

Radiation Safety Assessment of the CLS Beamlines Using FLUKA Monte-Carlo Code

Mo Benmerrouche Fluka Advanced Workshop - Oct 07, 2010 Ericeira, Portugal

2008/06/19

10

M. Benmerrouche, HSE Manager

http://www.lightsource.ca

Where is the CLS Located? Saskatoon, Saskatchewan, CANADA

CLS Facility on the UofS Campus

- Located on the University of Saskatchewan campus
- CLSI has the responsibility for operating the synchrotron facility in Canada and providing infrastructure support for the Canadian synchrotron research community as well as contributions to international synchrotron projects.

CLS Facility

- It includes:
 - Linac a 250 MeV electron accelerator, which was part of the former SAL,
 - Booster Ring a 250 MeV to 2.9 GeV electron accelerator,
 - Storage Ring a 2.9 GeV storage ring and the source of the SR,
 - Beamlines for transport of SR to experimental target stations, where scientific experiments or processes requiring SR are carried out (infrared to hard X-rays, 0.01 eV – 100 keV)
- Facility Conventional Construction
 - began ~ June 1999 and completed ~ January 2001
 - Bulk shielding completed April 2001
 - Building expansion on the north-east to accommodate BMIT beamlines completed in December 2007
- Accelerator commissioning
 - began ~ June 2001 and completed ~ May 2004
- Routine Operation
 - began in August 2004 and includes 7 research beamlines and 2 diagnostic beamlines (Phase I)
 - Users other than CLSI staff were allowed to access synchrotron beamlines for research
- Top-up mode
 - Preliminary radiological studies completed in December 2005
- Phase I beamlines
 - The CLS Phase I project was finished in 2005 and included first set of 7 beamlines.
- Phase II Beamlines Projects
 - 7 additional Phase II beamlines are in the final stages of commissioning.
 - Expected to be available for general users by the end of 2009.
- Phase III Beamlines Projects
 - Three projects together comprise five new beamlines and are in planning/design/Early construction phase
 - Commissioning phase to start by 2012.
 - Building expansion required to house some of the Phase III beamlines

CLS Facility Main Components Accelerators & beamlines

5

CLS Beamlines Existing, Planned, and Future

asi

Some Components of Front-End and **Beamines**

Sources of Radiation For Beamlines Enclosure Shielding

- Gas Bremsstrahlung:
 - Production rate well described by Koch/Motz formula [Rev. Mod Phys 31, 1959]
 - Depends on
 - energy of circulating electrons and stored current
 - residual gas composition and pressure
 - length of straight section
- Synchrotron Radiation:
 - Bending magnet or Insertion Device (Wiggler or undulator)
 - Depends on
 - electron energy and stored current
 - SR source parameters such as magnetic field strength, critical energy, no of poles
 - Fluka simulations performed for the bending magnet beamline

GB: Fluka Transport/Physics/Biasing Cards

MULSOPT	Туре: 🔻	Optimize: off 🔻	
h/µ steps: 0	e-e+ steps: 0	h/µ Corr: No correction	ns ▼ e-e+ Corr: no MCS ▼
	Mat: AIRPLOW V	to Mat: 🔻	Step:
Physics			
EMFCUT	Type: ELPO-THR V	e-e+ Brem: 0.0	γ Bhabha/Moller: 4.0
Photonuc: 0.0	Mat: AIRPLOW V	to Mat: 🔻	Step:
EMFCUT	Туре: 🔻	e-e+:-4.0	Y: 0.0
Old bremss.: off 🔻	Bremsstrahlung: off V	Pair Prod.: off 🔻	e+ ann @rest: off ▼
Compton: off 🔻	Bhabha&Moller: off 🔻	Photo-electric: off 🔻	e+ ann @flight: off ▼
	Reg: EX6 🔻	to Reg: 🔻	Step:
EMFCUT	Туре: 🔻	e-e+:-0.0005	y: 0.00001
Old bremss.: off v	Bremsstrahlung: off 🔻	Pair Prod.: off 🔻	e+ ann @rest: off ▼
Compton: off v	Bhabha&Moller: off 🔻	Photo-electric: off 🔻	e+ ann @flight: off ▼
	Reg: PSH ▼	to Reg: 🔻	Step:
	Tunor -		
PHOTONUC	Type: 🔻		
E>0.7GeV On V	∆ resonance On ▼	Quasi D On 🔻	Giant Dipole On 🔻
	Mat: LEAD V	to Mat: 🔻	Step:

