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Magnetic field tracking in FLUKA

FLUKA allows for tracking in arbitrarily complex magnetic fields.
Magnetic field tracking is performed by iterations until a given
accuracy when crossing a boundary is achieved.
Meaningful user input is required when setting up the parameters 
defining the tracking accuracy.
Furthermore, when tracking in magnetic fields FLUKA accounts for:
 The precession of the mcs final direction around the particle direction:

this is critical in order to preserve the various correlations embedded
in the FLUKA advanced MCS algorithm

 The precession of a (possible) particle polarization around its direction
of motion: this matters only when polarization of charged particles is a
issue (mostly for muons in Fluka)

 The decrease of the particle momentum due to energy losses along a
given step and hence the corresponding decrease of its curvature
radius. Since FLUKA allows for fairly large (up to 20%) fractional
energy losses per step, this correction is important in order to prevent
excessive tracking inaccuracies to build up, or force to use very small
steps
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Magnetic field tracking in FLUKA

The red line is the path actually 
followed, 
the magenta segment is the last 
substep, shortened because of a 
boundary crossing

= max. tracking angle 
(MGNFIELD)
 = max. tracking/missing error 

(MGNFIELD or STEPSIZE)
 „ = max. bdrx error (MGNFIELD 
or STEPSIZE)

The true step (black) is approximated by 
linear sub-steps. Sub-step length and 
boundary crossing iteration are governed by 
the required tracking precision

The  end  point is ALWAYS on the true path,
generally NOT exactly on the boundary, but 
at  a distance  <  „ from the true boundary 
crossing (light blue  arc)
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Setting the tracking precision

  largest angle in degrees that a charged particle is allowed to 
travel in a single sub-step. Default = 57.0 (but a maximum of 
30.0 is recommended!)

  upper limit to error of the boundary iteration in cm (‟ in fig.). 
It also sets the tracking error . Default = 0.05 cm

MGNFIELD   Smin Bx By Bz

IF  and /or   are too large, boundaries  may 
be missed ( as in the plot). 
IF they are too small, CPU time explodes..
Both  and   conditions  are fulfilled during 
tracking
 Set them according to your problem
Tune  by region with the STEPSIZE card
 Be careful when very small regions exists in 
your setting :  must be smaller than the 
region dimensions!
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Setting the tracking precision

 Smin minimum sub-step length. If the radius of curvature is so 
small that the maximum sub-step compatible with  is smaller 
than Smin, then the condition on  is overridden. It avoids 
endless tracking of spiraling low energy particles. Default = 0.1 
cm

MGNFIELD   Smin Bx By Bz

Particle 1: the sub-step corresponding 
to  is > Smin -> accept
Particle 2: the sub-step corresponding 
to  is < Smin ->  increase 

Smin can be set by region with the 
STEPSIZE card
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Setting precision by region

 Smin: (if what(1)>0) minimum step size in cm 
Overrides MGNFIELD if larger than its setting.

  (if what(1)<0) : max error on the location of 
intersection with boundary.
 The possibility to have different “precision” in different 

regions allows to save cpu time

 Smax : max step size in cm.  Default:100000. cm 
for a region without mag field, 10 cm with mag field.
 Smax can be useful for instance for large vacuum regions 

with relatively low magnetic field  
 It should not be used for general step control, use 

EMFFIX, FLUKAFIX if needed

STEPSIZE Smin/ Smax Reg1 Reg2 Step
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Possible loops in mag.fields

 Although rare, it is PHYSICALLY possible that a particle loops 
for ever ( or for a very long time).  Imagine a stable particle  
generated  perpendicularly to a uniform B in a large enough 
vacuum region: it will  stay on a circular orbit  forever !

 Suppose now that the orbit  enters in a non-vacuum region  
(here we can at least loose energy..) but the boundary is 
missed due to insufficient precision. This results again in a 
never-ending loop.

Luckily, it almost never happens. Almost.
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The magfld.f user routine
This routine allows to define arbitrarily complex magnetic fields:

( uniform fields can be defined trough the  MGNFIELD card)

SUBROUTINE MAGFLD ( X, Y, Z, BTX, BTY, BTZ, B, NREG, IDISC)

.                              Input variables: 

x,y,z = current position

nreg = current region

Output variables: 

btx,bty,btz =   cosines of the magn. field vector 

B = magnetic field intensity (Tesla) 

idisc = set to 1 if the particle has to be 
discarded 

 All floating point variables are double precision ones!

