

## **FLUKA Manual and Basic input**

Beginners' FLUKA Course

## The FLUKA Manual

in continuous development, just as the program more a User Guide than a Reference Manual (only a short summary about physics)

#### FM.pdf

update of the published CERN yellow report Table of Contents, cross-references and citations are active links analytical index at the end

#### ASCII

fluka2008.manual (figures obviously missing) a practical interface (with summary and search) is available inside FLAIR or alone (/usr/local/bin/fm installed with FLAIR) an equivalent HTML version is available on the FLUKA website

## The FLUKA Manual

- 0 What is FLUKA?
- 1 A quick look at FLUKA's physics, structure and capabilities
- 2 A FLUKA beginner's guide
- 3 Installation
- 4 FLUKA modules (Fortran files)
- 5 Particle and material codes
- 6 General features of FLUKA input
- 7 Description of FLUKA input options
  - --- FLUKA input options (detailed) ---
- 8 Combinatorial Geometry
- 9 Output
- 10 Low-energy neutrons in FLUKA
- 11 Collision tape
- 12 Generating and propagating optical photons
- 13 User routines
- 14 Use of RAY pseudoparticles
- 15 Examples on the material/compound definitions
- 16 History of FLUKA
- 17 References

## The FLUKA input file

Command: One keyword, 6 floating point numbers, one keyword Example:

| *.  | .+2.            | +3         | +4.      | +5.      | + 6     | + 7 +           |
|-----|-----------------|------------|----------|----------|---------|-----------------|
| BEA | AM 1.E+04       | 0.0        | 0.0      | 0.0      | 0.0     | 0.0PROTON       |
| *   |                 |            |          |          |         |                 |
| *ke | eyword momentum | mom.spread | diverg.  | X-width  | Y-width | weight particle |
| *   | WHAT (1)        | WHAT (2)   | WHAT (3) | WHAT (4) | WHAT(5) | WHAT(6) SDUM    |

- We refer to <u>commands</u> also as: <u>cards</u>, <u>options</u>, <u>directives</u>, <u>definitions</u>
- Command keywords must be in uppercase, fixed or free format
- Some commands require more than one "card"
- Some commands might be followed by one or more lines of text
- Generally, with few exceptions, the order of commands is irrelevant
- Most commands can be issued several times and each next commands adds information or overrides (in total or in part) the previous ones
- A line with a \* character in column 1 is treated as a comment
- Text after an exclamation mark (!) is ignored
- Nearly always there are default values for WHAT() values!
- Now most of the difficulties in building of the input file are managed by the FLAIR graphical interface

4

## Fixed vs free format - 1

Fixed format:

- The `traditional" FLUKA format is (A8, 2X, 6E10.0, A8)
- All WHAT fields are in floating point format, <u>even if they are representing</u> <u>integers</u>

#### They must always be written with the decimal point

- If a number is in exponential notation, e.g. 1.234E+5, it must be aligned to the right of its field
- The double precision format, e.g. 1.234D+5, is allowed
- Numerical fields, if left blank, are read as 0.0. In most cases (not all!) such values are ignored and the corresponding default values are assumed.
- Blank lines are allowed
- All the worries about alignement are now managed by the FLAIR graphical interface

## Fixed vs free format - 2

#### Free format:

- Free format can be made available using option FREE (without any parameter) or, better, option GLOBAL. The latter provides free format also for the geometry input.
- Fixed format input can be resumed issuing a FIXED card at any moment
- In free format input, the different fields are separated by blanks and/or separators (usually commas). <u>All fields must be present</u> or at least represented by two successive separators
- Character fields (command name, SDUM) must be input without quotes

Example: BEAM 1.E+04, , , , , , , PROTON

Temporarily switching to FREE format is particularly helpful when more than 10 digits are required for precision reasons !!!

