

FLUKA Estimators and Scoring

Beginners' FLUKA Course

Reaction Rate and Cross Section [1/3]

- We call mean free path $\lambda[cm]$ the average distance travelled by a particle in a material before an interaction. Its inverse, $\Sigma[cm^{-1}]$ is the probability of interaction per unit distance, and is called macroscopic cross section. Both λ and Σ depend on the material and on the particle type and energy.
- For N identical particles, the number of reactions R occurring in a given time interval will be equal to the total distance travelled l times the probability per unit distance Σ : $R = l\Sigma$
- The reaction rate will be $\dot{R} = \mathrm{d}l/\mathrm{d}t$ $\Sigma = v\Sigma$, where v is the average particle velocity.

Reaction Rate and Cross Section [2/3]

- Assume now that $n(\mathbf{r},v)=dN/dV$ [cm^{-3}] be the density of particles with velocity v=dl/dt [cm/s], at a spatial position \mathbf{r} . The reaction rate inside the volume element dV will be: $d\dot{R}/dV=n(\mathbf{r},v)v\Sigma$
- The quantity $\dot{\Phi}(\mathbf{r}, v) = n(\mathbf{r}, v)v$ is called fluence rate or flux density and has dimensions $[cm^{-3} cm t^{-1}] = [cm^{-2} t^{-1}]$.
- The time integral of the flux density $\Phi(\mathbf{r}, v) = n(\mathbf{r}, v) dl$ is the fluence $[cm^{-2}]$
- Fluence is measured in particles per cm² but in reality it describes the density of particle tracks
- The number of reactions inside a volume V is given by the formula: $R = \Sigma \Phi V$ (where both Σ and Φ are integrated over energy or velocity)

Reaction Rate and Cross Section [3/3]

• Dividing the macroscopic cross section by N_0 , the number of atoms per unit volume, one obtains the microscopic cross section $\sigma[barn=10^{-24}cm^2]$.

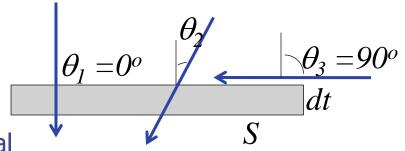
$$\frac{\text{probability/cm}}{\text{atoms/cm}^3} = \frac{\text{probability} \times \text{cm}^2}{\text{atom}} = \text{atom effective area}$$

- i.e., the area of an atom weighted with the probability of interaction (hence the name "cross section").
- But it can also be understood as the probability of interaction per unit length, with the length measured in atoms/cm² (the number of atoms contained in a cylinder with a 1 cm² base).
- In this way, both microscopic and macroscopic cross section are shown to have a similar physical meaning of "probability of interaction per unit length", with length measured in different units. Thus, the number of interaction can be obtained by both by multiplying by the corresponding particle track-length.

Fluence estimation [1/2]

Track length estimation:

$$\dot{\Phi}(v) dt = n(v) v dt = \frac{dN(v)}{dV} \frac{dl(v)}{dt} dt = \lim_{\Delta V \to 0} \frac{\sum_{i} l_{i}(v)}{\Delta V}$$


Collision density estimation:

$$\dot{\Phi}(v) = \frac{\dot{R}(v)}{\sigma(v) N_o} = \frac{\dot{R}(v)}{\Sigma(v)} = \dot{R}(v)\lambda(v)$$

Fluence estimation [2/2]

Surface crossing estimation

• Imagine a surface having an infinitesimal thickness dtA particle incident with an angle θ with respect to the normal of the surface S will travel a segment $dt/cos\theta$.

• Therefore, we can calculate an average surface fluence by adding $dt/cos \theta$ for each particle crossing the surface, and dividing by the volume S dt

$$\Phi = \lim_{dt \to 0} \frac{\frac{dt}{\cos \theta_i}}{\frac{Sdt}{sdt}}$$
will be to count the n

• While the current *J* will be to count the number of particles crossing the surface divided by the surface

$$J = dN/dS$$

The fluence is independent from the orientation of surface *S*, while the current is NOT!

