Exercise 1: Energy Deposition

FLUKA Advanced Course

Exercise 1a

- Study case

Beam dump of a proton-therapy facility

- Goal

Evaluate the peak and total energy deposition on the dump

- Requirements
- Beam settings:
- 200 MeV protons;
- Gaussian beam: $\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=1 \mathrm{~mm}$, with no divergence;
- Dump: copper cylinder:
- 5 cm in radius; 5 cm in length;

NB: range of protons@200MeV: ~4.3 cm
(from: http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html)

Exercise 1a (II)

- Tips \& Suggestions:
- Choose option NEW-DEFA in the DEFAULTS card;
- Set three cylindrica/ USRBIN detectors, with different radial stepping and maximum radius, in order to compare results:
$\Delta r_{1}=5 \sigma ;$
$\Delta r_{2}=1 \sigma ;$ $\Delta r_{3}=0.1 \sigma ;$
$\mathrm{R}_{1, \max }=5.0 \mathrm{~cm}$;
$\mathrm{R}_{2, \max }=1.0 \mathrm{~cm} ;$
$\mathrm{R}_{3, \max }=0.1 \mathrm{~cm}$;
- In Flair, plot results as longitudinal distributions:
- 'Type: 1D Max' for the peak energy deposition;
- 'Type: 1D Projection' for the total energy deposition (i.e. averaged over the transverse dimension of the scoring mesh);
- Which plot will show a proper Bragg Peak?
- Variations:
- How do results change when option PRECISIO is chosen in the DEFAULTS card?

Exercise 1b

- Study case

Beam dump of a multi-GeV proton accelerator

- Goal

Evaluate the peak and total energy deposition on the dump, and their dependence on the beam dimensions;

- Requirements
- Beam settings:
- 20 GeV protons (x100 wrt previous exercise)
- Gaussian beam: $\sigma_{x}=\sigma_{y}=1 \mathrm{~mm}$, with no divergence (basic case);
- Dump: copper cylinder:
- 5 cm in radius; 25 cm in length (x5 wrt previous exercise);

NB: inelastic scattering length of protons@20GeV: 14.6cm;
Radiation length: 1.4cm;

Exercise 1b (II)

- Tips \& Suggestions:
- Choose option NEW-DEFA in the DEFAULTS card;
- Set one cylindrical USRBIN detector, based on the best mesh characteristics from those of the previous exercise;
- Activate Leading Particle Biasing (through EMF-BIAS card);
- In Flair, plot results as longitudinal distributions (see previous exercise);
- Variations:
- Increase the beam spot size of the basic case by a factor 2 and 8: how do results change? Is there a linear scaling among the simulated cases?