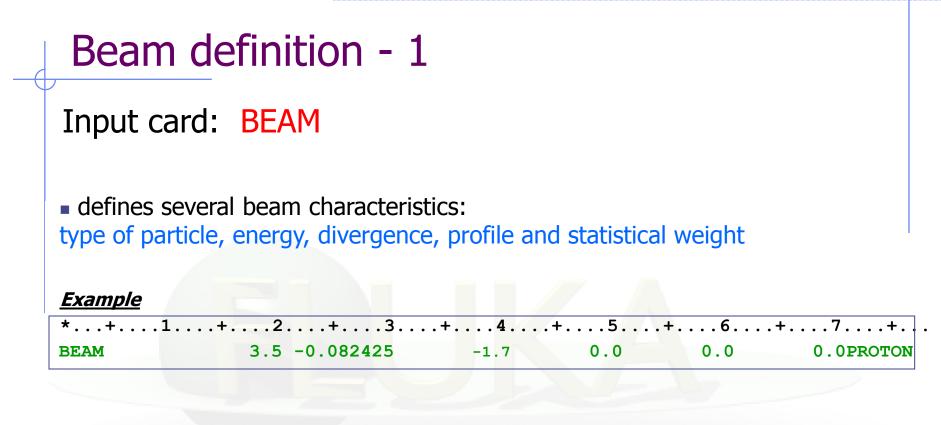
## Names instead of numbers

- The recent FLUKA versions allow to use keywords (names)
   8 characters maximum length instead of numbers inside FLUKA commands
- Examples later (for instance materials, or geometrical region, can be inserted using their name instead of numbers)
- This helps the user, and is again managed by the FLAIR graphical interface



#### **General definitions:**

Beam definition Material and compound definition Random number initialization Start/Stop of simulation


#### Physics settings

Defaults Transport thresholds Physical processes Low energy neutrons Induced radioactivity

#### **Output settings**

Scoring: choice of estimators definition of scoring parameters

# General Definitions



- 3.5 GeV/c [WHAT(1)] proton beam [SDUM] with weight 1 [WHAT(6)]
- Gaussian momentum distribution: 0.082425 GeV/c FWHM [WHAT(2)]
- Gaussian angular distribution: 1.7 mrad FWHM [WHAT(3)]
- no beam width along x (point-like source) [WHAT(4)]
- no beam width along y (point-like source) [WHAT(5)]

## Beam definition - 2

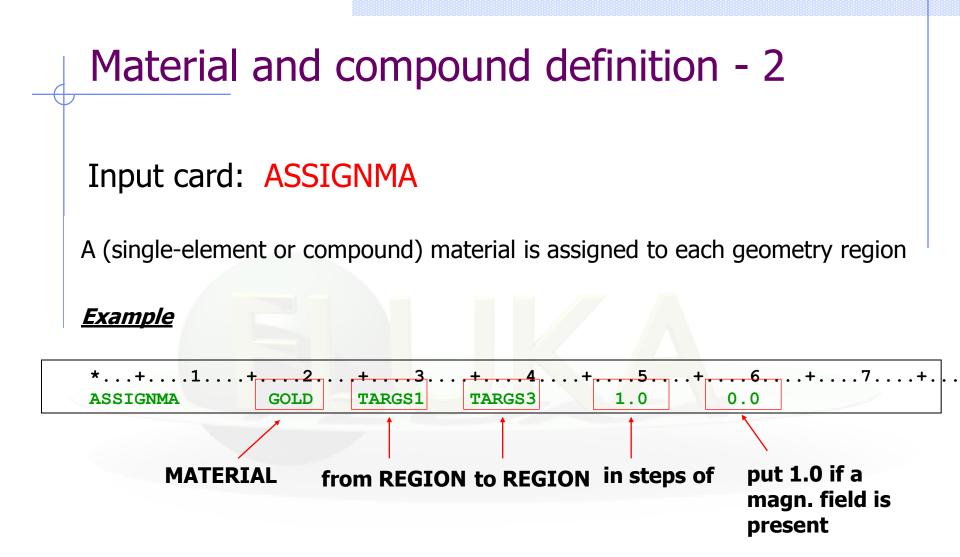
### Input card: **BEAMPOS**

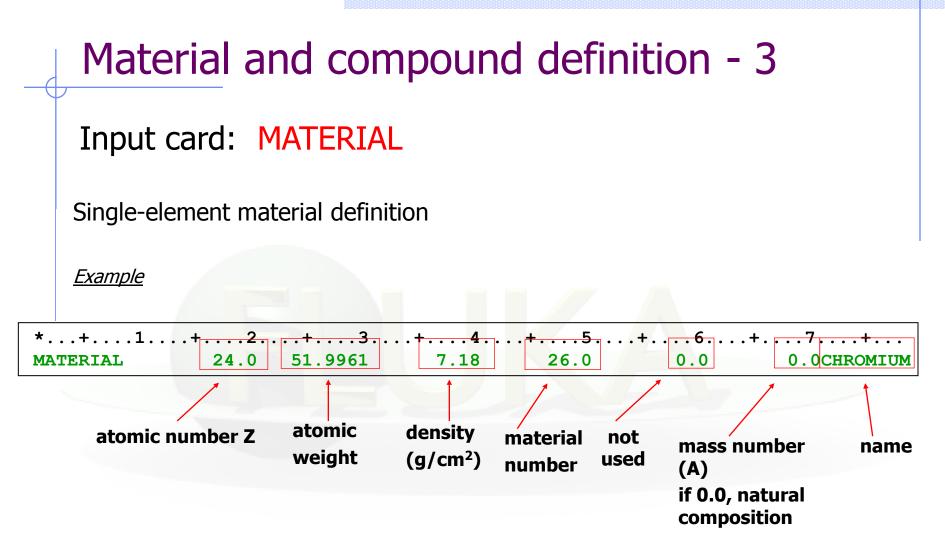
 defines the coordinates of the centre of the beam spot (*i.e.*, the point from which transport starts) and the beam direction

