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Concept
 Variance reduction techniques in Monte Carlo calculations reduce 

the computer time or the opposite to obtain results of sufficient 
precision in the phase-space region of interest.

 Remember: that precision is not the only requirement for a Good 
Monte Carlo calculation. Even a zero variance calculation cannot 
accurately predict natural behavior if other sources of error are 
not minimized.

No Bias and no maze Region Biasing + maze
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Microscopic
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Physics Models Theoretical Theoretical Parameterizations

PDF sampling Physical 
processes

Artificial 
distributions

Fits & Data

Predict Average Yes Yes Yes

Predict Higher Moments Yes - -

Preserves Correlations Yes - -

Reproduces Fluctuations Yes - -

Rare events - Yes -

Predictability Yes Yes -

Convergence Slow Fast privileged
regions

Fast

Safe Yes Almost -
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Figure of Merit

 Computer cost of an estimator

FOM = s2  t

s2 = Variance  1/N,   t = CPU time  N

 some biasing techniques are aiming at reducing the s2, others at 
reducing t

 often reducing s2 increase t, and vice versa

 therefore, minimizing s2  t means to reduce s at a faster rate 
than t increases, or vice versa

  the choice depends on the problem, and sometimes a 
combination of several techniques is most effective

 bad judgment, or excessive “forcing” on one of the two variables, 
can have catastrophic consequences on the other one, making 
computer cost “explode”
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Biasing Techniques
FLUKA offers the following possibilities for biasing

 Importance Biasing (BIASING)

 Weight window (WW-FACTOr, WW-THRESh, WW-PROFIle)

 Leading Particle Biasing (EMF-BIAS)

 Multiplicity Tuning (BIASING)

 Biased down scattering for neutrons, only for experts (LOW-DOWN)

 Non analogue absorption (LOW-BIAS)

 Biasing Mean free paths (LAM-BIAS)

 User defined biasing (usbset.f, usimbs.f)
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Importance Biasing

 Importance biasing combines two techniques:

 Surface splitting: Reduces s but increases t

 Russian roulette: which does the opposite

 It is the simplest, most safe and easiest to use of all biasing

 The user assigns a relative importance to each geometry region 
(the absolute value doesn’t matter) based on:

 expected fluence attenuation with respect to other regions

 probability of contribution to score by particles entering the region

 Importance biasing is commonly used to maintain a constant 
particle population, compensating for attenuation due to 
absorption or distance.

 In FLUKA it can be tuned per type of particle

Cards: BIASING
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Importance Biasing

Surface Splitting

 If a particle crosses a region boundary coming from a region of 
important I1 and enters a region of higher importance I2>I1:

 the particle is replaced on average by n=I2/I1 identical particles with 
the same characteristics

 the weight of the daughter is multiplied by I1/I2

 If I2/I1 is too large, excessive splitting may occur, which will be 
prevented by FLUKA

Russian Roulette

 RR acts in the opposite direction: from higher importance I1 to 
lower importance I2<I1

 The particle is submitted a random survival test with a chance of 
I2/I1 the particle survives with its weight increased by a factor I1/I2

 with chance 1-I2/I1 the particle is killed
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Importance Biasing Problems

 Although important biasing is relatively easy and safe to use, 
there are a few cases where caution is recommended

Which importance shall we give to

region E? Whatever value we choose

we will get an inefficient splitting/RR

at some of the boundaries.

 Another case is that of splitting in vacuum (or air). Splitting 
daughters are strongly correlated. It must be made sure that 
their further histories are differentiated enough to forget their 
correlation.

 The above applies in part also to muons (the differentiation 
provided by multiple scattering and by Landau dE/dx fluctuations 
is not always sufficient).

I=?

