

Radioactivity

FLUKA Advanced Course

FLUKA-Implementation – *Main features*

The generation and transport of decay radiation (limited to γ , β -, β +, Xrays, and Conversion Electrons emissions for the time being and extended to α with the next release) is possible during the same simulation which produces the radio-nuclides (one-step method). For that, a dedicated database of decay emissions is used, based mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency.

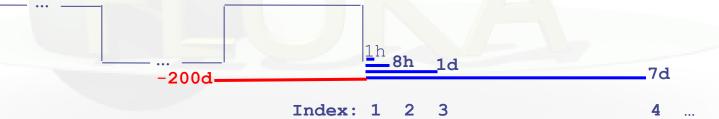
As a consequence, results for production of residuals, their time evolution and residual doses due to their decays can be obtained in the same run, for an arbitrary number of decay times and for a given irradiation profile.

FLUKA-Implementation – *Main features*

- up to 4 different decay branching for each isotope/isomer
- all gamma lines down to 0.1-0.01% branching, including X-ray lines following conversion electron emissions
- all beta emission spectra down to 0.1-0.01% branching: the sampling of the beta+/- spectra including screening Coulomb corrections
- Auger and conversion electrons
- Isomers: the present models do not distinguish among ground state and isomeric states (it would require spin/parity dependent calculations in evaporation). A rough estimate (equal sharing among states) of isomer production can be activated in the RADDECAY option.
- Different transport thresholds can be set for the prompt and decay radiation parts, as well as some (limited) biasing differentiation (see later)

Input options - *Overview*

Input card: RADDECAY


requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

Input card: IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

Input card: DCYTIMES

definition of decay (cooling) times

Input card: DCYSCORE

associates scoring detectors (radio-nuclides, fluence, dose) with different cooling times

Input card: AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

Name	Number	Units	Description
DOSE	228	GeV/g	Dose (energy deposited per unit mass)
DOSE-EQ	240	pSv	Dose Equivalent (AUXSCORE)
ACTIVITY	234	Bq/cm ³	Activity per unit volume
ACTOMASS	235	Bq/g	Activity per unit mass
SI1MEVNE	236	cm ⁻²	Silicon 1 MeV-neutron equivalent flux
HADGT20M	237	cm ⁻²	Hadrons with energy > 20 MeV

Card: RADDECAY ^[1/2]

$\neg \downarrow$						
* 1) requ RADDECAY		Dactive decays L.O O	3.0 000	00999999	0	
RADDECA	Y	Decays: Active	Patch Isom:	¥	Replicas:	3.0
h/µ Int: İQ	·	h/µ LPB: ignore 🤻		ignore 🔻	e-e+ Int:	ignore 🔻
e-e+ LPB: ignore 🔻		e-e+ WW: ignore 🖲		ignore 🔻	Low-n WW:	ignore 🔻
		decay cut: 0.0	prompt cut:	99999.0	Coulomb corr:	¥
WHAT(1) Decays:	= 1 Active	radioactive deca "activation study of (cooling) times. Da considered at thes	case": time evolut aughter nuclei as	tion calcula	ated analytica	lly for <u>fix</u>
	>1	radioactive deca	ays activated in	(semi-)a	analogue mo	<u>ode</u>
Semi-A	nalogue	each radioactive n	ucleus is treated	like all oth	ner unstable p	articles
		(random decay tin	ne, daughters and	d radiation	i), all seconda	ry
		particles/nuclei ca	rry time stamp (``	age")		
WHAT(2) Patch Isom:	> 0 On	isomer "product	tion" activated			
WHAT(3) Replicas:	#	number of "repl	icas" of the dee	cay of ead	ch individua	l nucleu

Card: RADDECAY ^[2/2]

