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Overview: 

General concepts: 
 Phase space  
 The Boltzmann equation 
 Monte Carlo foundations 
 Simulation vs. integration 
Sampling techniques 
 discrete 
 by inversion 
 by rejection 
Results and Errors: 
 Statistical errors (single histories, batches) 
 Figure of merit 
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Phase space: 
Phase space: a concept of classical Statistical Mechanics 

Each Phase Space dimension corresponds to a particle degree of 

freedom 

3 dimensions correspond to Position in (real) space: x, y, z 

3 dimensions correspond to Momentum: px, py, pz                                                    

          (or  Energy and direction: E, , ) 

More dimensions may be envisaged, corresponding to other possible 

degrees of freedom, such as quantum numbers: spin etc 

Each particle is represented by a point in phase space 

Time can also be considered as a coordinate, or it can be 

considered as an independent variable: the variation of the other 

phase space coordinates as a function of time constitutes a 

particle “history” 
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The Boltzmann equation: 

All particle transport calculations are (explicit or implicit) 

attempts to solve the Boltzmann Equation 

It is a balance equation in phase space: at any phase-space-point, 

the increment of particle phase-space-density is equal to the sum 

of all “production terms” minus a sum of all “destruction terms” 

Production: Sources, “Inscattering”, Particle Production, Decay 

Destruction: Absorption, “Outscattering”, Decay 

We can look for solutions of different type: at a number of (real or 

phase) space points, averages over (real or phase) space regions,  

projected on selected phase space hyperplanes, stationary or time-

dependent 
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Mean of a distribution - 1 
In one dimension: 
Given a variable x, distributed according to f(x), the mean or average of 
another function of the same variable A(x) over [xmin,xmax] is given by: 
 
 
 
 
 
Or, introducing the normalized distribution f’: 
 
 
 
 
 
 
 
 
A special case is that of A(x)=x:   
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Mean of a distribution - 2 
In several dimensions: 

Given n variables, x,y,z,…, distributed according to the (normalized) 
functions f’(x,y,z,…), g’(x,y,z,…), h’(x,y,z,…), the mean or average of 
a function of those variables A(x,y,z,…) over an n-dimensional 
domain D, is given by: 
 
 
Often impossible to calculate with traditional methods, but we can 
sample N values of A , by sampling N sets of variables xi,yi,zi… with 
probability f’•g’•h’… and divide the sum of the sampled values by N: 
 

 
 

Each term of the sum is distributed like A, integration but also 
simulation! 
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Central limit theorem: 
 
 
 
 
 

For large values of N, the normalized sum of N independent and 
identically distributed random variables tends to a normal 
distribution with mean Ā and variance 2

A/N 
 
 
 

Central limit theorem 
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Monte Carlo* mathematical foundation: 

* Monte Carlo method “inventors”: Von Neumann, Ulam, Fermi, Metropolis in the late 40’s 

Several possible ways of defining Monte Carlo (MC): 
 A mathematical method for Numerical Integration 
 Random sampling techniques 
 Convergence, variance reduction techniques… 

 A computer simulation of a Physical Process 
 Physics 
 Tracking 
 Scoring… 

 
 

Both are valid, depending on the problem one or the other 
can be more effective (see the examples above) 
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Monte Carlo* mathematical foundation: 
The central limit theorem is the mathematical foundation of 
the Monte Carlo method: 
 
In words: 
 
Given any observable A, that can be expressed as the result 
of a convolution of random processes, the average value of A 
can be obtained by sampling many values of A according to the 
probability distributions of the random processes 
 
MC is indeed an INTEGRATION method that allows to solve 
multi-dimensional integrals by sampling 
 
The accuracy of a MC estimator depends on the number N of 
samples (  1/ N) 
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In an analog Monte Carlo calculation (“honest” simulation), not only 
the mean of the contributions converges to the mean of the real 
distribution, but also the variance and all moments of higher order 
 
 
 
 
converge as well: 
 
 
 
 
 
and fluctuations and correlations are faithfully reproduced 

Analog Monte Carlo: 
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Integration efficiency: 

A typical particle transport Monte Carlo problem is a 7-D problem!  

                                 x, y, z, px, py, pz and t !! 

Number of 
dimensions 

Traditional 
methods 

Monte Carlo Remark 

 

n = 1 1/N 1/ N MC not convenient 

n = 2 1/ N 1/ N 
 

About equivalent 

n > 2 1/n N 1/ N 
 

MC converges faster 

 Traditional numerical integration methods (Simpson, etc), 
converge to the true values as N-1/n where N = number of 
“points” (interval), and n = number of dimensions 

 Monte Carlo converges instead as 1/ N 
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Random Sampling: the key to Monte Carlo! 
The central problem of the Monte Carlo method: 

Given a Probability Density Function (pdf), f(x), generate a 
sequence of x’s distributed according to f(x) (x can be multi-

dimensional) 
f(x) 

x 
The use of random sampling techniques is the 

distinctive feature of Monte Carlo 
The use of Monte Carlo to solve the integral Boltzmann 
transport equation consists of: 
 Random sampling of the outcome of physical events 
 Geometry and material description of the problem 

x
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 Basis for all Monte Carlo integrations are random numbers, 
i.e. values of a variable distributed according to a pdf 
(probability distribution function). 

 In real world: the random outcome of a physical process 

 In computer world: pseudo-random numbers 

 The basic pdf is the uniform distribution: 

 

 

 

 Pseudo-random numbers are sequences that reproduce the 
uniform distribution, constructed from mathematical 
algorithms. 