I=1

I=2

I=4

I=8

B

C

D
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Leading Particle Biasing

 Leading Particle Biasing is available only for e+, e- and photons

 It is generally used to avoid the geometrical increase with energy
of the number of particles in the electromagnetic shower

 It is a characteristic of EM interactions that
2 particles are present in the final state

 if LPB is activated only one is randomly retained and its weight is 
adjusted so as to conserve weight × probability

 The most energetic of the two particles is kept with higher 
probability

 LPB is reducing t, but increases s by introducing large weight 
fluctuations. Therefore is should nearly always be backed up by 
WW

 Very useful for shielding calculations at both electron and proton 
accelerators

Card: EMF-BIAS



10

Weight Window

 The WW technique is a combination of splitting and RR, but it is 
based on the absolute value of the weight of each individual 
particle, rather than on relative region importance

 The user sets an upper and a lower weight limit, generally as a 
function of region, energy and particle

 Particles having a weight larger than the upper limit are split, 
those with weight smaller than the lower limit are submitted to 
RR  killed or put back “inside the window”

 WW is a more powerful biasing tool than Importance Biasing, but 
it requires also more experience and patience to set it up 
correctly
“It is more an art than a science” (From MCNP Manual)

 Use of the WW is essential whenever other biasing techniques 
generate large weight fluctuations in a given phase space region.

 Works with all particles with the exception of Low Energy 
neutrons (see WW-PROFILe)

Cards: WW-FACTOr, WW-THRESh, WW-PROFIle



Weight Windows - 2

Killing a particle with a very low weight (with respect to the average for a 
given phase space region) decreases t but has very little effect on the 
score (and therefore on s )

Splitting a particle with a large weight increases t (in proportion to the 
number of additional particles to be followed) but at the same time 
reduces s by avoiding large fluctuations in the contributions to 
scoring.

The global effect is to reduce s2t

A too wide window is of course ineffective, but also too narrow windows 
should be avoided. Otherwise, too much CPU time would be spent in 
repeated splitting / Russian Roulette. A typical ratio between the upper and 
the lower edge of the window is about 10. It is also possible to do Russian 
Roulette without splitting (setting the upper window edge to infinity) or 
splitting without Russian Roulette (setting the lower edge to zero)
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Card:  WW-FACTO, WW-THRES ,WW-PROFI



Weight Windows - 3
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Cards:  WW-FACTO, WW-THRES ,WW-PROFI

Energy

W
e
ig

h
t

W1

W2

E1 E2

constant window
for E<E1

no window
for E>E2

gradually increasing 
(or decreasing) window

for E1<E<E2

Russian Roulette

Splitting



Weight Windows - 4

Defines Weight Windows in selected regions

WHAT(1) >= 0.0 : Window “bottom” weight

< 0.0 : resets to -1.0 (no Russian Roulette, Default)

Weight below which Russian Roulette is played at the lower

energy threshold (set by WW-THRES). 

WHAT(2)  >  1.7 * WHAT(1) : Window “top” weight

=  0.0           : ignored

=< 1.7 * WHAT(1) : resets to infinity

(no Splitting, Default) 

Weight above which Splitting is applied at the lower energy 

threshold (set by WW-THRES).

WHAT(3) > 0.0  : Multiplicative factor (Default: 1.0)

= 0.0  : ignored

< 0.0  : resets to 1.0

Factor to be applied to the two energy thresholds for 

Russian Roulette / Splitting (set by WW-THRES)
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Card:  WW-FACTO

WW-FACTO 13.0     120.0       1.5      27.0      31.0       2.0
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WW-FACTO 13.0     120.0       1.5      27.0      31.0       2.0

WHAT(4) = lower bound of the region indices (Default = 2.0)

WHAT(5) = upper bound of the region indices (Default = WHAT(4))

WHAT(6) = step length in assigning indices (Default = 1.0)

SDUM    : a number from 1.0 to 5.0 in any position, indicating the

low-energy neutron weight-window profile to be applied

in the regions selected (see WW-PROFI). (Default = 1.0)

= blank, zero or non numerical: ignored

< 0.0 : resets to 1.0

Attention: Option WW-FACTO alone is not sufficient to define a weight 

window. One or more WW-THRES cards are also necessary in order 

to activate the window.