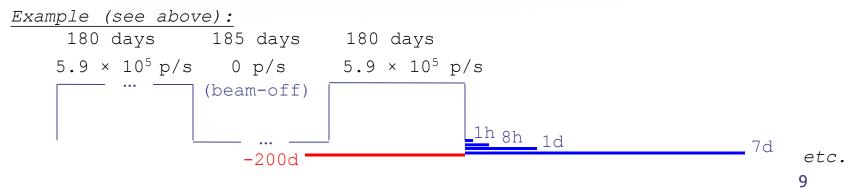
RADDECAY h/µ Int: igr e-e+ LPB: igr	nore 🔻	h/µ LPB:	Active ▼ ignore ▼ ignore ▼ 0.0	Patch Isom: h/µ WW: Low-n Bias: prompt cut:	▼ ignore ▼ ignore ▼ 99999.0	Replicas: e-e+ Int: Low-n WW: Coulomb corr:	3.0 ignore ▼ ignore ▼
WHAT(4)						ures only to active deca	
h/μ Int Low-	n WW	Example: 5th digit, e 000010000 000020000 000030000	+/e-/gamm to prompt to decay i to both	ble for a diff a leading pa radiation of radiation onl or blank as a	article biasi nly y	5	
WHAT(5)			tion facto energy cu		plied to e	+/e-/gamr	na
decay cut: prompt cut:	# #	10 digits, fi radiation (s Special cas 000009999	rst five for see manual) es: 9 kill EM ca	decay radiat	ompt radia		mpt

Card: IRRPROFI

* 2) defini * IRRPROFI		irradiation pattern s part/s 185days 7 5.9175E5 1.5984E7	0.0	180days 1.5552E7	-	
180days IRRPROFI	part/s 185	idays 180days part/s ∆t: 1.5552E7 ∆t: 1.5984E7 ∆t: 1.5552E7	p/s: p/s: p/s:	5.9175E5 0.0 5.9175E5		
WHAT(1,3,5) ∆t:	#	irradiation time (sec	ond)			
WHAT(2,4,6) p/s	#	beam intensity (part Note: zero intensity is a e.g., to define beam-of	accepte	d and can l	-	
	Note:	Several cards can be co intervals.	ombine	d up to a m	naximum of	f 2500 irradiatio
Example (see	e above):				

180 days 5.9 × 10⁵ p/s

185 days 0 p/s (beam-off) 180 days 5.9 \times 10⁵ p/s


Card: DCYTIMES

*	1hour	8hours	1day	7days	1month	4months		
DCYTIMES	3600.	28800.	8.64E4	6.048E5	2.592E6	1.0368E7		
	8hours 1day	· · · · · · · · · · · · · · · · · · ·	nonth 4month	ns				
CYTIMES		t1: 360	n	t21	28800.		t3:	8.64E4

WHAT(1) – WHAT(6) cooling time (in seconds) after the end of the irradiation

t1..t6 Note: Several cards can be defined.

Each cooling time is assigned an index, following the order in which it has been input. This index can be used in option DCYSCORE to assign that particular cooling time to one or more scoring detectors. A negative decay time is admitted: scoring is performed at the chosen time "during irradiation"

Card: DCYSCORE ^[1/2]

* Associate	scoring w	ith differer	nt cooling	times			
DCYSCORE	1.0		SI	hielding		U	SRBIN
USRBIN	10.0	201.	-70.0	150.0	200.0	5000.0SH	nielding
USRBIN	-250.0	-200.	0.0	80.0	80.0	1.0&	
DCYSCORE		Cooling t: 3600.	¥			Kind:	USRBIN 🔻
		Det: Shield	ing 🔻	to Det: 🛛 🔻		Step:	
USRBIN				Unit: 70 I	BIN 🔻	Name:	Shielding
Type: X-Y-Z	Ŧ	Xmin: -250.0	l	Xmax: 150	.0	NX:	80.0
Part: ALL-PA		Ymin: -200.		Ymax: 200		NY:	80.0
				11			
WHAT(1)		Cooling ti	me index	to be ass	ociated	with the	detectors
Cooling:	#	Drop down					
cooling.	π				ing times		
WHAT(4)W	HAT(5)	Detector	index/na	me of kin	d (SDUM	(Kind)	
Det to Det		Drop down			-	-	
		brop down					
WHAT(6)		step lengt	the in ace	ianina ind	dices		
		step lenge			lices		
Step	#						
CDUM		Turne of or					
SDUM		Type of es					
Kind		RESNUCLE	, USRBIN/	EVENTBIN,	USRBDX	, USRTRA	СК
					_		
Units: All qua	antities are	expressed	per unit ti	me. For exa	ample		
	RESNU	CLE Bq					
	USRBIN		e rate / do	ico rato			
	USINDIN	nuenu					

