
Flair Advanced Features

Advanced FLUKA Course

2

About

/fleə(r)/ n [U,C] natural or instinctive ability (to do something well,

to select or recognize what is best, more useful, etc.
[Oxford Advanced Dictionary of Current English]

Interface

3

2 working frames

active

inactive
click to activate

Mouse:
left opens on active
right select where to view

input modified and not saved

+ vertical/horizontal
= equalize

minimize
maximize

Interface

Keyboard:

Almost everything is possible with the keyboard see manual for shortcuts

Ctrl-Enter: Execute most important action

Ins/Del: Add or Delete

Mouse:

right-click anywhere to get a popup menu

Listboxes:

all listboxes are searchable. Typuing only the characters (A-Z) and
numbers (0-9) all other are ignored

LabelFrames:

can collapse/expand by clicking on the label

4

5

Anatomy of a card mini-dialog

 For each extended card flair has a mini dialog (currently in 4
columns), interpreting all information stored in the card

* Beam characteristics

BEAM -20.0 -0.082425 -1.7 1.0PROTON

Comment

Tag

Label
Interpreted
Value of WHAT(1)

Drop down list box
with possible options

Grey box
Shows currently
editing item

Input Editor - 1

6
highlight differences during editing

Input Editor - 2

 Drag‟n‟drop from the TAG of the cards

 Double click on card TAG to select all similar cards

 Editing multiple cards: select cards and modify the value in one
card will propagate the change to all similar selected cards

 Ctrl-Double-Click Show/Hide selected cards

 #if..#endif, $transform, $translat or $expand flair will enclose the
selected cards with the #if #endif, or $start_xxx, $end_xxx
transformation cards

 Popup Balloon tooltip displays short help:

 for every option on every card

 body description in the REGION expression

 Right-click: shows popup-menu

 Quick filtering by REGION, MATERIAL, scoring etc…

 Easter Eggs: AWARI by Double-Right-Click on dialog showing the
card representation as text at the bottom of the screen

7

Input Editor - 3

 Automatic indentation of nested #if..#endif and $start..$end
directives.

 To refresh the display type Ctrl-R

 Each REGION can be split into many cards if needed to be used
with preprocessor commands.

 Use as a name “&”

8

Input Card Filtering

 Filter Cards dialog allows a more advanced selection of cards to
be displaced, by showing only the cards that match the selected
options

9

Input Menu

10

Manual editing of the card

Scan input and display only active cards
(not excluded by the preprocessor)

Show cards containing problems/errors

Display a message with the errors identified
in the cards

Open the geometry transformation dialog

Expand parenthesis in the region
(only logical optimization will performed)

Manual Card Editing

Accessible: Ctrl-E, right-click → Edit, Menu → Input → Edit

Lines: How many lines the card extends

Extra: additional information for a card like title string for TITLE, or
region expression for REGION

Dropdown box: shows with categories all items defined in the input
(bodies, regions, materials, particles…)

11

Bodies Transformation

Transformation Types:

T translate along a vector

TX TY TZ translate along axis

RX RY RZ axis rotation (degrees)

S scaling

 Applies a user transformation to
the selected bodies on the input
editor.

 Convert transformations to/from
ROT-DEFini cards

 Zero: limit below which to be
considered as zero

 Accuracy: Numeric digits

 Infinite: infinite bodies when
converted to which size to use

 Use QUA: convert infinite
cylinders to infinite QUAdrics

Remember:

When transforming bodies for
use with LATTICE card, use the
maximum precision

12

Color Palette

Accessible: Menu → View → Palette

 Edit colors used for material display in
Geometry plots and GeometryEditor

 Global colors are saved inside flair.ini
and are shared between all projects

 Local colors are initially randomly
assigned and saved inside the project
file

13

Compiling

Filetypes accepted:
• Fortran: .f, .F, .for, .FOR

• C/C++: .c, cpp, .cxx, .cc

• Libraries: .a, .so

Automatic scanning of
necessary user routines
and copying them to
project folder.