Weight Windows - 5

Card:  WW-FACTO
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WW-THRES 2.0      0.05       2.4       3.0       7.0       0.0

Defines the energy limits and particle-dependent modification factors

WHAT(1) >  0.0: upper kinetic energy threshold (GeV)

Low-energy neutrons: lower group number (included)

=  0.0: ignored

<  0.0: any previously selected threshold is cancelled

WHAT(2) >= 0.0 and < WHAT(1): lower kinetic energy threshold (GeV)

Low-energy neutrons: upper group number (included)

<  0.0 or > WHAT(1): WHAT(2) is set = WHAT(1)

WHAT(3) > 0.0: amplification factor to define the weight window width 

at the higher energy threshold represented by WHAT(1).

The weight window at the higher energy threshold is
obtained by multiplying by WHAT(3) the upper weight

limit and by dividing by the same factor the lower 

weight limit. (Default = 10.0)

< 0.0: |WHAT(3)| multiplication factor for the lower and upper 

weight limits for the particles selected by WHAT(4-6) 

(Default = 1.0)

Weight Windows - 6
Card:  WW-THRES
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WW-THRES 2.0      0.05       2.4       3.0       7.0       0.0

WHAT(4) = lower bound of the particle indices (Default = 1.0) 

Note that particle index 40 indicates low-energy neutrons

(for this purpose only!). Particle index 8 indicates 

neutrons with energy > 19.6 MeV.

WHAT(5) = upper bound of the particle indices

(Default = WHAT(4) if WHAT(4) > 0, all particles otherwise)

WHAT(6) = step length in assigning indices (Default = 1.0)

SDUM    = PRIMARY: the weight window applies also to primary

particles (default)

= NOPRIMARy: the weight window doesn't apply to primaries

Weight Windows - 7
Card:  WW-THRES
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Weight Windows - 8

Energy

W
e
ig

h
t

WW-THRES

WHAT(1)

WW-THRES

WHAT(2)

WW-FACTO

WHAT(1)

WW-FACTO

WHAT(2)

W1

W2

E1 E2

WW-FACTO

WHAT(3)

WW-FACTO

WHAT(3)x x

region dependent
particle type dependent

W1 / 
WW-THRES

WHAT(3)

W2 x 
WW-THRES

WHAT(3)

Cards:  WW-THRES, WW-FACTO
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Selecting Weight Windows - 1

BIASING 0.0       0.0      4.64        8.       18.        2.PRINT

Hadron importance RR/Splitting counters

Reg. #  N. of RR  <Wt>  in  <Wt> kil Reg. #  N. of RR  <Wt>  in  <Wt> kil Reg. #  N. of RR  <Wt>  in  <Wt> kil

1  0.00E+00  0.00E+00 0.00E+00 2  0.00E+00  0.00E+00 0.00E+00 3  1.15E+05  9.31E-01  4.70E-02

Reg. #  N. of Sp  <Wt>  in  <Wt> out Reg. #  N. of Sp  <Wt>  in  <Wt> out Reg. #  N. of Sp  <Wt>  in  <Wt> out

1  0.00E+00  0.00E+00 0.00E+00 2  0.00E+00  0.00E+00 0.00E+00 3  0.00E+00  0.00E+00 0.00E+00

Reg. #  N. of RR  <Wt>  in  <Wt> kil Reg. #  N. of RR  <Wt>  in  <Wt> kil Reg. #  N. of RR  <Wt>  in  <Wt> kil

4  1.36E+04  4.66E-01  1.47E-01       5  8.97E+03  3.22E-01  1.06E-01       6  6.03E+03  2.16E-01  7.10E-02

Reg. #  N. of Sp  <Wt>  in  <Wt> out Reg. #  N. of Sp  <Wt>  in  <Wt> out Reg. #  N. of Sp  <Wt>  in  <Wt> out