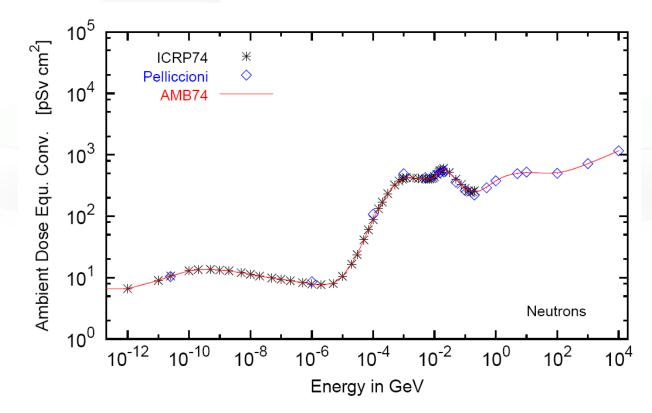
Card: DCYSCORE ^[2/2]

In the *semi-analogue decay mode*, estimators can include the decay contribution (on top of the prompt one) through association by DCYSCORE with a cooling time index ≤ -1.0

Card: AUXSCORE

AUXSCORE	USRBIN	PHOTON	Target	EWT74
AUXSCORE		Type: USRBIN ▼ Det: Target ▼	Part: PHOTON ▼ to Det: ▼	Set: EWT74 ▼ Step:
WHAT(1) Type:			tor to associate with estimator types (USR	
WHAT(2) Part:	#	Particle or particle	ope to filter scoring e family list. If empty to or filtering on specific is	
WHAT(4,5) Det to Det		Detector range Drop down list to	select detector range	of type WHAT(1)
WHAT(6) Step:	#	Step in assignii	ng indices of detect	or range
SDUM Set:			for dose equivalent available dose conver	

Available Conversion Coefficients


The following dose conversion coefficients sets are available:

- 1) Effective dose sets from ICRP74 and Pelliccioni data calculated with ICRP radiation weighting factors Wr
 - (a) **EAP74** : Anterior-Posterior irradiation
 - (b) **ERT74** : Rotational irradiation geometry
 - (c) **EWT74** : WORST possible geometry for the irradiation
- Effective dose sets from ICRP74 and Pelliccioni data calculated with the Pelliccioni radiation weighting factors Wr
 - (a) **EAPMP** : Anterior-Posterior irradiation
 - (b) **ERTMP** : Rotational irradiation geometry
 - (c) **EWTMP** : WORST possible geometry for the irradiation
- 3) Ambient dose equivalent from ICRP74 and Pelliccioni data
 - (a) AMB74 : [Default]
- 4) Ambient dose equivalent with old "GRS"-conversion factors(a) AMBGS

(see backup slides for details)

Conversion Coefficients

Conversion coefficients from fluence to ambient dose equivalent are based on ICRP74 values and values calculated by M.Pelliccioni. They are implemented for protons, neutrons, charged pions, muons, photons, electrons (conversion coefficients for other particles are approximated by these). AMB74 is the default choice for dose equivalent calculation.