<u>Example</u>

| *+1     | .+2 | + <mark>3.</mark> | .+4  | +5  | +6  | .+7+ |  |
|---------|-----|-------------------|------|-----|-----|------|--|
| BEAMPOS | 0.0 | 0.0               | -0.1 | 0.0 | 0.0 | 0.0  |  |

- x-coordinate: 0.0 [WHAT(1)]
- y-coordinate: 0.0 [WHAT(2)]
- z-coordinate: -0.1 cm [WHAT(3)]
- direction cosine with respect to the x-axis: 0.0 [WHAT(4)]


direction cosine with respect to the y-axis: 0.0 [WHAT(5)]
 (WHAT(6) is not used!)


•  $\rightarrow$  beam points in the positive z-direction starting at (0./0./-0.1)

## Material and compound definition - 1

#### **List of pre-defined FLUKA materials**

|          | BLCKHOLE<br>VACUUM |             | 1<br>2 |           |          |      |             |     |                      |
|----------|--------------------|-------------|--------|-----------|----------|------|-------------|-----|----------------------|
| Name     | Index              | Atomic mass | Z      | Density   | Name I   | ndex | Atomic mass | Ξ   | Density              |
| HYDROGEN | 3                  | 1.00794     | 1.     | 0.0000837 | GOLD     | 15   | 196.96655   | 79. | 19.320               |
| HELIUM   | 4                  | 4.002602    | 2.     | 0.000166  | MERCURY  | 16   | 200.59      | 80. | 13.546               |
| BERYLLIU | 5                  | 9.012182    | 4.     | 1.848     | LEAD     | 17   | 207.2       | 82. | 11.350               |
| CARBON   | 6                  | 12.0107     | 6.     | 2.000     | TANTALUM | 18   | 180.9479    | 73. | 16.654               |
| NITROGEN | 7                  | 14.0067     | 7.     | 0.00117   | SODIUM   | 19   | 22.989770   | 11. | 0.971                |
| OXYGEN   | 8                  | 15.9994     | 8.     | 0.00133   | ARGON    | 20   | 39.948      | 18. | 0.00166              |
| MAGNESIU | 9                  | 24.3050     | 12.    | 1.740     | CALCIUM  | 21   | 40.078      | 20. | 1.550                |
| ALUMINUM | l 10               | 26.981538   | 13.    | 2.699     | TIN      | 22   | 118.710     | 50. | 7.310                |
| IRON     | 11                 | 55.845      | 26.    | 7.874     | TUNGSTEN | 23   | 183.84      | 74. | 19.300               |
| COPPER   | 12                 | 63.546      | 29.    | 8.960     | TITANIUM | 24   | 47.867      | 22. | 4.540                |
| SILVER   | 13                 | 107.8682    | 47.    | 10.500    | NICKEL   | 25   | 58.6934     | 28. | 8.902                |
| SILICON  | 14                 | 28.0855     | 14.    | 2.329     |          |      |             |     | [g/cm <sup>3</sup> ] |
|          |                    |             |        |           |          |      | L9/ S ]     |     |                      |





if input is name-based, better leave the material number = 0.0, <u>unless you</u> <u>overwrite a pre-defined material</u> (in that case put the original number)

if  $\rho$  < 0.01: gas at atmospheric pressure

#### Material and compound definition - 4 Input card: COMPOUND Compound material definition material density name *Example* $(g/cm^2)$ number MATERIAL 8.0 27.0 SLSTEEL 74.0 COMPOUND 8.0 CHROMIUM IRON 18.0 NICKELSLSTEEL