 BTX, BTY, BTZ  must be normalized to 1 in double precision

 Magfld .f is called only for regions where a magnetic field has 
been declared through ASSIGNMAT



Example: magnetic field in CNGS

Cern Neutrino to Gran Sasso  

The two magnetic lenses (blue in the sketch) align positive 
mesons towards the Decay tunnel, so that neutrinos from 
the decay are directed to Gran Sasso, 730~km away
Negative mesons are deflected away
The lenses have a finite energy/angle acceptance



Example : the magfld.f routine

Magnetic field 
intensity in the 
CNGS horn

A cuurent 
≈150kA, pulsed, 
circulates 
through the 
Inner
and
Outer
conductors
The field is 
toroidal, 
B1/R





magfld: example
SUBROUTINE MAGFLD ( X, Y, Z, BTX, BTY, BTZ, B, NREG, IDISC )

INCLUDE '(DBLPRC)'
INCLUDE '(DIMPAR)'
INCLUDE '(IOUNIT)„

INCLUDE '(NUBEAM)'

IF ( NREG .EQ. NRHORN ) THEN
RRR = SQRT ( X**2 + Y**2 )
BTX =-Y / RRR
BTY = X / RRR
BTZ = ZERZER
B   = 2.D-07 * CURHOR / 1.D-02 / RRR

END IF

In this case, the cosines are 
automatically normalized. 
Otherwise, user MUST 
ensure that
BTX**2+BTY**2+BTZ**1=ONEONE

USEFUL TIP
This is a user defined include file, containing for example 
COMMON  /NUBEAM/ CURHORN, NRHORN, ……

It  can be  initialized  in a custom  usrini.f user routine, so 
that parameters can be easily changed in the input file  

This gives a  versor  radius
in a plane  z axis 

B intensity depending 
on R and current

Standard FLUKA includes : KEEP THEM



magfld: example contnd
Different fields in different regions: 

IF ( NREG .EQ. NRHORN ) THEN
……

ELSE IF ( NREG .EQ. NRSOLE ) THEN
BTX = ZERZER
BTY = ZERZER
BTZ = ONEONE
B   = SOLEB

ELSE IF ( NREG .EQ. NRMAP ) THEN
CALL GETMAP ( X, Y, Z, BTX, BTY, BTZ, B)

ELSE
WRITE ( LUNOUT, *) „MGFLD, WHY HERE ?
WRITE ( LUNOUT, *) NREG‟
STOP

END IF

This gives a   perfect 
solenoid field

Intensity  calculated at initialization

Add a bit of protection.

Get values from field map

The user can add more routines,  they have to be included in the  
linking procedure
Always : 

include the three standard FLUKA INCLUDEs 
use FLUKA defined constants and particle properties for consistency

Possible, not explained here : call C routines



magfld: results

charged particle tracks 
in the CNGS geometry
1 event
USRBIN  R-Z

Focused
De-focused
Escaping..many



The user initialization routines
 usrglo.f called before all initialization, if a USRGCALL card is

issued

 usrini.f called after all initialization, if a USRICALL card is
issued

 usrein.f called at each event, before the  showering of an event 
is started, but after the source particles  of that event have been 
already loaded on the stack. No card is needed 

Very useful to initialize and propagate variables common to other 
user routines

 Associated OUTPUT routines:

 usrout.f called at the end of the run if USROCALL is present

 usreout.f called at the end of each event , no card needed 
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Initialization routines -II
 usrglo.f knows nothing about the simulations, but 

can provide informations to the other initialization 
stages. 

 usrini.f knows everything about the problem. Here 
one can, for instance, use  informations about 
materials, regions etc.

 usrein.f is useful when doing event-by-event user 
scoring , it can for instance reset and reinitialize 
event-dependent user quantities

The USRGCALL and USRICALL cards can be issued 
many times if more parameters are needed

The USRICALL card accepts input BY NAMES
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usrini.f :example
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SUBROUTINE USRINI ( WHAT, SDUM )

INCLUDE '(DBLPRC)'
INCLUDE '(DIMPAR)'
INCLUDE '(IOUNIT)„

…..
DIMENSION WHAT (6)
CHARACTER SDUM*8

….
CHARACTER  MAPFILE(8)  
INCLUDE '(NUBEAM)„

IF ( SDUM .EQ. 'HORNREFL' ) THEN
NRHORN = WHAT (1)
CURHORN = WHAT (2)

ELSE IF (SDUM .EQ. „SOLENOID„) THEN
SOLEB = WHAT (2)
NRSOLE = WHAT(1)

contnd

Default declarations

Here we store our variables

Here we initialize region numbers
And parameters for the magfld.f
routine



usrini.f: example contnd
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ELSE
MAPFILE=SDUM
MYUNIT=21
CALL OAUXFI ( MAPFILE,  MYUNIT, „OLD‟ , IERR)
CALL READMAP(MYUNIT)
CLOSE (21)
NRMAP= WHAT (1)

END IF
RETURN

Use the SDUM  field to read the name 
of the  magnetic field  map file 

Open the field map 

Call a user procedure that reads 
and stores the field map to be 
used by magfld.f

This  usrini needs 3 cards to initialize all parameters:, like i.e.