Build: behaves like a
“makefile” compiles based
on files timestamp when
are newer

Compile: Forces compile of
the selected files

Clean: cleanup of all
produced files

14

automatic selecting needed
routines from usermvax/

When you are unsure, click on “Clean” before “Build”

Running

 Monitors the status of the run by inspecting the FLUKA output files.
If timeout occurs try to re-Attach to the running process.

 The timeout is user-definable in the Preferences dialog

<inputname> refers to the
input file AS IT IS in the input
editor.

Create additional runs based
on the same input file by
overriding:

 Title

 Preprocessor definitions

 Random number seed

 Starting particles

 Execution timeout

 Executable

15

select default
#define s

Running: How to use multicore CPU‟s

 Create clones of the current input e.g. test.inp named:
test1.inp, test2.inp, test3.inp …

 Assign a different random number seed on each run (Rnd entry)

 Select all in the listbox and click Run

Multiple Selection:

 To modify many runs at the same time, select them in the listbox

 The options will be “disabled”

 Right-click on the options you want to enable and modify them

 Modify the filters in Data processing for summing up all cycles
from all runs (see later)

16

Output Files

Inspect Output files generated
by FLUKA classified per:

Run/Cycle

As well special output files from
compilation data processing
plotting and temporary

Double clicking opens:

 Files in the file Viewer

 coredumps in debugger

Right click can convert
USRBIN‟s from formatted to
unformatted

17

Delete selected files

Data Processing
Process all scoring BINARY output
files for each Run.

Name rules are defined in
Preferences

Automatically scan input for scoring
cards

+/- Modify file list by adding /
removing items

Dialog for editing scanning rules for
files.

Use the rules to merge from
multiple runs. e.g. add a \d in the
target like +\I\d\d\d\d_fort.\U

To modify the rules for multiple
scoring cards, select all Usrxxx
before

The default rules can be modified in
the Preferences Dialog

18

19

Plot List

 Plots can be created in the “Plot”
list frame. Either Add new plots
or Clone from existing ones.

 It is important to set a unique
filename for each plot. This
filename will be used for every
auxiliary file that the plot needs
(the extension will change)

 The Filter button creates
automatically one plot for each
processed unit

 Hit Enter or click the Edit icon to
display the plotting dialog

 Fast Double click on item to
open the corresponding dialog

 Slow Double click to modify the
value

Plot Types
 Geometry For geometry plots
 USRBIN For plotting the output of USRBIN
 USR-1D To plot single differential quantities from cards

USRBDX, USRTRACK, USRCOLL, USRYIELD

 USR-2D To plot double differential from USRBDX
 RESNUCLE To plot 1d or 2d distributions of RESNUCLEi
 USERDUMP To plot the output of USERDUMP. Useful for

visualizing the source distribution (ToDo)

20

Plotting Frames

 All plot types share some
common fields:
Title + options, Filename, Axis
Labels, Legends (Keys) and
Gnuplot Commands.

 Plot button (Ctrl-Enter) will
generate all the necessary files
to display the plot, ONLY if they
do not exist.

 Re-Plot will force the creation of
all files regardless their state

 Check the gnuplot manual to
provide additional customization
commands: e.g. To change the
title font to Times size=20, add
in the Opt: field the command:
font „Times,20‟

Look in the flair manual for a short reference of gnuplot commands

21

General Tips

 In the Configuration Dialog you can set global commands to
execute before or after any plot

 The output window displays all the commands that are sent to
gnuplot. As well as the errors. In case of problem always consult
the output window!