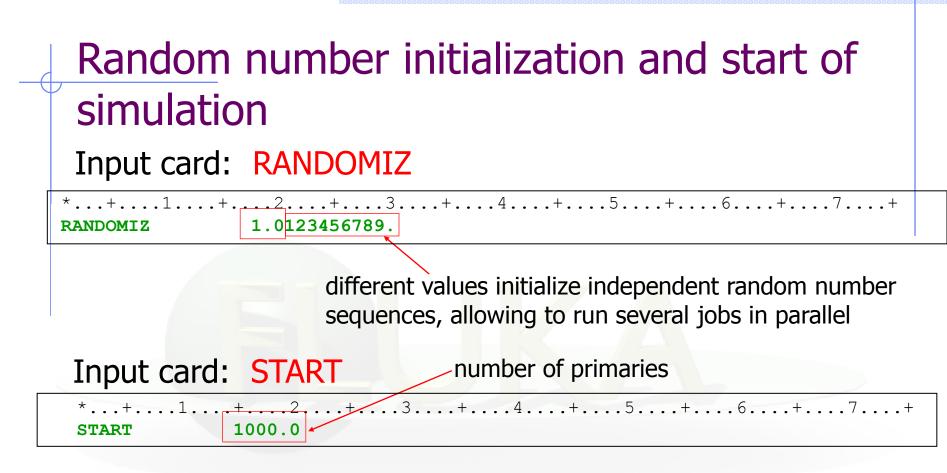
content > 0 component material number/name > 0 ATOM content
content < 0 component material number/name > 0 ATOM content
content < 0 component material number/name < 0 VOLUME content
Names can be preceded by a minus sign!</pre>

content

component material

## Materials & Media: Special cards

#### **MAT-PROP**


It allows to provide extra information about materials, e.g. gas pressure, effective density, average ionization potential

### STERNHEIme

It allows to input Sternheimer density effect parameters

### CORRFACT

It allows to change material density for dE/dx and nuclear processes on a region-by-region basis (used in connection with voxel geometries derived from a CT scan)



Input card: **STOP** 

STOP

inserted at any point in a FLUKA input sequence before the START command, it interrupts input reading and de-activates all the following cards. No particle transport is performed. Useful in geometry debugging. After START, its presence is optional and has no effect.

# Physics settings



#### Input card: DEFAULTS

#### \*..+...1...+...2...+...3...+...4...+...5...+...6...+...7...+ DEFAULTS

- CALORIME : calorimeter simulations
- EET/TRAN : Energy Transformer or transmutation calculations
- EM-CASCA : pure EM cascades
- ICARUS : studies related to the ICARUS experiment
- HADROTHE : hadrotherapy calculations
- NEUTRONS : pure low-energy neutron runs
  - NEW-DEFA : reasonable minimal set of generic defaults

- not needed (default of DEFAULTS) -

- **PRECISIO** : precision simulations
- SHIELDIN : pure hadron shielding calculations

old: better to avoid them

## Defaults – 2: the case of NEW-DEFA (not needed)

\*..+...1...+...2...+...3...+...4...+...5...+...6...+...7..+ DEFAULTS

- EMF on, with electron and photon transport thresholds to be set using the EMFCUT command
- Inelastic form factor corrections to Compton scattering activated (no need for EMFRAY)
- Low energy neutron transport on (no need for LOW-NEUT). The neutron high energy threshold is set at 20 MeV.
- Non analogue absorption for low energy neutrons with probability 0.95 for the thermal groups
- Particle transport threshold set at 10 MeV, except for neutrons (10<sup>-5</sup> eV), and (anti)neutrinos (0, but they are discarded by default)
- Multiple scattering threshold for secondary charged particles = 20 MeV (equal to that of the primary ones)
- Delta ray production on with threshold 1 MeV (see option DELTARAY)
- Restricted ionisation fluctuations on, for both hadrons/muons and EM particles (see option IONFLUCT)
- Heavy particle e+/e- pair production activated with full explicit production (with the minimum threshold =  $2m_e$ )
- Heavy particle bremsstrahlung activated with explicit photon production above 1 MeV
- Muon photonuclear interactions activated with explicit generation of secondaries

## Transport thresholds

Input card: PART-THR

- defines transport cut-offs for hadrons, muons and neutrinos
- the setting is done by particle type, overriding the current DEFAULTS
- for **neutrons**, a <20.0 MeV cut-off is internally translated into the corresponding group energy. On a region basis, the neutron cut-off can be *increased* by the **LOW-BIAS** card

*Note:* The particles are *not stopped*, but ranged out to rest in an approximate way (if the threshold is < 100 MeV).

#### Input card: EMFCUT

 sets the energy thresholds for electron, positron and photon production in different materials, and electron, positron and photon transport cut-offs in selected regions.