reduce inelastic interaction length of photons by 0.02

LAM-BIAS	Туре: 🔻	÷ mean life: 0.0	÷ λ inelastic: 0.02
Mat: 🔻	Part: PHOTON V	to Part: 🔻	Step:

assi

Geometry Region View IDEAS Bending Magnet Beamline

CLS B208 IDEAS POE for GB and SR Simulations

Geometry Material View

ast

Materials

300

1000

STOP

Materials			
MATERIAL	Name: AIRPLOW	# 26.0	p: 0.0001205
Z:	Am:	A:	dE/dx: 🔻
COMPOUND	Name: AIRPLOW V	Mix: Mass 🔻	Elements: 13 V
f1: 0.78084	M1: NITROGEN V	f2: 0.20946	M2: OXYGEN V
f3:	M3: 🔻		
Set pressure in the air column to 0.1 atm.			
MAT-PROP	Туре: 🔻	Gas pressure: 0.1	RHOR: 0.0
Ionization: 0.0	Mat: AIRPLOW V	to Mat: 🔻	Step:
276 Water liquid H2_O			
Chemical Formula: H O H			
MATERIAL	Name: WATER	#	p: 1.0
Z:	Am:	A:	dE/dx: 🔻
COMPOUND	Name: WATER V	Mix: Atom 🔻	Elements: 13 V
f1: 2.0	M1: HYDROGEN V	f2: 1.0	M2: OXYGEN V
f3:	M3: 🔻		
MAT-PROP	Туре: 🔻	Gas pressure:	RHOR:
Ionization: 75.0	Mat: WATER V	to Mat: 🔻	Step:
STERNHEI	Cbar: 3.5017	X0: .24	X1: 2.8004
Mat: WATER V	a: .09116	m: 3.4773	δ0:
104 Air dry (near sea level)			
MATERIAL	Name: AIR	#	p:.00120484
Z:	Am:	A:	dE/dx: 🔻
COMPOUND	Name: AIR V	Mix: Mass 🔻	Elements: 46 V
f1: 0.0001248	M1: CARBON V	f2: 0.755267	M2: NITROGEN V
f3: 0.231781	M3: OXYGEN V	f4: 0.012827	M4: ARGON 🔻
f5:	M5: 🔻	f6:	M6: 🔻
MAT-PROP	Туре: 🔻	Gas pressure:	RHOR:
Ionization: 85.7	Mat: AIR V	to Mat: 🔻	Step:
STERNHEI	Cbar: 10.5961	^{X0:} 1.7418	X1: 4.2759
Mat: AIR 🔻	a: 0.10914	m: 3.3994	δ0:

Usbdx Scoring

300

USRBDX		Unit: 58 BIN 🔻	Name: gb-fl
Type: Φ1,LogE,LinΩ ▼	Reg: GBPOE 🔻	to Reg: GBFL 🔻	Area: 1.0
Part: PHOTON V	Emin: 1.0E-06	Emax: 3.0	Ebins: 50.0
	Ωmin:	Ωmax:	Ωbins: 1.0
USRBDX		Unit: 58 BIN 🔻	Name: gb-fl-lil
Type: Φ1,LinE,LinΩ ▼	Reg: GBPOE 🔻	to Reg: GBFL 🔻	Area: 1.0
Part: PHOTON V	Emin: 1.0E-06	Emax: 1.0E-03	Ebins: 100.0
	Ωmin:	Ωmax:	Ωbins: 1.0
USRBDX		Unit: 58 BIN 🔻	Name: gb-fl-lih
Type: Φ1,LinE,LinΩ ▼	Reg: GBPOE V	to Reg: GBFL 🔻	Area: 1.0
Part: PHOTON V	Emin: 1.0E-03	Emax: 3.0	Ebins: 100.0
	Ωmin:	Ωmax:	Ωbins: 1.0

