Fluka Exercise - Day 3

Hands on Fluka

Ex04 - Magnetic Field

Inp: flex.inp	Exe: exfluka

(+ flex.flair - flair
File Edit Card Input View Tools Help

- GOAL: include the magnetic field of the dipole and the 4 quadrupoles Place a pencil beam at the beginning of the vacuum pipe and make it go through the elements of the beam line (w/o hitting them...). Calculate the proton tracklength in the magnets.
- Recipe:
- Add the MGNFIELD card to set the tracking accuracy in mag. field and declare the mag. regions though ASSIGNMA
- Add a magnetic field routine with flair from the Process->Compile then click on

- Select the magfld.f routine from the menu then click on Copy to Project.
- Suggestion: you might add a suffix to the filename (like "_mod") to distinguish from the original

Ex04 - Magnetic Field

- To support rotation and lattice identification include in your routine also (RTDFCM) [RoTation DeFinition CoMmon] and (LTCLCM) [LaTtice CeLI CoMmon]
- DIPOLE:
- Field B [T] = p [GeV/c] / ($\rho[\mathrm{m}] * 0.2998)$
- QUADRUPOLES:
- Gradient $\mathrm{g}[\mathrm{T} / \mathrm{m}]=\mathrm{p}[\mathrm{GeV} / \mathrm{c}] * \mathrm{k}\left[\mathrm{m}^{2}\right] / 0.2998$, take $\mathrm{g}[\mathrm{T} / \mathrm{m}]=\mathrm{p}[\mathrm{GeV} / \mathrm{c}]$
- Focusing: $\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}, \mathrm{B}_{\mathrm{z}}=(+$ Gradient $* y[\mathrm{~m}],+$ Gradient $* x[\mathrm{~m}], 0)$
- Defocusing: $\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}, \mathrm{B}_{\mathrm{z}}=(-$ Gradient $* y[\mathrm{~m}]$, -Gradient * $x[\mathrm{~m}], 0)$

Use the routines DOTRSF and UNDRTO to define and rotate the quadrupole field, respectively, according to the proper ROT-DEFI transformation, which is given by GEON2L

- GOAL: use the beam characterized in the ex05-Source/particles.dat file distribution
- Recipe:
- Add a source routine with flair from the Process->Compile (as done for magfld.f);
- Modify it in order to read an external ASCII file (4 columns: $\left.x[\mathrm{~cm}], x^{\prime}[r a d], y[\mathrm{~cm}], y^{\prime}[r a d]\right)$.
- Get the other relevant beam parameters from the WHATs of the SOURCE card as shown in the following example:

- Load the beam at $s=-850 \mathrm{~cm}$

Ex06-USERDUMP

- GOAL: Use the USERDUMP card to dump the particle informations (x[cm], x'[rad], $y[\mathrm{~cm}], y^{\prime}[\mathrm{rad}]$) at different locations to different files. Plot the $x-x^{\prime}$ and $y-y^{\prime}$ distributions (for example with gnuplot or ROOT).
- Recipe:
- Add a mgdraw routine with flair from the Process->Compile (as done for magfld.f);
- Modify it in order to write an external ASCII file (4 columns: $\left.x[\mathrm{~cm}], x^{\prime}[\mathrm{rad}], y[\mathrm{~cm}], y^{\prime}[\mathrm{rad}]\right)$ at the boundaries of interest.
- Use the provided gnuplot instruction file to visualize the beam profile evolution

