

Exercise 7: Two-Steps Method

FLUKA Advanced Course

Exercise 7

Goal

Evaluate the **contribution** to the energy deposition in a Beam Loss Monitor (BLM) **from direct losses inside** a quadrupole, via the two-steps method:

1. Shoot a dispersive beam, and dump the position of particles lost in all the quadrupoles;

→ through the **fluscw** routine;

2. Read the map of particles, and score the energy deposition in the BLM;

 \rightarrow through the **source** routine;

- Requirements
 - Re-use the geometry of the accelerator line you built and the magfld.f routine (if needed, take the solution of the geometry exercise in the stick drive);
 - Implement the BLM:

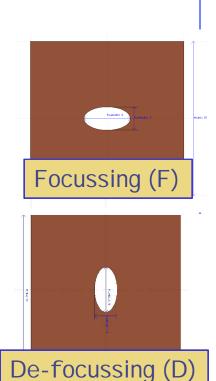
Cylindrical Ionisation Chamber, filled with Nitrogen:

R=5.0 cm; Length=60.0;

10.0 cm far from the beam trajectory, 1.5 m downstream of the third quadrupole;

- General settings:
 - DEFAULTS to PRECISIO;
 - Do not forget the **magfld** routine!!

Exercise 7 – first step


- Give a Gaussian distribution in momentum to the beam: σ=0.01 GeV/c;
 - \rightarrow p_{max}=1.1 GeV/c (i.e. +10 σ) \rightarrow E_{k,max}=508 MeV;

 \rightarrow p_{min}=0.9 GeV/c (i.e. -10 σ) \rightarrow E_{k,min}=362 MeV;

- Speed up the simulation (EMF switched off, PART-THR at 300MeV);
- Change the magnetic configuration of the quadrupoles from DFFD to FDDF (key point: ROT-DEFI cards, describing the rotation about the zaxis by 90 degs);
- Set the yoke of the quadrupole (i.e. the iron part) to BLCKHOLE!
- Scoring:
 - Link the rdfluscw.f routine, in order to dump the characteristics of the beam particles lost;

before linking, have a look at the routine, in order to check what it does!

- USRBDX card, scoring beam particles lost in the quadrupoles, i.e. leaving the vacuum inside, and thus hitting the metal part (now to blackhole!) of the magnet;
- USERWEIG card, in order to activate the routine (linking is not sufficient!);
- Run 1 cycle, increasing the number of primaries (e.g. 25'000);

Exercise 7 – second step

- Bring back the material of the quadrupole yoke to **IRON**!!
- Source:
 - Link the rdsource.f routine, in order to read the file with the losses;

before linking, *modify* the routine, in order to read only losses in the **third** quadrupole:

check that the **longitudinal** position of each primary read in the file matches the longitudinal position of the quadrupole (just an **IF** statement);

• **SOURCE** card, to activate the source routine (linking is not sufficient!!):

WHAT(1)=99.0 (logical unit);

WHAT(2,3)=z_{min}, z_{max}; (interval for rejection criteria)

- **OPEN** card, where you set the filename (status of file: "**OLD**");
- Scoring:
 - USRBIN card, scoring Energy deposition by region and lattice, i.e. special binning with WHAT(1)=8.0;

it can be plot through Flair: remember to **superimpose** a geometry plot with the concerned geometry;

• Pay attention to the normalisation factor!