 In the Gnuplot commands you can fully customize the plot by
adding manually gnuplot commands:

 Special commands:

 plot, splot with no options, defines the order where flair
should insert the plot or splot command.

 replot <plot-cmd> append extra plots to the one generated by flair

USRBIN Plots -1

22

Rebinning Get limits from gnuplot
using right-mouse

Swap axes

Draw errors. (combined with log)
Correct only if one slice is used

USRBIN Plots - 2

23

Normalization could be used as:

 number or expression evaluating in a number 65e-3/2.7

 function with x as variable. e.g E2T(x*65e-3/2.7)-293
with the function defined in the Gnuplot commands
E2T(x) = ((3.00629e-08*x-0.000108436)*x+1.01097)*x+311.839

USRBIN Plots - 3

24

Normalization could be plotted:

 2D projection, 1D projection

 Trace of the maximum

 Full width at half maximum

USRBIN Plots - 4

25

Geometry plot overlay (useful for LATTICE‟s):

-Auto- generates automatically from FLUKA a geometry at the middle
position of the projection

otherwise you can use any existing geometry plot from the drop down list.

Be carefull to proerly match the axes that you are using

Configuration Dialog: Programs

 Set FLUKA directory

 Override default programs to
use

 Processing programs are in
the “Data” section

26

Configuration Dialog: Interface

 General interface settings

 Keep backups when files are
saved as (file~)

 Automatically Cleanup
temporary files. Disable only
if you want to inspect files
after Debug or Plot when an
error occurs

 Key time to reset the type-in
search in listboxes

 Balloon delay time

 Time format for files (follows
python&C syntax)

 Time out to attach to a
running simulation

 Automatic refresh interval of
information 27

Configuration Dialog: Input Editor

 Show alignment scale

 Automatically insert comment

 Always display preprocessor
cards

 Enable drag‟n‟drop

 Automatic body insertion
while editing the region
expression

 Sort the region and material
list

 Display card interpretation at
the bottom of the screen

28

Configuration Dialog: Data

 Define how to generate the
automatic filenames

\I will be replaced by input

\T by card name

\t by card character

usrbdx x

usrbin b

usrcoll c

usrtrack t

usryield y

resnuclei r

\U the abs(unit-number)

29

Configuration Dialog: Gnuplot

Terminal:

additional options to supply
to default terminal

Global Commands:

gnuplot commands to be
executed before any plot

File Types:

Right-click: to
Add/Delete/Modify file types.

30

Configuration Dialog: Geometry

Laptop Mode:

check to swap middle with
right mouse buttons. Middle
button is used in
GeometryEditor for panning,
zooming, rotating etc…

Zero:

Infinite:

Accuracy:

same as in the Bodies
Transformation dialog

31

Materials Database

32

search database

insert material to input
add/del material
edit material

add names to be used
by FLUKA

Modify Stoichiometry
and properties of material

WARNING: When modifying the database a local copy will be created
in ~/.flair folder!!!

Periodic Table

33

Import / Export

Importing

 Input: merge parts or entire
input file with the current

 Mcnp: import mcnp geometry
into FLUKA. (experimental)

Exporting

 Gnuplot: save active plot to a
gnuplot script

 Makefile: create a makefile
for compiling the executable

 Mcnp: save input in MCNP
format: Geometry, Materials,
Importances

 Povray: save geometry into
povray 3D format

34

Geometry Editor 2D

 Debugging and editing bodies/regions in a graphical way

 Working on 2D cross sections of the geometry. Not a real
problem since most of the objects are 2D extruded in the 3rd

dimension

Pros

 Fast display of complex geometries

 Visual selection and editing of zones

 Use real curve of bodies with no conversion to vertices/edges

 Interactive debugging with information of problematic body
regions and zones

 No use of any additional hardware (plain X11 libraries)

Cons

 No interactive 3D display

 Blind in 3rd dimension[could be compensated with raytracing]

 Tricky to orientate in an unknown geometry
35

Geometry Editor: Interface

36

Tools View

Red Green

MagentaBlue

Filter

Filtered
Objects

Properties

Automatically refreshes when the input is changed

Geometry Editor: Mouse / Keyboard
General:

 Ctrl “controls” or changes the action

 Shift aligns to grid

 Escape cancels the active action

Mouse:

 Left button:

