

Simulation of photon-nuclear interaction in production of medical isotopes and transmutation of nuclear waste

Barbara Szpunar Collaboration with Prof. Chary Rangacharyulu

Available on:

http://www.yamadazaidan.jp/ys/apse2010/apse2010-18/18-12-25-Szpunar.pdf

October 7th, 2010, Eucera 1st Advanced FLUKA Workshop

B.Szpunar@usask.ca 306-966-6462

Content

- Purpose of this work and introduction
- Details on FLUKA input file
- Photon induced artificial transmutation
 - Medical isotope production
 - Photofission
 - Treatment of long-lived isotopes in nuclear waste
- Summary and conclusions

Purpose of this work and introduction

- Shortage of medical isotopes call for alternative production methods
- Most widely used ⁹⁹Mo -> ^{99m}Tc (~35 common radiopharmaceuticals)

^{99m}Tc -> ⁹⁹Tc + γ Each diagnostic uses few GBq (1GBq = 0.027 Ci)

- EPAC 2000 Vienna, world uses: 150,000 Ci/year
- Proton cyclotrons located close to hospital can supply average usage: e.g. at CHUS, Sherbrooke 10 Ci/week of ^{99m}Tc
- ^{99m}Tc is short-lived (T_{1/2} = 6.0058 h) therefore ⁹⁹Mo (T_{1/2} = 65.94 h) needed for remote, small hospitals

⁹⁹Mo and other medical and industrial usage isotopes can be produced using photons at Giant Dipole Resonance energies

April 2010, Canadian Light Source, workshop

- CLS equipped with a CO₂ laser back scatter system to test the feasibility of application of photo-nuclear transmutations
- Discussion and collaboration with international community (Japan (JAEA), USA)
- Achievable at CLS maximum photon energy: 15 MeV for 2.9 GeV electron beam energy (0 degree incident angle)
- Supportive FLUKA simulation: design of experiment, evaluation

UNIVERSITY OF SASKATCHEWAN

FLUKA; input file

•	GLOBAL				1.0	1.0	
•	DEFAULTS						PRECISIO
•	PHYSICS	1.					COALESCE
•	PHYSICS	3.					EVAPORAT
•	BEAM	-0.012	.006	0.0	.1	0.0	-1.0PHOTON
•	BEAMPOS	0.0	0.0	-20.1	0.0	0.0	
•	GEOBEGIN						COMBNAME
•							
•	GEOEND						
•	PHOTONUC	5.	0.0		Mo100	Mo100	
•	LAM-BIAS	0.0	0.02	Mo100	PHOTON		0.0
•	LOW-MAT	LEAD	82.	208.	296.		208-PB
•							
•	USRBIN	10.	ENERGY	-50.	10.	10.	20.EneDep
•	USRBIN	-10.	-10.	-20.	200.	200.	200.&
•	RESNUCLE	3.	-61.			TARGET	1.0Target
•	USRTRACK	-1.	PHOTON	-71.	TARGET	1.0	400.photon
•	USRTRACK	1.	1D-12				å
•	USRTRACK	-1.	PROTON	-71.	TARGET	1.0	400.proton
•	USRTRACK	1.0	1D-12				&
•	USRTRACK	-1. NEUTRC	N -71. TA	RGET 1.0	400.neutro	n	
•	USRTRAC <u>K</u>	1.0 1.D- <u>12</u>		&			

•

C.E.E.

Photonuclear reaction; biasing

¹⁹³Ir of cylindrical shape (0.01 m diameter, 0.04 m height) in spherical lead container (0.3 m radius)

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(\mathbf{n},\boldsymbol{\gamma})^{194}$ Ir	1.36×10^{-4}	3
$(\gamma, e^+e^-)_{atomic}$ ¹⁹³ Ir	1.28×10^{-3}	0.8
$(\gamma,\mathbf{n})^{192}$ Ir	2.04×10^{-2}	0.1
$(\gamma,2n)^{191}$ Ir	9.00x10 ⁻⁴	0.9

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(\mathbf{n},\boldsymbol{\gamma})^{194}$ Ir	1.33×10^{-4}	0.2
$(\gamma, e^+e^-)_{atomic}$ ¹⁹³ Ir	1.28×10^{-3}	0.1
$(\gamma,n)^{192}$ Ir	2.04×10^{-2}	0.04
$(\gamma, 2n)^{191}$ Ir	9.16x10 ⁻⁴	0.1
$(\gamma,p)^{192}$ Os	1.97x10 ⁻⁸	42