4  1.01E+05  9.99E-01  7.64E-01       5  9.25E+04  6.80E-01  5.23E-01       6  8.24E+04  4.65E-01  3.55E-01

…

FLUKA output file:

"N. of RR"   --> Number of FLUKA particles entering a region and which are not split

(i.e., particles undergoing Russian Roulette as well as neither

Russian Roulette nor splitting)

"<Wt>  in"   --> Average weight of these particles

"<Wt> kil"   --> Average weight of particles killed after being submitted to Russian 

Roulette

"N. of Sp" --> Number of FLUKA particles entering the region and which are split

"<Wt>  in" --> Average weight of these particles

"<Wt> out" --> Average weight of particles after being submitted to splitting
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Selecting Weight Windows - 2

Note -1: RR and splitting arising from Weight-Window biasing (options 
WW-FACTOR, WW-THRESh, WW-PROFI) or from multiplicity 
biasing (WHAT(2) in option BIASING) are not accounted for in the 
counters.

Note – 2: Separate counters are printed for hadrons/muons, 
electrons/photons and low-energy neutrons (referring to 
importance biasing requested by BIASING, respectively, with 
WHAT(1) = 1.0, 2.0 and 3.0, or = 0.0 for all).

where

A = "N. of RR" + "N. of Sp" 

= total number of particles entering the region

B = ("<Wt> in"_RR * "N. of RR") + ("<Wt> in"_Sp * "N. of Sp") 

= total weight of the particles entering the region

B/A = average weight of the particles entering the region
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Selecting Weight Windows - 3

Strategy:
1. run without any biasing and print counter, e.g.,

BIASING     0.0       1.0       1.0        1.        9.        PRINT

2. analyze counter and adjust region importance biasing, e.g., according 
to the inverse of the attenuation in shielding, add other biasing, e.g.,
leading particle biasing run and print counter again

BIASING  0.0       1.0       1.0        1.        9.       PRINT

BIASING  0.0       1.0      1.47        4.

BIASING  0.0       1.0      2.15        5.

BIASING  0.0       1.0      3.16        6.

BIASING  0.0       1.0      4.64        7.

BIASING  0.0       1.0      4.64        8.

3. analyze counter, select Weight Windows (WW-THRES, WW-FACTO) 
around average weights and perform final (high-statistics) run
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Biasing Mean Free Paths

Multiplicity Tuning BIASING

 Multiplicity tuning is meant to be to hadrons what LPB is for 
electrons and photons.

 A hadronic nuclear interaction at LHC energies can end in 
hundreds of secondaries. Except for the leading particle, many 
secondaries are of the same type and have similar energies and 
other characteristics

 The user can tune the average multiplicity in different regions

Interaction Length LAM-BIAS

 Mean life / average decay length of unstable particles can be 
artificially shortened

 Can increase generation rate of decay products without 
discarding the parent

 For hadrons the mean free path for nuclear inelastic interactions
can be artificially decreased. Useful for very thin targets, and also 
for photonuclear reactions where the cross section is relatively 
small



22

Non analogue absorption

 Implemented in most low-energy neutron transport codes, where 
the user must choose between two options:
 At each neutron collision either analog scattering or absorption

according to the actual physical probability ss/st and 1- ss/st.

 In FLUKA there is a third choice: the user can force the neutron 
absorption probability to take an arbitrary value, pre-assigned on 
a region-by-region basis as a function of energy.

When and How

 A small survival probability is often assigned to thermal neutrons
to limit the number of scatterings in non-absorbing media

 Also very useful in materials with unusual scattering properties
(e.g. Iron)

 Survival probabilities too small with respect to the physical one 
ss/st may introduce large weight fluctuations due to the very 
different number of collisions suffered by individual neutrons. In 
these cases a WW should be applied.