For more info: <u>http://cern.ch/info-fluka-discussion/download/deq2.pdf</u>

Fluence to effective dose coefficients

- Conversion coefficients from fluence to effective dose are implemented for three different irradiation geometries:
 - anterior-posterior
 - rotational
 - WORST ("Working Out Radiation Shielding Thicknesses") is the maximum coefficient of anterior-posterior, posterior-anterior, rightlateral and left-lateral geometries. It is recommended to be used for shielding design.
- Implemented for radiation weighting factors recommended by ICRP60 (e.g., SDUM=ETW74) and recommended by M.Pelliccioni (e.g., SDUM=EWTMP). The latter anticipate the 2007 recommendations of ICRP.
- Implemented for protons, neutrons, charged pions, muons, photons, electrons (conversion coefficients for other particles are approximated by these)
- Zero coefficient is applied to all heavy ions

Fluence to effective dose coefficients

Card: RESNUCLEi ^[1/3]

RESNUCLE		3.0 -26	. 0	0	FLOOR	TUN	_FLOO	
RESNUCL Max Z:	E	Type: Max M:	All 🔻	Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Vol:	TUN_FLOO	
	Scoring	of residual r	nuclei or activit	y on a r	egion basis			
WHAT(1)		type of pr	oducts to be	scored				
Type:	1.0	spallation p	products (exce	pt from	low-energy ne	eutron inte	eractions)	
	2.0	products from low-energy neutron interactions (provided the information is available)						
	3.0		nuclei are sco	red (if a	vailable see a	ahove)		
			default $(= 1.0)$		valiable, see e			
	<= 0.0	resets the	default(-1.0)					
WHAT(2) Unit:		logical ou	tput unit (De	e <mark>fault =</mark>	11.0)			
WHAT(3) Max Z:			atomic num cording to the ing region					
WHAT(4) Max M:		of the resid Default: ma	M = N - Z - lual nuclei dist aximum value signed to the s	ribution accordin	(NMZ_min = g to the A, Z		ment(s) of th	

Card: RESNUCLEi [2/3]

RESNUCLE	Type: All ▼	Unit: 26 BIN ▼	Name: TUN_FLOO
Max Z:	Max M:	Reg: FLOOR ▼	Vol:
WHAT(5)	scoring region nu	mber/name	regions)
Reg:	(Default = 1.0 ; -	1.0 or @ALLREGS all	
WHAT(6) Vol:	volume of the reg (Default = 1.0)	ion in cm ³	
SDUM Name:	character string i (max. 10 character	dentifying the detectors)	or

Notes:

- 1. In the case of heavy ion projectiles the default NMZ, based on the region material, is not necessarily sufficient to score all the residual nuclei, which could include possible ion fragments
- 2. Residual nuclei from low-energy neutron interactions are only scored if that information is available in the low-energy neutron data set (see Manual)
- 3. Protons are scored, together with ²H, ³H, ³He, ⁴He, at the end of their path

Card: RESNUCLEi [3/3]

```
**** Isotope Yield as a function of Mass Number ****
 ****
                  (nuclei / cmc / pr)
                                                   * * * *
 A min: 1 - A max: 198
              186 1.5870372E-08 +/-
                                       9,900000E+01 %
 A:
 Α:
              185 3.7605012E-09 +/-
                                       9.900000E+01 %
 A:
              184 1.4581326E-08 +/-
                                       9.900000E+01 %
              183 1.0712972E-08 +/-
 A:
                                       9.900000E+01 %
              182 7.4882118E-09 +/-
 Α:
                                        9.900000E+01 %
 **** Isotope Yield as a function of Atomic Number ****
 * * * *
                  (nuclei / cmc / pr)
                                                     ****
 Z min: 1 - Z max: 78
               74 5.2413383E-08 +/-
                                        9.900000E+01 %
 Ζ:
 Ζ:
               42 3.0072785E-07 +/-
                                        9.900000E+01 %
               41 4.7906228E-08 +/-
                                        9.900000E+01 %
 Z:
 Ζ:
               40 3.7605012E-09 +/-
                                        9.900000E+01 %
 Z:
               38 3.7605012E-09 +/-
                                       9.900000E+01 %
. . .
**** Residual nuclei distribution
 * * * *
          (nuclei / cmc / pr)
 A \setminus Z = 68
                     69
                                70
                                            71
                                                       72
```

73 74 75 76 77 78 186 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.59E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/-99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % 0.00E+00 3.76E-09 185 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % 184 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.46E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % 0.00E+00 1.07E-08 0.00E+00 183 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 99.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 % +/- 0.0 %

. . .