Input card: DELTARAY

 activates delta ray production by muons and charged hadrons and sets energy threshold for their production

## Physical processes

#### Input card: PHYSICS

Allows one to override the standard FLUKA defaults for some physics processes:

- activates coalescence (critical for calculation of residual nuclei)
- activates the new fragmentation model ("evaporation" of fragments up to A=24, critical for calculation of residual nuclei)
- activates electromagnetic dissociation of heavy ions
- activates charmed particle transport

#### Input card: PHOTONUC

. . .

- activates photo-nuclear interactions
- activates muon pair production by photons

## Low energy neutrons (E < 20.0 MeV)

#### Input card: LOW-NEUT

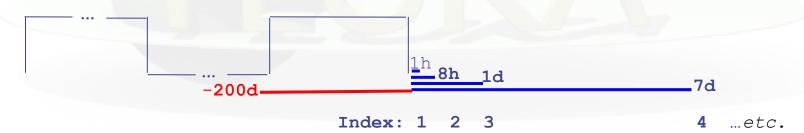
- activates low-energy neutron transport (on for many DEFAULTS)
- specifies characteristics of neutron library used
- requests point-wise cross sections (only available for a few elements, see manual)

#### Input card: LOW-MAT

- sets the correspondence between FLUKA materials and low-energy neutron cross-sections
- by default, the correspondence is established with the first material in the library having the name of the material. Therefore, the option is not needed in many cases.

## Induced radioactivity

#### Input card: RADDECAY


- requests simulation of decay of produced radioactive nuclides
- allows to modify biasing and transport thresholds (defined with other cards) for application to the transport of decay radiation

#### Input card: IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

#### Input card: DCYTIMES

• definition of decay (cooling) time in respect to the irradiation end



#### Input card: DCYSCORE

 associates scoring detectors (radio-nuclides, fluence, dose) with different cooling times

## Heavy ion interactions

#### Input card: HI-PROPE

• specifies the properties of a heavy ion beam

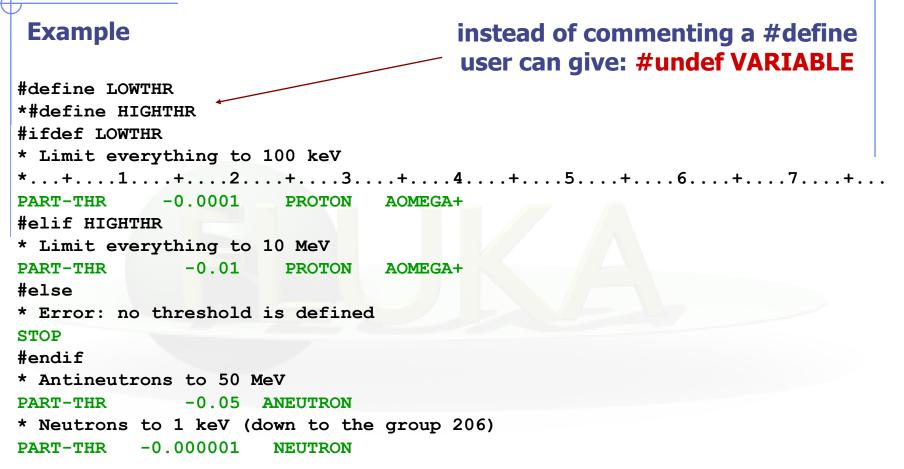
• in this case the beam energy (input card BEAM) is given in GeV/nmu (**n**uclear **m**ass **u**nit, i.e. 1/12 of the <sup>12</sup>C *nucleus* mass) (BEAM/SDUM=HEAVYION), except for <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>4</sup>He (BEAM/SDUM=4-HELIUM, *etc.*)

#### Input card: **EVENTYPE**

 activates transport (if WHAT(3)=2.0) and interaction (if SDUM=DPMJET) of heavy recoils and ions

*Note:* Nucleus-nucleus interactions can be performed only if the event generator libraries are linked with the FLUKA executable (use ldpmqmd instead of lfluka)

## FLUKA Preprocessor - 1


- FLUKA supports preprocessing defines like used e.g., in C or C++.
- This is a useful feature to keep many various setups and configurations in a single input file, allowing to activate one or the other when starting a run
- FLAIR also supports this feature and allows to run different configurations in an easy way
- Commands:

#define VARIABLE1
#undef VARIABLE2
#ifdef VARIABLE1
#elif VARIABLE2
#else

#endif

 In FLUKA up to 10 nesting of #if #else are supported (one usually doesn't need more)

## FLUKA Preprocessor - 2



 Depending on which threshold is selected (LOWTHR or HIGHTRH) the respective PART-THR is used (except for neutrons and antineutrons)