 Card: LOW-BIAS Also called survival biasing
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Card: RADDECAY [1/2]

* 1) request radioactive decays

RADDECAY 1.0         0       3.0          0000099999         0

WHAT(1) = 1 radioactive decays activated for requested cooling times
Decays: Active “activation study case”: time evolution calculated analytically for fixed

(cooling) times. Daughter nuclei as well as associated radiation is 
considered at these (fixed) times 

> 1 radioactive decays activated in semi-analogue mode
Semi-Analogue each radioactive nucleus is treated like all other unstable particles 

(random decay time, daughters and radiation), all secondary 
particles/nuclei carry time stamp (“age”)

WHAT(2) > 0 isomer “production” activated
Patch Isom: On

WHAT(3) number of “replicas” of the decay of each individual nucleus
Replicas: #
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Card: RADDECAY [2/2]

WHAT(4) switch for applying various biasing features only to prompt 
radiation or only to particles from radioactive decays

h/m Int .. Low-n WW 9 digits, each responsible for a different biasing 
Example: 

5th digit, e+/e-/gamma leading particle biasing applied
000010000  to prompt radiation only
000020000  to decay radiation only
000030000  to both

Default: 111111111 (or blank as above)

WHAT(5) multiplication factors to be applied to transport cutoffs
decay cut: # 10 digits, first five for decay radiation, second five for prompt
prompt cut: # radiation (see manual)

Special cases: 
0000099999 kill EM cascade for prompt radiation
9999900000 kill EM cascade for residual radiation
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User written biasing

FLUKA offers the following routines for user-written biasing

 ubsset.f: User BiaSing SETting

 called after reading in the input file and before the first event

 allows to alter almost any biasing weight on a region-dependent basis

 usimbs.f: USer defined IMportance BiaSing

 if activated, called at every particle step

 allows to implement any importance biasing scheme based on region number 
and/or phase space coordinates

 udcdrl.f: User defined DeCay DiRection biasing and Lambda

 only for neutrinos emitted in decays: bias the direction of emitted neutrino

Not biasing by itself, but it could be used for generating biased runs

 source.f: User written source

 to sample primary particle properties from distribution in space, energy, 
time…
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User Defined Importance Biasing

 Typical problem: Spend a lot of time to write the problem input, 
geometry and on the first runs you realize that statistics are not 
good

 First method (and safest) is to introduce region importance 
biasing. In FLUKA you can introduce it with two ways:
 1st Manually slice the geometry and increase the number of regions. 

Modifying an existing geometry to introduce biasing can be a very 
cumbersome process

 2nd Introduce the “importance biasing” information with a user 
fortran routine independent of the regions defined in the geometry

 Routine: usimbs.f

USer defined IMportance BiaSing

Allows to implement any importance biasing scheme based on 
region number and/or phase space coordinates
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User Defined Importance Biasing

 Enable the call to USIMBS routine with the BIASING card:

 WHAT(1) Particles to be biased

 WHAT(2) and WHAT(3) ≠ 1.0 (Any value ≠ 1.0)

 WHAT(4) Lower bound of region

 WHAT(5) Upper bound of region

 WHAT(6) Step

 SDUM = USER

Remember:

 If WHAT(3)=1 for a region, the routine will not be called during 
tracking of particles inside that region

 Cannot have both normal importance BIASING with cards and the 
routine at the same time
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usimbs.f – Routine

The routine is called on every particle step!
WARNING: can slow down the 

execution speed! Use with caution.
Input:
 Region information at the beginning and 

end of the step
 X,Y,Z coordinates through the TRACKR

common.
Beginning: X, Y, Ztrack(0)
End: X, Y, Ztrack(Ntrack)

 Particle type and Energy could be used 
for even more advanced biasing schemes

Output:
The routine must return the importance 
ratio to the new position (end/beginning) 
in the variable FIMP

Entry: USIMST
Split the particles step between 
interactions in half (or any other user 
defined value)

SUBROUTINE USIMBS ( MREG, NEWREG, FIMP )