In an isotropic field can be easily seen that on a flat surface $J = \Phi/2$

FLUKA Scoring & Results - Estimators

- It is often said that Monte Carlo (MC) is a "mathematical experiment"
 The MC equivalent of the result of a real experiment (i.e., of a measurement) is called an estimator.
- Just as a real measurement, an estimator is obtained by sampling from a statistical distribution and has a statistical error (and in general also a systematic one).
- There are often several different techniques to measure the same physical quantity: in the same way the same quantity can be calculated using different kinds of estimators.
- FLUKA offers numerous different estimators, *i.e.*, directly from the input file the users can request scoring the respective quantities they are interested in.
- As the latter is implemented in a very complete way, users are strongly encouraged to preferably use the built-in estimators with respect to user-defined scoring
- For additional requirements FLUKA user routines are provided

Built-In and User Scoring

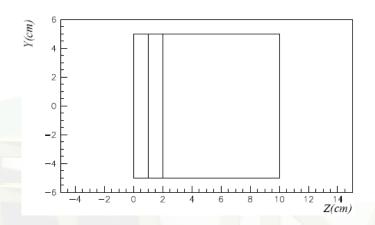
- Several pre-defined estimators can be activated in FLUKA.
- One usually refers to these estimators as "scoring" capabilities
- Users have also the possibility to build their own scoring through user routines, HOWEVER:
 - Built-in scoring covers most of the common needs
 - Built-in scoring has been extensively tested
 - Built-in scoring takes BIASING weights automatically into account
 - Built-in scoring has refined algorithms for track subdivision
 - Built-in scoring comes with utility programs that allow to evaluate statistical errors
- Scoring can be geometry dependent AND/OR geometry independent FLUKA can score particle fluences, current, track length, energy spectra, Z spectra, energy deposition...
- Either integrated over the "run", with proper normalization, OR event-by event
- Standard scoring can be weighted by means of simple user routines

Related Scoring Commands

- USRTRACK, USRCOLL score average $d\Phi/dE$ (differential fluence) of a given type or family of particles in a given region
- USRBDX scores average $d^2\Phi/dEd\Omega$ (double-differential fluence or current) of a given type or family of particles on a given surface
- USRBIN scores the spatial distribution of energy deposited, or total fluence (or star density, or momentum transfer) in a regular mesh (cylindrical or Cartesian) described by the user
- USRYIELD scores a double differential yield of particles escaping from a surface. The distribution can be with respect to energy and angle, but also other more "exotic" quantities
- SCORE scores energy deposited (or star density) in all regions
- The output of SCORE will be printed in the main (standard) output, written on logical output unit LUNOUT (pre-defined as 11 by default)
- All other detectors write their results into logical output units assigned by the user (the unit numbers must be >20)

More "Special" Scoring

- RESNUCLEi scores residual nuclei in a given region
 - more details are given in the respective lecture on activation
- DETECT scores energy deposition in coincidence or anti-coincidence with a trigger, separately for each "event" (primary history)
- EVENTBIN is like USRBIN, but prints the binning output after each event instead of an average over histories
- ROTPRBIN sets the storage precision (single or double) and assigns rotations/translations for a given user-defined binning (USRBIN or EVENTBIN)
 - more details will be given in the lecture about the use of LATTICE
- TCQUENCH sets scoring time cut-offs and/or Birks quenching parameters for binnings (USRBIN or EVENTBIN) indicated by the user
- USERDUMP defines the events to be written onto a "collision tape" file
- AUXSCORE defines filters and conversion coefficients


The FLUKA Output Files

The respective Fluka output consists of:

- A main (standard) output, written on logical output unit LUNOUT (predefined as 11 by default) [.out]
 - for details refer to the lecture explaining the FLUKA output
- A file with the last random number seeds, unit LUNRAN (2 by default) [ran*]
- A file of error messages, unit LUNERR (15 by default) [.err]
- Any number (including zero) of estimator output files. Their logical unit number is defined by the user [*fort_xx*]
- The available range of logical output numbers is: 21-99
- Generally, the user can choose between formatted and unformatted (binary) scoring (negative or positive sign)
- Possible additional output generated by the user in any user routine