Please	activate the following two c	ards if residuals are of interest
→ swi	cch to activate the evaporation	of heavy fragments (up to A=24)
→ Swi 	3.0 1.0	of heavy fragments (up to A=24) EVAPORAT COALESCE

to simulate a radioactive source:

Radioactive source of 60 Co (two main γ -emissions: 1332.5 keV and 1173.2 keV) cylindrical shape, 2cm diameter, 2mm height along z, centre of base of cylinder at origin

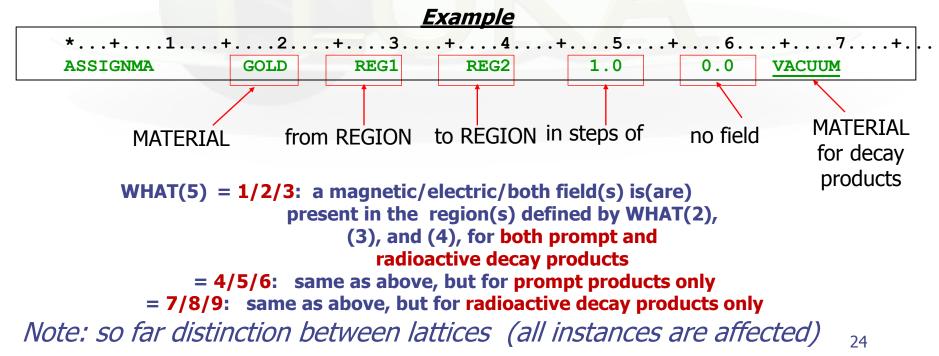
BEAM						ISOTOPE
HI-PROPE	27.0	60.0				
BEAMPOS	0.0	0.0	0.1	0.0	0.0	0.0
BEAMPOS	0.0	1.0	0.0	0.2	0.0	0.0CYLI-VOL