Flair USBDX Plots/Analysis

_ Plot	
Title: Photon Fluence Options:	
File: bl_gen_usrbdx_58_plot .eps 🔻 🛃 Display: 0	🛢 Line Type: 🛛 🔻
Axes Labels	ize / Multiplot
X: E (GeV) Opt: v grid as	pect:
Y: dF/dE Opt: ✓ legend W	/idth: Height:
Axes Range	
	show Get
▼ log Y:	show Reset
Detector Info	
File: bl gen_usrbdx_58_tab.lis	V Block: 0 😂
fe-poe Show: 🗸 graph 🗸 legend Norm:	
gb-fl X: Mean [(xl+xh ¥ Y: Y V V)]	
gb-fl-lin Clothing Style clipes cPoints	
poe-psh With: yverorbar Type: 6 Type: 1	
Akes kiyi Vidil. 2 Size 1	
Smooth: Color: V Style: 0	
set mxtics 10	
set mytics 10	
#set xtics ("-90" -p1/2, "-45" -p1/4, "0" 0, "45" p1/4, "90" p1/2)	
fr fl = 5.6087328E-03/5.7574552E-03	
print 1/fr fl	
# Fraction of GB power hiutting the cupper target in SOE	
$fr_tg = 5.0434833E-03/5.7574552E-03$	
#MATERIAL 0.0001205 26.0 TARGET	
#COMPOUND -0.78084 NITROGEN -0.20946 OXYGEN TARGET	
#MAT-PROP 0.1 0.0 0.0 TARGET	
# Residual gas	
$z_0 = 10.4502$	
$\frac{7}{7} 20 = 10.5$	
$\frac{1}{4} z_0 = 10.2$	
a0 = 29.4454	
print 10.45*(10.45+1.0)/(10.2*(10.2+1.0))	
$r_0 = 1.225E - 04$	
$p_{a} = 0.1^{+}1.012+05$	
Ee = 2.9	
# air target length (cm)	
tl = 600.0	
# avogadro no	
$v = 0.224 \pm 0.4$	
# c = 4.0*al*re^2 with al=1/137 and re=2.82e-13 cm (classical electron radius)	
c = 2.32E-27	
$C1(z) = C*tL*z*(z+1.0)*(pa/1.01E+05)*(av/vol_N)$ $C2(rbo_z, z) = C*tl*z*z*(pa/1.01E+05)*(av*rbo/z)$	
phi(x,z) = ((1,0 + (1,0 - x/Fe))*2,0 - 2,0/3,0*(1,0 - x/Fe))*log(183,0/z**(1,0/3,0)) + 1,0/9,0*(1,0 - x/Fe))*log(183,0/z**(1,0/3,0)) + 1,0/9,0*(1,0)) + 1,0/9,0*(*(Plot
lng(x,z) = x*c1(z)*phi(x,z)	
replot ng(x,z0)/x w lines lt 10 lw 2 title "THEORY"	🍫 Replot

1.000

Photon Fluence

M. Benmerrouche, HSE Manager

http://www.lightsource.ca

ambient dose			
USRBIN		Unit: 60 BIN 🔻	Name: gde_in
Type: X-Y-Z 🔻	Xmin: 200.0	Xmax: 1200.0	NX: 400.0
Part: DOSE-EQ 🔻	Ymin: -150.0	Ymax: 150.0	NY: 100.0
	Zmin: -100.0	Zmax: 150.0	NZ: 100.0
AUXSCORE	Type: USRBIN 🔻	Part: PHOTON V	Set: AMB74 🔻
	^{Det:} gde_in ▼	to Det: 🔻	Step:

-Plot -						
Title: P	Photon Ambient Dose Equivalent				Options:	
File: b	ol_gen_usrbin_60_plot				.eps 🔻 🛃 Display:	0 🛢 Line Type: 🛛 🔻
Axes L	Labels				Cat	Cize / Multiplat
X: Z	(cm) [Beam Direction]		Opt:		- Set	size / Multiplot
Y: X	(cm) [Elevation]		Opt:		legend	Width: Height:
CB: US	Sv/hr		Opt:		I regenu	width. Height.
Binnin	ng Detector					
File	: bl_gen_usrbin_60	🗃 Title: CLS B	208 Beamline (IDEAS) POE/SOE			
Cycles	: 7 Primaries	: 7000000 Weight:	7000000.0 Time: ***** Sum file **	****		
Binnin	ng Info					
Det:	1 gde_in	▼ X: [200	1200] x 400 (2.5)	Min: 2.62916515E-08		
Type:	10: X-Y-Z	Y: [-150	150] x 100 (3)	Max: 0.0193166174		
Score:	DOSE-EQ	Z: [-100	150] x 100 (2.5)	Int: 169.365624		
Projec	tion & Limits			Type: 2	D Projection	
0 X:		▼ 1		Get Color	Band	Geometry
• Y:	-15	V 1	15	🔻 🔽 swap 🛛 Min	n: Max:	Use: -Auto-
0 Z:		V 1		▼ □ errors CPD): 3 🚔 Colors: 30	Pos: 0.0
Norm:	1.3158E-11*1.1235E+22*1.0E	-06*1.175		✓ log Palette	e: FLUKA 🔻 🗷 Round	Axes: X-Z

(0))

Photon Ambient Dose Profile (6 m long straight)

Photon Ambient Dose Equivalent

17

(ST

Neutron Ambient Dose Profile (6 m long straight)

Neutron Ambient Dose Equivalent

CON S

Comparison with earlier shielding Calculations for GB Only

Bending Magnet POE Shielding Requirements (GB Only)

Back-wall:	EGS 10 mm Pb (+20 mm Pb locally)	FLUKA 5 mm Fe (+25 mm Pb locally)
Side-wall:	5 mm Pb	3 mm Fe
Roof:	5 mm Pb	3 mm Fe

- EGS dose estimates based on energy deposited in water phantom while FLUKA uses AMB74 ambient dose equivalent.
- EGS results assumes 12 cm long straight (BM) while FLUKA are based on a 6m long straight – factor of about 50 reduction
- Both are for 500 mA stored current and 2.9 GeV electron energy.
- EGS assumes an effective z for residual gas to be 8.1 while FLUKA uses an effective z of about 10.5.

(AN)

Fluka simulation of SR Bending Magnet

Source parameters: E=2.9 GeV, B= 1.354 T, 7.572 keV
Use Spectrum generated by STAC8 as input for FLUKA simulations using source.f file

Beam: pencil beam of photons up at 500	keV					
BEAM	Beam: Energy V	E:0.0005	Part: PHOTON V			
∆p: Flat ▼	Δp: 0.0	∆¢:Flat ▼	Δφ: 0.0			
Shape: Rectangular V	Δx: 0.0	Δy: 0.0	Weight: 1.0			
SOURCE	#1:1.0	#2:1.0E-06	#3:5.0E-04			
sdum: sr_bm	#4:	#5:	#6:			
MATERIAL AUXSCORE : 140 cards hidden						
Beam starts at (299.9 cm, 0, 0) (i.e., on the x axis) and travels in +x direction						
BEAMPOS	x: 299.9	у: 0.0	z: 0.0			
	cosx: 1.0	cosy: 0.0	Type: POSITIVE V			