INCLUDE '(DBLPRC)'

INCLUDE '(DIMPAR)'

INCLUDE '(IOUNIT)'

*

*----------------------------------------------------------------------*

*     USer defined IMportance BiaSing:                                 *

*     Created on   02 july 2001    by    Alfredo Ferrari & Paola Sala  *

*                                                   Infn - Milan       *

*     Last change on 09-jul-01     by    Alfredo Ferrari               *

*     Input variables:                                                 *

*                Mreg = region at the beginning of the step            *

*              Newreg = region at the end of the step                  *

*     (thru common TRACKR):                                            *

*              Jtrack = particle id. (Paprop numbering)                *

*              Etrack = particle total energy (GeV)                    *

*       X,Y,Ztrack(0) = position at the beginning of the step          *

*  X,Y,Ztrack(Ntrack) = position at the end of the step                *

*    Output variable:                                                  *

*                Fimp = importance ratio (new position/original one)   *

*----------------------------------------------------------------------*

INCLUDE '(TRACKR)‘

FIMP   = ONEONE

RETURN

END

*======================================================================*

*     Entry USIMST:                                                    *

*     Input variables:                                                 *

*                Mreg = region at the beginning of the step            *

*                Step = length of the particle next step               *

*    Output variable:                                                  *

*                Step = possibly reduced step suggested by the user    *

*======================================================================*

ENTRY USIMST ( MREG, STEP )

IF ( STEP .GT. ONEONE ) STEP = HLFHLF * STEP

RETURN

*=== End of subroutine Usimbs =========================================*

END
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usimbs.f – Important Notes

 The routine has only a relative effect on the weight of the particle
 Beam particles can have any weight.

 Importance ratio will be limited by WW-THRESh card

 The Russian Roulette / Splitting will take place at the middle 
(defined by the ENTRY) of the step,
and not on a fixed region boundary.

 The biasing position will be a little fuzzy depending on the 
particle step. This has a visible effect when it is applied to low 
density materials (i.e. air)

 Results will similar but not the same as with the manual region 
biasing.

 Is a great time saver for complex geometries, as well different 
biasing schemes

 Combined with the particle type and energy could become very 
powerful
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usimbs.f: Simple Example

 Biasing a factor of 2 every 50 cm on the Z direction from 100cm 
to 500cm

ZSTART = ZTRACK(0)

IF (ZSTART .LT. 100.0D0) THEN

FSTART = ONEONE

ELSE IF (ZSTART .GT. 500.0D0) THEN

FSTART = TWOTWO ** NINT((500.0D0-100.0D0)/50.0D0)

ELSE

FSTART = TWOTWO ** NINT((ZSTART-100.0D0)/50.0D0)

ENDIF

ZEND = ZTRACK(NTRACK)

* Similarly calculate the FEND from ZEND

…

FIMP = FEND / FSTART

Initial position

Final position

Importance Ratio
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usimbs.f: Function example

 Introduce an importance biasing assuming an exponential law of 
attenuation in the R direction exp(-l  R), for R>1cm

RSTART = SQRT(XTRACK(0)**2 + YTRACK(0)**2 + ZTRACK(0)**2)

REND = SQRT(XTRACK(NTRACK)**2 + YTRACK(NTRACK)**2 +   
ZTRACK(NTRACK)**2)

IF (RSTART .LT. ONEONE) THEN

FSTART = ONEONE

ELSE

FSTART = EXP(-ALAMBDA * RSTART)

ENDIF

IF (REND .LT. ONEONE) THEN

FEND = ONEONE

ELSE

FEND = EXP(-ALAMBDA * REND)

ENDIF

FIMP = FEND / FSTART
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usimbs.f: Sampling from array [1/4]

 Create a concentric cylindrical biasing with the weights sample 
from an array with various radii

 Define the variables:
PARAMETER (NBIAS=5)

PARAMETER (Xcenter=ZERZER)

PARAMETER (Ycenter=ZERZER)