Hadronic interaction length

No biasing

Proceedings, CNS 31st Annual Conference, Montreal, May 24-27, 2010

I: FLUKA hybrid simulations

No time

dependence

Time

dependence

 Five runs (each 10⁶ particles, GDR energy)
Energy deposition, equivalent dose
Fluence (n = L_{particle} / V_{target} → dn/dlnE): neutron, photon, proton
Residual nuclei (R_n- per particle)

• Calculate induced activity for a given beam intensity (I) $N(t \le t_i) = R\tau(1 - e^{-t/\tau}) \qquad R = I * R_n$ $\frac{|dN(t > t_i)|}{dt} = R(1 - e^{-t_i/\tau})e^{-(t-t_i)/\tau} \qquad t_i - \text{ irradiation time}$ $\tau - \text{ mean life}$ Activity_N(t) = N(t) Activity_{atom}

II: FLUKA induced activity simulations

Time dependence

- Set irradiation and cooling time, beam intensity
- Perform five runs using FLUKA's exact analytical implementation of Bateman equations for induced activity calculations
 - Total activity
 - Yield
 - FLUKA ASCI files processed using Fortran routines with csv format to create directly EXCEL files for easy plotting

FLUKA; Proton versus photon ¹⁰⁰Mo transmutation; Geometry (target: 1.2 cm (d) x 3.6 cm (h)), energy deposition

Natural Mo: 9.63% ¹⁰⁰Mo, 24.13% ⁹⁸Mo

FLUKA; Proton versus photon ¹⁰⁰Mo transmutation; Equivalent dose

W_n: 10 (2-20 MeV), 5 (above) and 20 (below this energy)

Produced Isotope (reaction)	Yield [per one proton/cm ³] ¹⁰⁰ Mo target Pb container	Error [%]	Produced Isotope (reaction)	Yield [per one photon/cm ³] ¹⁰⁰ Mo target Pb container	Error [%]
(p,n) ¹⁰⁰ Tc	5.44x10 ⁻⁴	2.9	(n,γ) ¹⁰¹ Mo [#]	3.65 x10 ⁻⁶	1.2
(p,2n) ⁹⁹ Tc	4.14x10 ⁻³ (~ 2x10 ^{-3 99m} Tc)	1	(γ,e⁺e⁻) _{atomic} ¹⁰⁰ Mo	7.85 x10 ⁻⁵	0.4
(p,3n) ⁹⁸ Tc	7.23x10 ⁻⁴	1.6	(γ,n) ⁹⁹ Mo	1.31 x10 ⁻²	0.03
(n,γ) ¹⁰¹ Mo [#]	1.00x10 ⁻⁶	77.5	(γ,2n) ⁹⁸ Mo	6.06 x10 ⁻³	0.1
(p,p) ¹⁰⁰ Mo	2.09x10 ⁻⁴	1.1	(γ,3n) ⁹⁷ Mo	9.27 x10 ⁻⁵	0.6
(p,n&p) ⁹⁹ Mo	9.42x10 ⁻⁵	4.8	(γ,4n) ⁹⁶ Mo	1.04 x10 ⁻⁴	0.3

#Secondary neutron capture; * ⁹⁸Mo

Natural Mo: 9.63% ¹⁰⁰Mo, 24.13% ⁹⁸Mo

FLUKA hybrid versus FLUKA calculations

Target	Irradiation	⁹⁹ Mo	⁹⁹ Mo	^{99m} Tc	^{99m} T
¹⁰⁰ Mo	Time [hrs]	Activity [Ci]	Specific Activity [Ci/g]	Activity [Ci]	Specific Activity [Ci/g]
⁹⁹ Mo, T _{1/2}	284.67	0.337	0.008	0.296	0.007
65.94 h	189.78	0.307	0.007	0.266	0.006
^{99m} Tc, T _{1/2}	94.89	0.225	0.005	0.184	0.004
6.0058 h	47.44	0.143	0.003	0.102	0.002

⁹⁹MO

41.6 g

UNIVERSITY OF SASKATCHEWAN

FLUKA; Photon induced activity

Induced (14.8 MeV) total activity (¹⁰⁰Mo (γ,n)⁹⁹Mo) (10¹² photons/s)