CO N

DO 2 I = 1, NPOINT READ(81,*,END=999) SR E(I), SR S(I) SR E(I) = SR E(I) * EFACWRITE(LUNOUT,*)I,SR_E(I),SR_S(I) CONTINUE 2 CONTINUE 999 $SR_I(1) = ZERZER$ Calculate the cumulative function DO I = 2, NPOINT $SR_I(I) = SR_I(I-1) + HLFHLF*(SR_S(I)+SR_S(I-1))*$ \$ $(SR_E(I) - SR_E(I-1))$ WRITE(LUNOUT,*) I, SR_E(I), SR_I(I) END DO $SUM = SR_{I}(NPOINT)$ DO I = 2, NPOINT $SR_I(I) = SR_I(I)/SUM$ WRITE(LUNOUT,*)I,SR_E(I),SR_I(I) END DO END IF Push one source particle to the stack. Note that you could as well push many but this way we reserve a maximum amount of space in the * stack for the secondaries to be generated Npflka is the stack counter: of course any time source is called it must be =0 RAN_E = FLRNDM(TKESUM) ENERGY = ENMIN + (ENMAX - ENMIN) * RAN E DO 3 I = 1, NPOINT - 1 IF(ENERGY .GT. SR_E(I) .AND. ENERGY .LE. SR_E(I+1)) THEN WEIGHT = SR S(I) + (SR S(I+1) - SR S(I)) * $(ENERGY - SR_E(I))/(SR_E(I+1) - SR_E(I))$ & GO TO 4 END IF **3 CONTINUE 4** CONTINUE NPFLKA = NPFLKA + 1* Wt is the weight of the particle WTFLK (NPFLKA) = ONEONE c\$\$\$ WTFLK (NPFLKA) = WEIGHT WEIPRI = WEIPRI + WTFLK (NPFLKA)

Source.f

assi

Synchrotron Radiation Photon Fluence Bending Magnet

assi

Conclusions/Remarks

- Need to understand the differences between EGS and FLUKA for the GB calculations
 - Run comparison using same input, target, geometry, etc...
- Radiation experiments have been conducted exposing Luxels to radiation inside a Bending magnet primary enclosure
 - Data is being analyzed
 - Compare results with FLUKA and STAC8 (SR Radiation)

Future Use of Fluka

- Phase III Beamlines (CLS)
 - Compare radiation measurements during beamline commissioning with Fluka predictions
 - Brochouse beamline shielding design
- Top-up mode of Operation Radiation Analysis (CLS)
 - Radiation analysis of Front-ends and beamlines
- Medical Isotope Project (CLS)
 - Low Energy High Power electron Linac (35 MeV, 35 kW) shielding
 - Activation of accelerator components, target, cooling water and surrounding air
 - Estimate of Mo-99 from Mo-100 target
- Accelerator specific radiation analyses (CLS)
 - Booster to Storage ring collimator and scraper
 - Revisit local shielding in the Booster injection area
- Elinac project (Triumf)
 - Collaboration with Anne Trudel and Mike Trinczek

- Fluka:
 - Fluka organization for providing the FLUKA Code
 - "The FLUKA code: Description and benchmarking" G. Battistoni, S. Muraro, P.R. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fasso`, J. Ranft, Proceedings of the Hadronic Shower Simulation Workshop 2006, Fermilab 6--8 September 2006, M. Albrow, R. Raja eds., AIP Conference Proceeding 896, 31-49, (2007)
 - "FLUKA: a multi-particle transport code" A. Fasso`, A. Ferrari, J. Ranft, and P.R. Sala, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773
- FLAIR:
 - Vasilis Vlachoudis
- SimpleGeo:
 - Theis C., Buchegger K.H., Brugger M., Forkel-Wirth D., Roesler S., Vincke H., "Interactive three dimensional visualization and creation of geometries for Monte Carlo calculations", Nuclear Instruments and Methods in Physics Research A 562, pp. 827-829 (2006).
- STAC8:
 - Yohishiro Asano for providing the STAC8 code
 - Developed by Y. Asano for shielding SR beamlines at SPring8
 - STAC8 Refs:
 - 1. "Development of shielding design code for synchrotron radiation beam line," Yoshihiro Asano and Nobuo Sasamoto, Radiation Physics and Chemistry, v.44, no.1-2, Jul-Aug 1994; p.133-137. Also in Proceedings of the 1st Physics Conference; Nov 15-19 1992; Qena, Egypt.
 - 2. Yoshihiro Asano, "A Study on Radiation Shielding and Safety Analysis for a Synchrotron Radiation Beamline," JAERI-Research 2001-006, March 2001.
- Radiation Measurements:
 - Pavi Selvaraj and Lyndon Cowles for carrying out the radiation experiments on SXRMB bending magnet beamline.