DOUBLE PRECISION BIASR(NBIAS), BIASF(NBIAS)

* Radius

DATA BIASR / 200.0, 250.0, 300.0, 400.0, 500.0 /  

* Biasing factor

DATA BIASF /  NBIAS * 2.0 /

LOGICAL LFIRST

DATA LFIRST / .TRUE. /

SAVE LFIRST, BIASR, BIASF
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usimbs.f: Sampling from array [2/4]

 Initialization – build the cumulative importance factor

IF (LFIRST) THEN

WRITE(LUNOUT,*) "*** User defined biasing ***"

PREVBIAS = 1.0

DO N=1,NBIAS

PREVBIAS = PREVBIAS * BIASF(N)

BIASF(N) = PREVBIAS

WRITE(LUNOUT,*) "Bias cylinder: ",N, BIASR(N), BIASF(N)

*                       convert the radius to square to avoid sqrt

BIASR(N) = BIASR(N)**2

ENDDO

LFIRST = .FALSE.

ENDIF
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usimbs.f: Sampling from array [3/4]

 Calculate the importance biasing
* Find square of radius for starting/ending position

Rold = (Xtrack(0)-Xcenter)**2 + (Ytrack(0)-Ycenter)**2

Rnew = (Xtrack(Ntrack)-Xcenter)**2 + (Ytrack(Ntrack)-Ycenter)**2

* Search index of the starting position

Nold = NBinSearch(Rold, NBIAS, BIASR)

IF (Nold.EQ.0) THEN

BIASOLD = 1.0

ELSE

BIASOLD = BIASF(Nold)

ENDIF

* Search index of the new position

Nnew = NBinSearch(Rnew, NBIAS, BIASR)

IF (Nnew.EQ.0) THEN

BIASNEW = 1.0

ELSE

BIASNEW = BIASF(Nnew)

ENDIF

FIMP = BIASNEW / BIASOLD
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usimbs.f: Sampling from array [4/4]

INTEGER FUNCTION NBinSearch(x, N, VEC)

INCLUDE '(DBLPRC)'

DOUBLE PRECISION VEC(N)

NLOW = 1

NHIGH = N

NBinSearch = 0

IF (X.GE.VEC(NLOW) .AND. X.LE.VEC(NHIGH)) THEN

10 CONTINUE

MID = (NLOW+NHIGH)/2

IF (MID.EQ.NLOW) THEN

NBinSearch = MID

RETURN

ELSEIF (X .GT. VEC(MID)) THEN

NLOW = MID

ELSEIF (X .LT. VEC(MID)) THEN

HIGH = MID

ELSE

NBinSearch = MID

RETURN

ENDIF

GOTO 10

END IF

END

Perform a binary search
Converge in log2(N) steps
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Neutrino Decay Biasing

 There is a special routine udcdrl.f where one can bias the 
direction of the emitted neutrino in decays.

DOUBLE PRECISION FUNCTION UDCDRL( IJ, KPB, NDCY, UDCDRB, VDCDRB, WDCDRB)

Input variables:

IJ decaying particle

KPB outgoing neutrino

Output variables:

U,V,W DCDRB preferential outgoing direction for the neutrino

UDCDRL Lambda for direction biasing (1-cos(q))

The biasing expression is of the form:

e-(1-cosq/l)

 Useful for neutrino applications like CNGS, Beta Beams…

 For a fixed direction the LAM-BIAS card with SDUM=DCY-DIRE could be 
used instead
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Direction Biasing Example (n_TOF)

 Bias the direction of the neutrino in the pion decay so the 
daughter muon to be directed to the exp. area  @(-120,0,18500). 
The direction is given in the lab-frame, and in this example the 
energies we are dealing are small, so safely we can assume that 
also in the lab-frame, the neutrino and muon go in opposite 
directions. The lambda is ¼ wide enough to cover the whole exp 
area.

Direction in the lab frame

Width [1-cos(q)]