Extending the example with Scoring

Cylinder along Z, filled by water-aluminum-lead and surrounded by Air

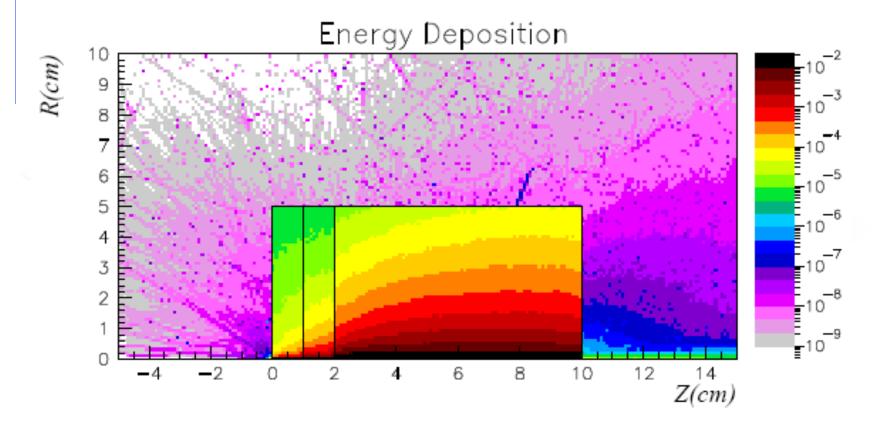
- the USRBIN command allows to <u>superimpose</u> to the geometry a 3-D grid, either cartesian or R-Z-Φ
- On this grid, one can score energy deposition, particle fluence (total or by particle type), as well as the density of interactions
- There is an equivalent EVENTBIN command, that outputs the same quantities event-by-event
- using USERWEIG the results can be weighted by the comscw.f or fluscw.f functions

USRBIN

** energy deposition

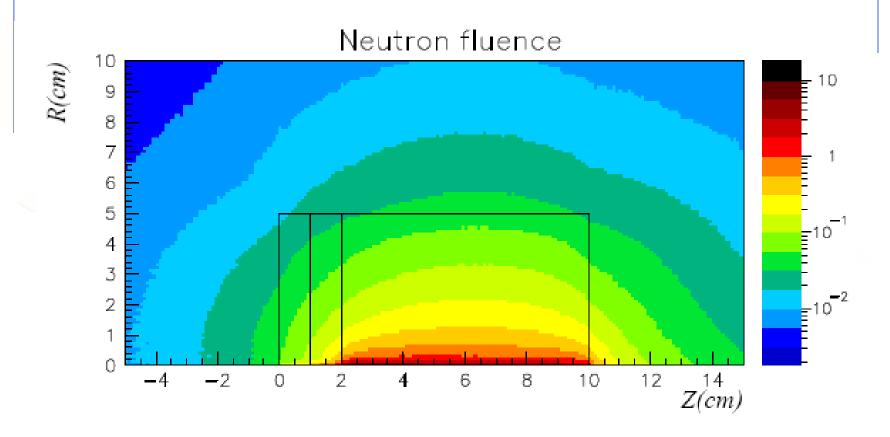
USRBIN	11.0	ENERGY	-40.0	10.0	15.0 TargEne
USRBIN	0.0		-5.0	100.0	200.0 &

• This is an R-Z- Φ binning (what(1)=11), scoring energy deposition (generalized particle ENERGY, or 208), writing the unformatted output on unit 40, spanning 0<R<10 in 100 bins, 0< Φ <2 π in 1 bin (default), -5<z<15 in 200 bins.

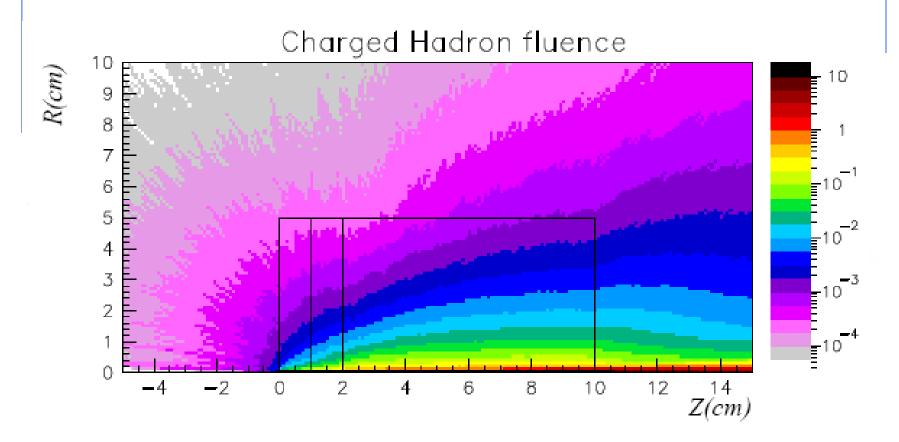

** neutron fluence

*	R-Z	EM energy	output unit	Rmax	axis Y Zmax
*	Rmin	axis X	Zmin	# R-bins #	Phi-bins # Z-bins
USRBIN	11.0	NEUTRON	-40.0	10.0	15.0 TargNeu
USRBIN	0.0		-5.0	100.0	200.0 &

