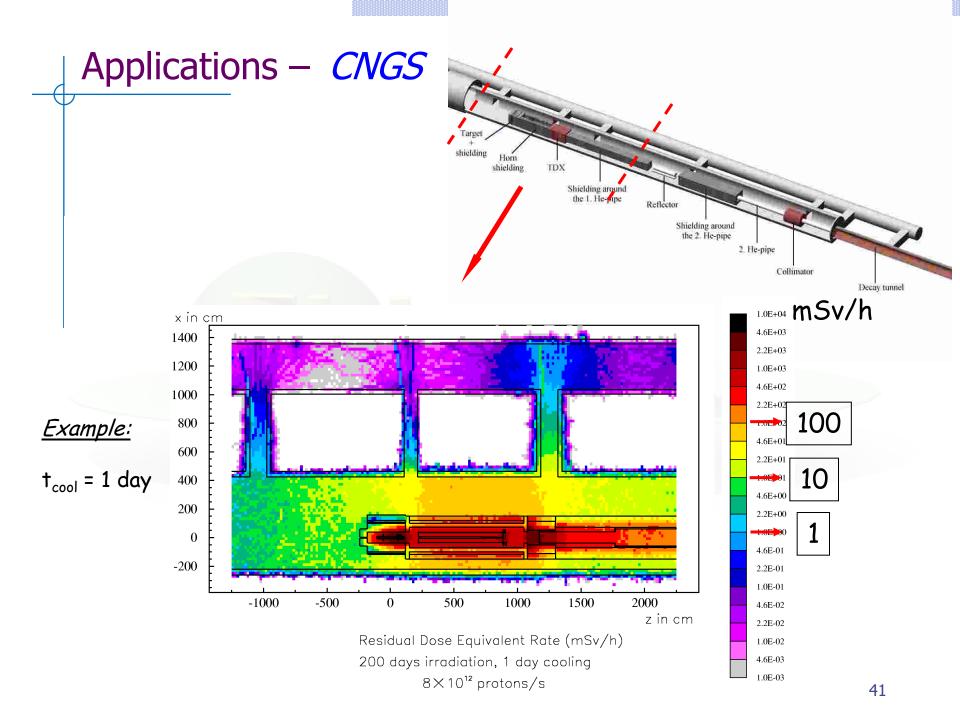
for different distances between sample and detector

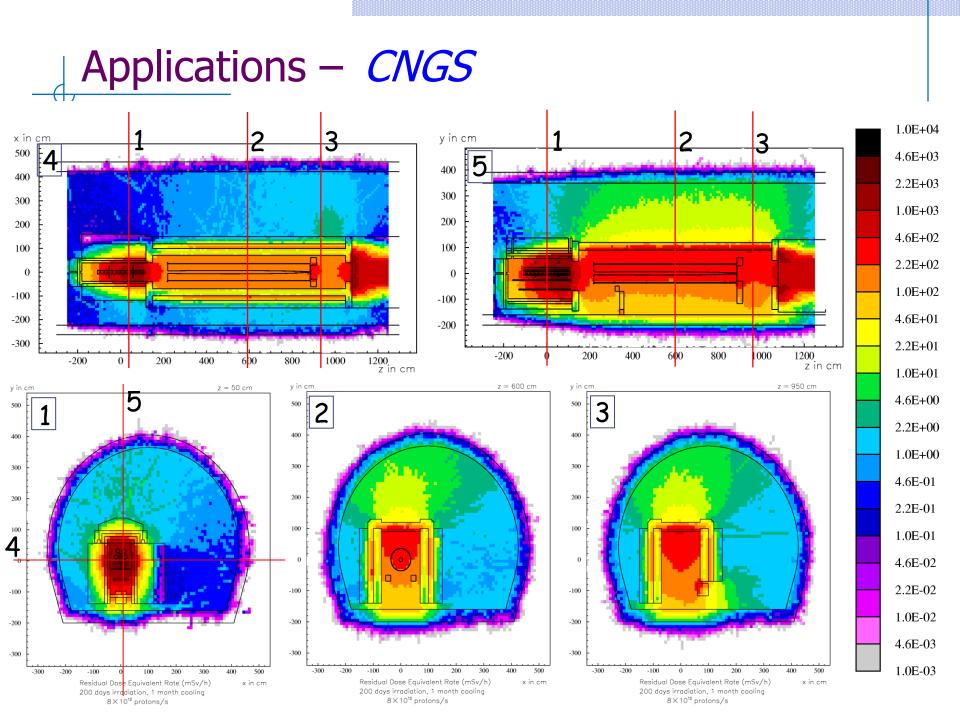



Benchmark experiment






Applications – *LHC collimation region*



M. Brugger, D. Forkel-Wirth, S. Roesler

