

# **Exercise 6: Scoring**

Beginners' FLUKA Course

#### **Exercise: Scoring**

 Create a folder called **ex6** and start there a new flair project based on the **course** template:

|                      | Fluka             | Project | Info     | rmati                                | ion    |   |
|----------------------|-------------------|---------|----------|--------------------------------------|--------|---|
| Project:             | *Untitled*        |         |          | 000                                  | X Inpu |   |
| Directory:<br>Title: | /home/boccone/tmp | )       |          | D: activatio<br>D: basic             | n      | A |
| Input:               |                   |         | E E      | D: course<br>D: decay<br>D: beavy-in | ns     | Ш |
| Geometry:<br>Notes   |                   | X [     | 🎒 🔙 Geon | D: lattice<br>D: no_geom             | ietry  |   |
|                      |                   |         |          |                                      |        |   |
|                      |                   |         |          | Ok                                   | Cancel |   |

• Save the input as **ex6.inp** and the flair project as ex8.flair

## **Exercise: Scoring**

- Add two <u>boundary crossing scorings</u> from target segment 2 (aluminium) to target segment 3 (lead):
  - <u>fluence</u> of electrons and positrons with log-E bins (find a suitable energy range and # of bins) with 1 angular bin (unformatted output on <u>unit 51</u>);
  - **<u>current</u>** (unformatted output on <u>unit 52</u>);

Note the difference between <u>fluence</u> and <u>current;</u>

- Add two energy deposition USRBIN by region for the three target segments:
  - total energy deposition (unformatted output on <u>unit 41</u>);
  - only by electrons by using an additional AUXSCORE card to filter the electron (unformatted output on <u>unit 42</u>)
- Run 5 cycles with 1000 primaries, process the data files, and plot the results;
- Change the number of primaries/cycles and look at statistical errors;

### **Exercise: Scoring**

○ View the USRBIN with the geometry editor

#### Convert result into ASCII and view the ex6\_usrbin\_4[x].lis



• Check that results are consistent with standard output;