• This is a R-Z- Φ binning (what(1)=11), scoring neutron fluence, writing the unformatted output on unit 40, spanning 0<R<10 in 100 bins, $0<\Phi<2\pi$ in 1 bin (default), -5<z<15 in 200 bins.


USRBIN → The Result

WHAT(2) = ENERGY : Energy deposition from a 3.5 GeV proton beam hitting at [0.,0.,0.] directed along z results are normalized to GeV/cm³ per primary


USRBIN → The Result

Same, WHAT(2)= NEUTRON to get neutron fluence results are normalized to particles/cm² per primary

USRBIN → The Result

Same, WHAT(2)= HAD-CHAR to get charged hadron fluence results are normalized to particles/cm² per primary

USRBIN – more quantities

- USRBIN can score most of the "Generalized particles", either fluence-like or energy-like, for instance with what(3) =
- DOSE : Energy/unit mass (GeV / g)
- DPA-SCO: Displacements per atom (see the lecture on Ionization and transport)
- X-MOMENT: x-component of momentum transfer
- ACTIVITY: activity per unit volume (see lecture on Activation)
- .. And more

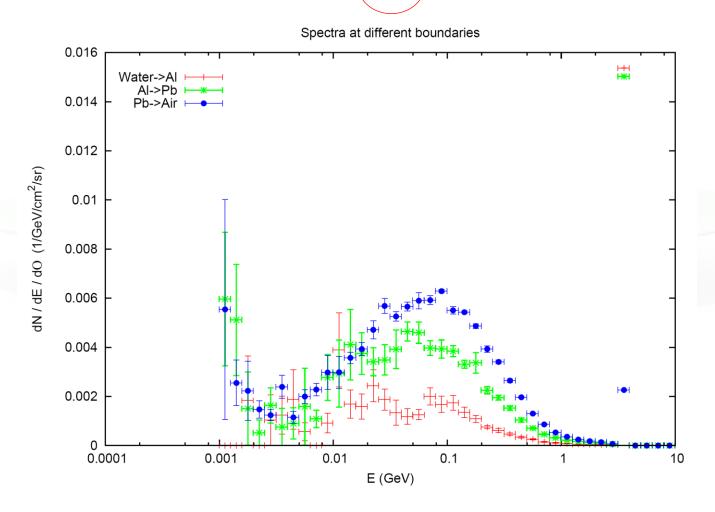
USRBDX

• USRBDX scores double differential (energy and angle) particle distributions across a boundary surface. The angle is with respect to the normal of the surface. The distribution can be fluence or current, one-way or two-ways, according to WHAT(1):

```
*out from lead
```

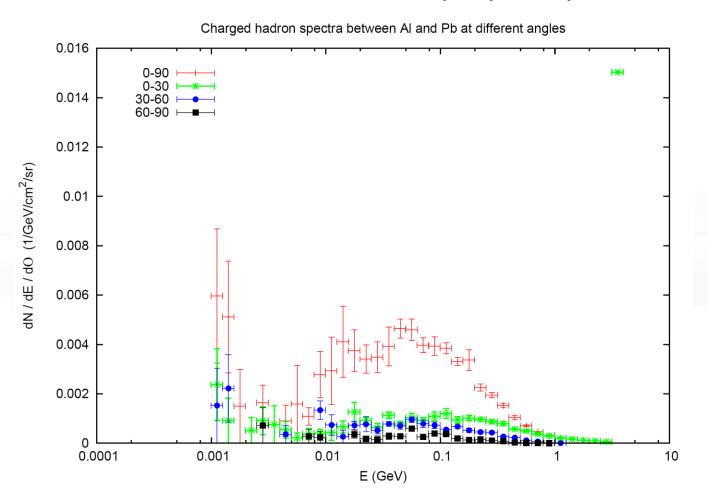
```
USRBDX 99.0 HAD-CHAR -50. TARGS3 INAIR 329.87 Sp3ChH
USRBDX 10.0 0.001 40.
```