Photofission versus GDR transmutation

Photons (16 MeV)		Fission yield per one photon [Nuclei/cm³]β' yield(May be heavily underestimated by the FLUKA currently!)					β [.] yield	
Target	⁹⁹ Mo(42)	⁹⁹ Kr(36)	⁹⁹ Rb(37)	⁹⁹ Sr (38)	⁹⁹ Y(39)	⁹⁹ Zr(40)	⁹⁹ Nb(41)	⁹⁹ Mo(42)
²³⁸ U	1.17x10 ⁻⁷	8.32x10 ⁻⁸	3.94x10 ⁻⁶	1.83x10⁻⁵	6.47x10 ⁻⁵	3.46x10⁻⁵	6.15x10 ⁻⁶	1.28x10 ⁻⁴
Errors (%)	20.2	20.5	2.1	1.1	0.9	0.7	2.3	

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
(n,γ) ¹⁰¹ Mo [#]	3.65 x10 ⁻⁰⁶	1.2
(γ,e⁺e⁻) _{atomic} ¹⁰⁰ Mo	7.85 x10 ⁻⁰⁵	0.4
(γ,n) ⁹⁹ Mo	1.31 x10 ⁻⁰²	0.03
(γ,2n) ⁹⁸ Mo	6.06 x10 ⁻⁰³	0.1

#Secondary neutron capture

Fission in FLUKA (geometry, target: 12 cm (d) x 6 cm (h))

Photofission versus subcritical thermal and fast neutron's fission

Photofission versusus subcritical thermal and fast neutron's fission

Photofission

Photons (12.5 MeV)	Subcritical fission yield per one particle [nuclei/cm ³] May be heavily underestimated by FLUKA currently!						β ⁻ yield*	
Target	⁹⁹ Mo(42)	⁹⁹ Kr(36)	⁹⁹ Rb(37)	⁹⁹ Sr (38)	⁹⁹ Y(39)	⁹⁹ Zr(40)	⁹⁹ Nb(41)	⁹⁹ Mo(42)
²³⁸ U	2.75x10 ⁻⁸	3.88x10 ⁻⁸	1.74x10 ⁻⁶	1.0x10 ⁻⁵	3.65x10⁻⁵	1.60x10 ⁻⁵	1.62x10 ⁻⁶	6.63x10 ⁻⁵
Errors (%)	36.8	15.0	2.9	1.6	0.6	0.7	6.5	
²³⁵ U	1.35x10⁻⁵	7.86x10 ⁻⁸	4.40x10 ⁻⁶	2.13x10 ⁻⁴	2.23x10 ⁻³	3.43x10 ⁻³	3.08x10 ⁻⁴	6.19x10 ⁻³
Errors (%)	1.3	22.2	1.3	0.3	0.2	0.1	0.2	
²³⁴ U	5.54x10 ⁻⁶	2.38x10 ⁻⁸	9.83x10 ⁻⁷	1.45x10 ⁻⁵	2.39x10 ⁻⁴	7.51x10 ⁻⁴	1.51x10 ⁻⁴	1.16x10 ⁻³
Errors (%)	1.4	40.8	4.6	1.1	0.2	0.2	0.2	
²³² Th	4.00x10 ⁻⁰	3.92x10 ⁻⁹	1.03x10 ⁻⁷	6.62x10 ⁻⁷	2.85x10 ⁻⁶	1.52x10 ⁻⁶	1.93x10 ⁻⁷	5.33x10 ⁻⁶
Errors (%)	99.0	99.0	23.1	7.8	2.4	1.7	11.5	

GDR

UNIVERSITY OF SASKATCHEWAN

⁹⁹Mo production comparison Target 0.12 m diameter and 0.06 m height

Thermal neutrons	Fission (subcritical) yield per one neutron [nuclei/cm ³]					β [.] yield*	Total	
Target	⁹⁹ Mo(42)	⁹⁹ Rb(37)	⁹⁹ Sr (38)	⁹⁹ Y(39)	⁹⁹ Zr(40)	⁹⁹ Nb(41)	⁹⁹ Mo(42)	⁹⁹ Mo(42)
²³⁵ U	7.01 x10 ⁻⁴	3.40 x10 ⁻⁶	0.00728	0.0854	0.139	0.0118	0.2435	0.244
Errors (%)	1.2	17.6	0.5	0.2	0.3	0.5		

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
(n,γ) ¹⁰¹ Mo [#]	6.88 x10 ⁻⁵	0.2
(γ,e⁺e⁻) _{atomic} ¹⁰⁰ Mo	7.69 x10 ⁻⁴	0.0
 (γ,n) ⁹⁹ Mo	1.58 x10 ⁻²	0.0
(γ,2n) ⁹⁸ Mo	8.47 x10 ⁻³	0.1
(γ,3n) ⁹⁷ Mo	9.71 x10 ⁻⁴	0.0
(γ,4n) ⁹⁶ Mo	1.11 x10 ⁻³	0.1
(γ,5n) ⁹⁵ Mo	1.75 x10 ⁻³	0.1