 All computers provide a pseudo-random number generator (or 
even several of them). In most computer languages (e.g., 
Fortran 90, C) a PRNG is even available as an intrinsic routine 

 

(Pseudo) Random numbers: 

101)(f
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Sampling from a distribution: 
Sampling from a discrete distribution: 

Suppose to have a discrete random variable x, that can assume 

values x1, x2, …, xn, … with probability p1, p2, …, pn, …  

Assume ipi=1, or normalize it 

Divide the interval [0,1) in n subintervals, with limits 

 y0 = 0,  y1 = p1,  y2 = p1+p2, …. 
Generate a uniform pseudo-random number  

Find the interval ith y-interval such that 

                    yi-1   < yi 

Select X = xi as the sampled value 

Since  is uniformly random: 

iiiiii pyyyyPxP 11 )()(
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Sampling from a distribution: 
Sampling from a generic continuous distribution: 

Integrate the distribution function f(x), analytically or numerically, 

and normalize to 1 to obtain the normalized cumulative distribution 

 

 

 

 

Generate a uniform pseudo-random number  

Get the desired result by finding the inverse value  X = F-1( )  , 

analytically or most often numerically, i.e. by interpolation (table 

look-up) 

Since  is uniformly random: 
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Example: 

Practical rule: a distribution can be directly sampled if and only if its 

pdf can be integrated and the integral inverted 

x
exf )(Take                   , x  [0,- ) 

Cumulative distribution: 

 

 

Normalized: 

 

 

Generate a uniform pseudo-random 

number   [0,1) 

 

Sample t by inverting 

 

Repeat N times 
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Sampling from a distribution: rejection technique 
Rejection procedure: 

Let be f’(x), a normalized distribution function, which cannot be 

sampled by integration and inversion 

Let be g’(x), a normalized distribution function, which can be 

sampled, and such that Cg’(x)  f’(x),  x  [xmin, xmax] 

Sample X from g’(x), and generate a uniform pseudo-random 

number   [0,1) 

Accept X if  <f’(X)/Cg’(X) , if not repeat the previous step 

The overall efficiency (accepted/rejected) is given by: 

 

 

 

 and the probability that X is accepted is unbiased: 
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Sampling from a distribution: example 

Rejection procedure: 

Let be f’(x) =(1+3x2)/4,  
x  [-1,1],  

Take g’(x)=1/2, C=2 

Generate two uniform 

pseudo-random numbers 

1, 2  [0,1) 

Accept X=2 1-1 if 

    2 < (1+3X2)/4, if not 

repeat 
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Particle transport Monte Carlo: 
Assumptions: 

Static, homogeneous, isotropic, and amorphous media (and 

geometry) 

Markovian process: the fate of a particle depends only on its 

actual properties, not on previous events or histories 

Particles do not interact with each other 

Particles interact with individual atoms/nuclei/molecules (invalid 

at low energies) 

Material properties are  not affected by particle reactions 

The superposition principle can be 
used 
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Particle transport Monte Carlo: 

Application of Monte Carlo to particle transport and interaction: 

 Each particle is followed on its path through matter. 

 At each step the occurrence and outcome of interactions are 
decided by random selection from the appropriate probability 
distributions. 

 All the secondaries issued from the same primary are 
transported before a new history is started. 

 The accuracy and reliability of a Monte Carlo depends on the 
models or data on which the pdfs are based 

 Statistical accuracy of results depends on the number of 
“histories" 

 Statistical convergence can be accelerated by “biasing" 
techniques. 
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Practical implementations 

Track through geometry 
Random distance to interaction 

Continuous processes 
Estimators 

particle exits the problem before interaction 
Estimators 

particle dies 
(below transport threshold, 

discarded..) 
Estimators 

Interaction 
Generate secondary particles  

Estimators 

fill the “stack” with particle ID, E, x, …. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 .. PN 

take one particle from stack 
and follow it 

Empty stack:  
end “history” 
start with new 
primary 
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Statistical Errors: 
Can be calculated for single histories, or for batches of several 
histories 
Distribution of scoring contributions by single histories can be 
very asymmetric (many histories contribute little or zero) 
Scoring distribution from batches tends to Gaussian for             
N  , provided 2   (thanks to Central Limit Theorem) 
The standard deviation of an estimator calculated from batches 
or from single histories is an estimate of the standard deviation 
of the actual distribution (“error of the mean”) 
How good is such an estimate depends on the type of estimator 
and on the particular problem (but it converges to the true value 
for N  ) 

Relative error Quality of Tally            (from the MCNP Manual) 

50 to 100% Garbage 

20 to 50% Factor of a few 

10 to 20% Questionable 

< 10% Generally reliable except for point detectors 
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Statistical Errors (batch statistics) 
The variance of the mean of an estimated quantity x (e.g., fluence), 

calculated out of N  batches, is:  

 

 

 

where: 

ni  is the number of histories in the ith batch 

n = ni is the total number of histories in the N  batches 

xi is the average of x calculated in the ith batch:                     

where xij is the contribution to x of the jth history in the ith batch 

In the limit N =n, ni =1, the formula applies to single history 

statistics 
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Practical tips: 

 Use always at least 5-10 batches of comparable 
size (it is not at all mandatory that they be of equal 
size) 

 Never forget that the variance itself is a 
stochastic variable subject to fluctuations 

 Be careful about the way convergence is achieved: 
often (particularly with biasing) apparently good 
statistics with few isolated spikes could point to a 
lack of sampling of the most relevant phase-space 
part 

 Plot 2D and 3D distributions! In those cases the 
eye is the best tool in judging the quality of the 
result 