• Score charged hadrons at the outer surface of the lead segment (from TARGS3 to INAIR). WHAT(1)=99 means: fluence, one-way only, log. intervals in energy. From 1 MeV to 10 GeV in 40 intervals, and one angular interval (default). WHAT(6) is a normalization factor: setting it equal to the surface area provides results normalized to cm⁻² sr⁻¹. Output to unformatted unit 50


```
USRBDX 99.0 HAD-CHAR -54. TARGS2 TARGS3 78.5398 Sp2ChHA
USRBDX 10.0 0.001 40. 3.0 &
```

• Score at the surface between 2nd and 3rd target section, same as before but in 3 angular bins.

USRBDX → The Result


This is true only if the surface area is explicitly given

 Evolution of charged hadron spectra at the various surfaces results are normalized to /GeV/cm²/sr per primary

USRBDX → The Result

 Double differential charged hadron spectra for different angles; results are normalized to /GeV/cm²/sr per primary

USRTRACK

 Calculates fluence as a function of energy by scoring track-length in a given volume. Results are normalized to /GeV/cm²/primary

*	log	neutrons	outp. unit	region	volume	# bins	I
*	Emax	Emin					
USRTRACK	-1.0	NEUTRON	-55.	TARGS3	628.31	40.	TrChH
USRTRACK	10.0	0.001					&

- remember: USRBDX scores on a surface, while USRBIN scores fluence in volumes and gives no differential information
- WHAT(4) = @ALLREGS activates scoring over all regions

USRYIELD

- Scores a double-differential particle yield around an extended or a point target.
- "Energy-like" quantities

```
Kinetic energy , total momentum , total energy , longitudinal momentum in the lab frame , longitudinal momentum in the c.m.s. frame
```

"Angle-like" quantities (in degrees or radians)

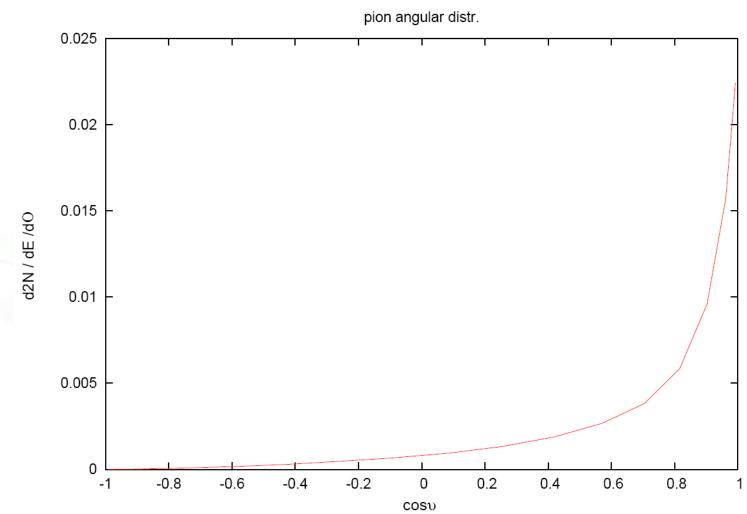
```
Rapidity in the lab frame , rapidity in the c.m.s. frame , pseudorapidity in the lab frame , pseudorapidity in the c.m.s. frame , Feynman-x in the lab frame , Feynman-x in the c.m.s. frame , transverse momentum , transverse mass , polar angle (*) in the lab frame , polar angle (*) in the c.m.s. frame , square transverse momentum , charge , weighted angle in the lab frame , weighted transverse momentum
```

USRYIELD

WARNING!! calculating a cross section has no meaning in case of a thick target.

 While option USRBDX calculates angular distributions WITH RESPECT TO THE NORMAL to the boundary at the point of crossing, USRYIELD's distributions are calculated WITH RESPECT TO THE BEAM DIRECTION (or a different direction specified with SDUM=BEAMDEF).

```
124 = 24 + 1 * 100 =  polar angle (in degrees) and kinetic energy
                          outp. unit Reg1
                                               Reg2
                                                       Norm
                      Amin # A bins
                                      EmaxEmindbl.differential
            Amax
                   PIONS+- -57. TARGS3
           124.0
USRYIELD
                                              INAIR
                                                        1.0 YieAng
                                                        3.0 &
           180.0
                       0.0 18.
                                      10.0
                                             0.0
USRYIELD
```


 Only one interval is possible for the second variable, BUT results are normalized as Double Differential: (in this case, particles/GeV/sr)

WARNING!!