USRICALL   MyHorn 150000.                                  HORNREFL
USRICALL   MySole 1. 3                                        SOLENOID
USRICALL   Mapped                                                    myflmap

The region names in the what‟s are automatically parsed and 
converted to region numbers by  FLUKA
(same would happen with  materials,  scoring  ..)



Roto-translation routines:
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The DOTRSF routine executes the KROTAT_th transformation as
defined by ROT-DEFI on NPOINT points, defined by the X,Y,ZPOINT
arrays, with a (possible) translation included

DORTNO does the same without the translation (eg for velocity vectors)

UNDOTR performs the inverse transformation, with a (possible)
translation included

UNDRTO performs the inverse transformation, without the translation

SUBROUTINE DOTRSF ( NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT )
…
SUBROUTINE DORTNO ( NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)
…
SUBROUTINE UNDOTR ( NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)
…
SUBROUTINE UNDRTO ( NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)
…
DIMENSION XPOINT (NPOINT), YPOINT (NPOINT), ZPOINT (NPOINT)
…



Numerical precision
 Floating point representation

± d0d1d2 … dp-1 × be

where: b=base,  0.dddd=significant

 Represents the number

± (d0 + d1 b-1 + … + dp-1 b-(p-1)) be, (0≤di<b)

 Bits required: log2(emax-emin+1) + log2(bp) + 1

 Real numbers might not be exactly represented as a floating-
point number. Example:
with b=2 the number 0.1 has an infinite representation and with 
p=24 will be represented as: 0.100000001490116119384765625

 IEEE representation:

 Single precision (32bit):

 Double precision (64bit):
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Floating point: Accuracy
 Cancellation: subtraction of nearly equal operands may cause 

extreme loss of accuracy.

 Conversions to integer are not intuitive:
converting (63.0/9.0) to integer yields 7,
but converting (0.63/0.09) may yield 6.
This is because conversions generally truncate rather than round. 

 Limited exponent range: results might overflow yielding infinity, 
or underflow yielding a denormal value or zero. If a denormal
number results, precision will be lost.

 Testing for safe division is problematic: Checking that the divisor 
is not zero does not guarantee that a division will not overflow 
and yield infinity.

 Equality test is problematic: Two computational sequences that 
are mathematically equal may well produce different floating-
point values. Programmers often perform comparisons within 
some tolerance
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Minimizing Accuracy Problems
 Use double precision whenever possible.

 Small errors in floating-point arithmetic can grow when 
mathematical algorithms perform operations an enormous 
number of times. e.g. matrix inversion, eigenvalues…

 Expectations from mathematics may not be realized in the field of 
floating-point computation. e.g. sin2q+cos2q = 1.

 Always replace the x2-y2 = (x+y)(x-y)

 Equality test should be avoided: replace with "fuzzy" comparisons 
(if (abs(x-y) < epsilon) ...)

 Adding a large number of numbers can lead to loss of 
significance, use Kahan algorithm instead

 For the quadratic formula use either

or

when b2>>4ac, then √(b2-4ac)≈|b| therefore will introduce 
cancelation
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END



usrglo.f :example
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SUBROUTINE USRGLO ( WHAT, SDUM )

INCLUDE '(DBLPRC)'
INCLUDE '(DIMPAR)'
INCLUDE '(IOUNIT)„

…..
DIMENSION WHAT (6)
CHARACTER SDUM*8
INCLUDE '(NUBEAM)„

IF ( WHAT(1) .GT. ZERZER )  THEN
ROTTRG   =  WHAT(1)
LTGMISA = .TRUE.
TRATARG = ZERZER
IF ( WHAT(2) .GT. ZERZER ) TRATARG = WHAT(2)

RETURN

Default declarations

Here we store our variables

Suppose we have a lattic.f routine 
That rotates the target  to simulate misalignment : here  a flag and 
the rotation / translation amounts are set