 User selectable action from the tools

 Middle button

 default: Pan/Move viewport

 Shift: select rectangle region and zoom into

 Shift-Ctrl: select rectangle region and zoom out

 Ctrl: rotate projection using a virtual trackball

 Ctrl-Shift: rotate projection using a virtual trackball with steps of 15

 Right button (or Ctrl-Spacebar):

 pop-up menu

When laptop mode is enabled in the Preferences then the middle and right
buttons are swapped 37

Tools

select h bodies, regions, or modify viewports

pan x move viewport

zoom z zoom in/out. Clicking will zoom by 2 or
draw a rectangle. To zoom-out use Ctrl

trackball t rotate viewport

refresh Ctrl-R refresh all viewports

toggle Shift-Z change view type: bodies, region, material

layout v rotate various layouts

errors show dialog with geometry errors

axes o show dialog to select projection

zone Ctrl-Click show zone description using selected
bodies

views 1..9 change view projection X-Y, Y-Z,…
38

Geometry Editor: Viewports

39

Other viewports are visible
with dashed lines

Manipulating Viewport

 Dashed lines represent viewports

 Center is represented with a square

 When the other-viewport is outside the
view window, the viewport-line will be
displayed on the closest edge

Actions (select-tool + left mouse)

 drag the center square to reposition the
viewport

 drag the line close to the center to
reposition the viewport along the vertical
axis

 drag the extremities of the viewport-line to
rotate the viewport

40

Geometry Errors

41

 “Errors in Geometry” notifies that are possible errors in the geometry.

 Clicking the icon displays the dialog with the errors.

 Touching surfaces are checked against 10 significant digits

Geometry Errors

42

x,y,z Coordinates of the error (on the surface of body)

body Body with the x,y,z point on surface generating the error

+body Regions that are on the + side of the body.

Regions where the body should be subtracted to remove the error

-body Regions that are on the – side of the body.

Regions that the body should be intersected to remove the error

+/- of body are defined according to the normal on the surface.
+ refers to outside, - to inside

Geometry Errors

Input File Errors

Programming Interface: API

There is work presently going on to decouple the functionality from
the interface, some of the basic classes can be used to input
processing

file: Input.py - to manipulate input files

import Input

Input.init([database]) to initialize the database of cards

Most commonly used classes:

Card containing the description of each card

Input manipulating the FLUKA input file

file: Project.py - to manipulate project files

43

API: class Card

Constructor: Input.Card(tag, what [,comment [,extra]])

what is a list starting with what[0]=sdum

Important Methods:

setWhat(n, value) set value to what#n

nwhats() return number of whats

what(n) return value of what#n

numWhat(n) return numeric value of what#n

intWhat(n) return integer value of what#n

clone() return a copy of the card

setEnable(e) enable/disable card

44

API: class Input

Constructor: Input.Input()

initialize the structure to hold an input file

Important Variables:

cardlist a list with pointers to cards

cards a dictionary with pointers to cards grouped
per tag

Important Methods:

read(filename) read input from file

write(filename) write input to filename

addCard(card,pos) add card to position pos (or end of file)

delCard(pos) delete card from position pos

preprocess() preprocess input to check for active cards

setEnable(e) enable/disable card

45

API: class Project

Constructor: Project.Project()

initialize the structure to hold a project file

Important Methods:

clear() to re-initialize project

load(filename) load project from file filename

save([filename]) save project to filename

runCmd(run) create run command

46

API: example

Read an input file and modify the random number seed

import Input

Input.init()

input = Input.Input()

input.read(“test.inp”)

try:

rndcard = self.cards[“RANDOMIZ”][0]

rndcard.setWhat(2,5723)

except:

print “No RANDOMIZe card found”

sys.exit(0)

input.write(“test2.inp”)

47

API: .flair file structure

comments

Variable: Value

Notes:

multi-line values are terminated with

Ctrl-L

Run: name

… Block of Run related information

Data:

… … Including Data processing information

EndData

EndRun

Plot: name

… Plot related informations

EndPlot

48