Use WHAT(6) = 3 for plain double differential yield, the DEFAULT is plain double-differential cross section !! 23

USRYIELD -> The Result

pion angular distribution

Standard Postprocessing Programs

- To analyze the results of the different scoring options, several programs are available
- The most powerful ones are kept in \$FLUPRO/flutil.
- They assume that the <u>estimator files are unformatted</u>, and can calculate standard deviations and integral values over many cycles:
 - ustsuw.f to analyze USRTRACK and USRCOLL outputs
 - usxsuw.f to analyze USRBDX outputs
 - usysuw.f to analyze USRYIELD outputs
 - usbsuw.f to analyze USRBIN outputs
 - usrsuw.f to analyze RESNUCLEi outputs
- Each of these programs (except usbsuw) produces three files:
 - a text file with extension _sum.lis which contains averages, standard deviations, cumulative (integral) quantities
 - an unformatted file which can replace the N unformatted estimator files and can be used for further calculations
- a text file with extension _*tab.lis* to be easily readout by graphic codes Simpler programs are also provided in the manual, as guides for users who would like to write their own analysis program.

Standard Postprocessing Programs

Example of sum.lis for USRYIELD

Tot. response (integrated over x1) 2.6339998E-02 +/- 3.883959 %

WARNING!! The Tot. response is NOT integrate over the second quantity !! (in this case particles/GeV)

Standard Postprocessing Programs

Example of tab.lis for USRYIELD

```
# Detector n: 1 YieAng
# N. of x1 intervals 18
```

Thetamin	Thetamax	Result	Error (%)
0.000000	0.1745329	2.0742605E-02	10.87912
0.1745329	0.3490658	1.4463779E-02	10.65940
0.3490658	0.5235988	9.8084798E-03	7.649231
0.5235988	0.6981317	5.8580171E-03	4.966214
0.6981317	0.8726646	3.8220894E-03	10.60832
0.8726646	1.047198	2.6973977E-03	5.450788

. . .

FILTERS: AUXSCORE

WARNING!!

ONLY energy deposition in the ionization by the selected particle

There is the possibility to filter the estimators, restricting the scoring to a selected subset of particles.

For instance: USRBIN energy deposition by muons only

USRBIN	11.0	ENERGY	-40.0	10.0	15.0 TargEne
USRBIN	0.0		-5.0	100.0	200.0 &
AUXSCORE	USRBIN	MUONS		TargEneTa	rgEne

Assign the "muons" filter to the USRBIN estimator named TargEne

Another example: score the yield of 56-Iron ions (very useful: there is no separate name for each ion specie, except light ones. HEAVYION score all isotopes heavier than alpha's together!)

USRYIELD	124.0	ALL-PART	-87.	TARGS3	INAIR	1.0 F	e56
USRYIELD	180.0	0.0	18.	10.0	0.0	3.0	&
AUXSCORE	USRYIELD	-5602600.		Fe56	Fe56		

The requested ion is coded in what(2) according to its **A**, **Z** and (optionally) isomeric state **m**:

what(2) = -
$$(100*\mathbf{Z} + 100000*\mathbf{A} + \mathbf{m}*100000000)$$

with 0==all , i.e. 2600 == all Iron isotopes

Built-in Conversions and AUXSCORE

For some quantities, there is the possibility to get built-in conversions, without the need for user routines: done with generalized particles:

For example:

SI1MEVNE Silicon 1 MeV-neutron equivalent fluence

DOSE-EQ Dose Equivalent (pSv)

The set of conversion coefficients used to calculate DOSE-EQ can be selected by the user among a list (see manual) with AUXSCORE:

 USRBIN
 11.0
 DOSE-EQ
 -40.0
 10.0
 15.0
 TargDEQ

 USRBIN
 0.0
 -5.0
 100.0
 200.0
 &

 AUXSCORE USRBIN
 TargDEQ TargDEQ
 AMB74

Scores equivalent dose by folding the particle fluences with the "AMB74" conversion coefficients

> see lecture on activation