GDR, photofission versus thermal neutrons fission (subcritical); Energy deposition

Photofission versus thermal neutrons fission (subcritical); Fluence

Photon

#Photon

Neutron

1e-06

0.0001

0.01

#Neutron ·····+····

Waste management

- Nuclear waste consists of 0.74% fission products and 99.26% actinides, with 98.81% uranium and 0.45% longlived transuranic actinides (Ottensmeyer, CNS 2010)
- Treatment of long-lived isotopes: ⁷⁹Se, ⁹³Zr, ¹⁰⁷Pd, ¹²⁶Sn, ¹²⁹I and ¹³⁵Cs; radio-toxic >10⁵ years needed
- GDR transmutation to short-lived isotopes (⁹⁹Tc is not transformed to short-lived isotope)
 - 1.57 x10⁷ years half-life time of ¹²⁹I to 24.99 min ¹²⁸I or 12.36 h ¹³⁰I (secondary neutron capture)

Photons versus neutrons

http://www.nndc.bnl.gov

Long lived waste transmutation; energy deposition & equivalent dose

Equivalent dose, GDR (photons) 129I in Be/Pb container (pSv/pulse) 1e+13(pSv/pulse) 30 1e+12 20 1e+11 dose 1e+10 10 X [10-2 m] 1e+09 1e+08 1e+07 -10 -20 -30 .40 30 40 20 Z [10-2 m]

Wn: 10 (2-20 MeV), 5 (above), 20 (below this energy)

¹²⁹I transmutation by GDR (15.24 MeV)

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
(n, \gamma) ¹³⁰ I#	9.22 x10 ⁻⁰³	0.4
$(\gamma, e^+e^-)_{atomic}$ ¹²⁹ I	6.15 x10 ⁻⁰³	0.4
(y,n) ¹²⁸ I	2.88 x10 ⁻⁰²	0.3
(y,2n) ¹²⁷ I	9.88 x10 ⁻⁰⁴	1.2
(γ,p) ¹²⁸ Te	3.20 x10 ⁻⁰⁶	33.4

Be container

#Secondary neutron capture

DE/FD CUITAILIEI						
Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]				
$(n,\gamma)^{130}I^{\#}$	7.91 x10 ⁻⁰³	0.8				
$(\gamma, e^+e^-)_{atomic}$ ¹²⁹ I	6.17 x10 ⁻⁰³	0.9				
(γ,n) ¹²⁸ Ι	2.90 x10 ⁻⁰²	0.2				
(y,2n) ¹²⁷ I	9.87 x10 ⁻⁰⁴	1.3				
(γ, p) ¹²⁸ Te	5.60 x10 ⁻⁰⁶	26.2				

Pb container

1.57 x10⁷ years half-life time of $^{129}I \longrightarrow 24.99 \text{ min } ^{128}I$ or 12.36 h ^{130}I (secondary neutron capture)

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(n,\gamma)^{130}I^{\#}$	1.08 x10 ⁻⁰³	0.8
$(\gamma, e^+e^-)_{atomic} {}^{129}I$	6.81 x10 ⁻⁰³	0.5
(γ,n) ¹²⁸ Ι	2.88 x10 ⁻⁰²	0.1
(γ,2n) ¹²⁷ Ι	1.00 x10 ⁻⁰³	1.7
(y,p) ¹²⁸ Te	2.80 x10 ⁻⁰⁶	30.7

Long lived waste transmutation; fluence

Summary and conclusion

- FLUKA simulations show that the production of the desired isotopes via GDR (photon) are orders of magnitude higher than the other isotopes, indicating this technique to be promising method for artificial transmutations
- Applications
 - Production of medical and industrial isotopes
 - Transmutation of long lived isotopes to short lived
 - Induced transmutation & photofission as a source of neutrons

Comment: Currently γ beams have too low intensity for some applications. While it is expected that the intensity will be increased sufficiently for a production of medical isotopes, the total transmutation of nuclear waste requires intensities that will be probably not possible to achieve in the near future.

Acknowledgement

- Access to FLUKA code
- FLUKA developers and support group (especially Francesco Cerutti)
- V. Vlachoudis for FLAIR graphic interface with FLUKA
- C. Cederstrand for technical support
- Science and Engineering division for start up funding and support