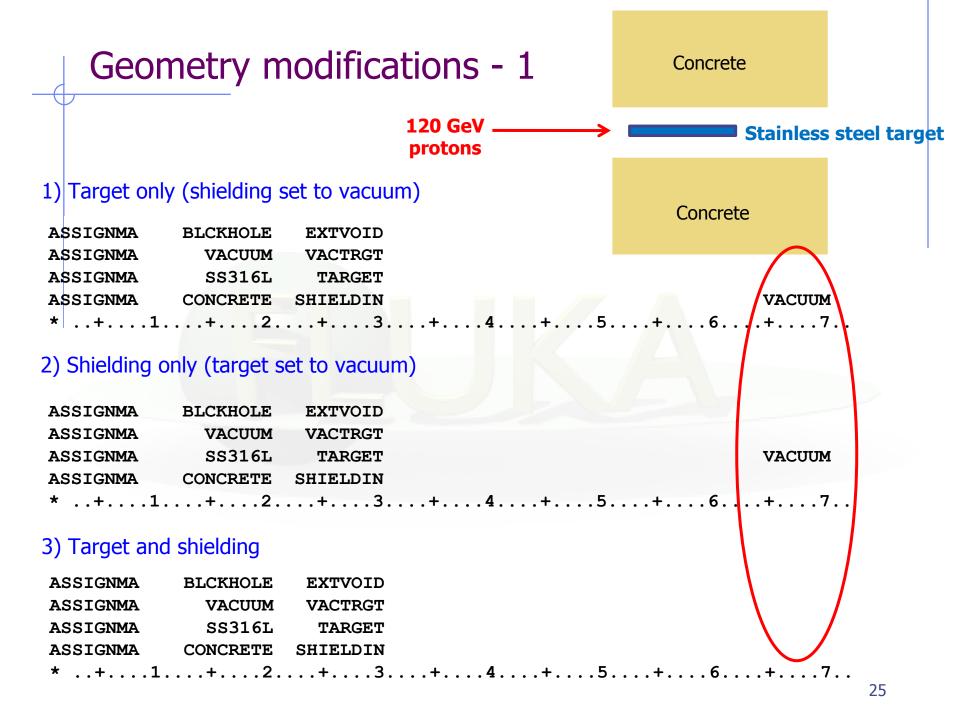
request decay by the RADDECAY card

Example (semi-analogue): an ¹³¹I therapeutic source

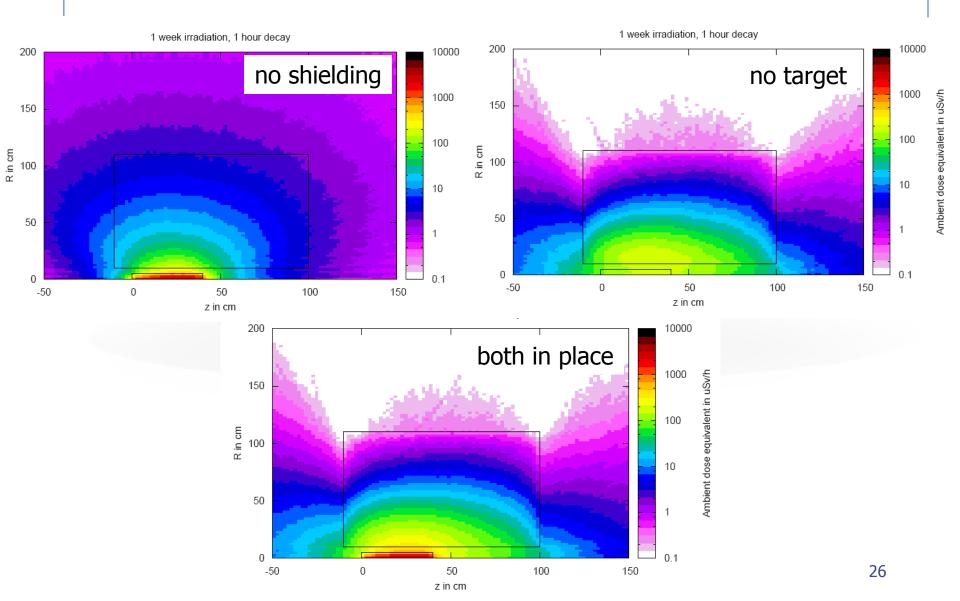
Define the be BEAM	eam characteristics	Beam: Momentum 🔻	p:	Part: ISOTOPE ▼
	∆p: Flat ▼	Δp:	Δφ:Flat ▼	A¢:
		Δp. Δx:		Δφ. Δy:
	e(X): Rectangular ▼		Shape(Y): Rectangular ▼	ے بے ایک
HI-PROPE		Z: 53	A: 131	ISO M:
	eam position			
BEAMPOS		x:	y:	Z:
		COSX:	cosy:	Type: POSITIVE V
	eam position			
BEAMPOS		Rin: 0	Rout: 5	Type: SPHE-VOL V
GEOBEGIN		Log: 🔻	Acc:	Opt: 🔻
		Inp: 🔻	Out: 🔻	Fmt: COMBNAME V
	Fitle :			
Black body				
SPH	blkbody	×: 0.0	y: 0.0	z: 0.0
		B: 100000.0		
Void sphere				
SPH	void	×: 0.0	y: 0.0	z: 0.0
		B: 10000.0		
Void sphere				
SPH	target	×: 0.0	у: 0.0	z: 0.0
	-	B: 5.0		
END				
Black hole				
REGION	BLKBODY		Neigh: 5	Volume:
	expr. +blkbody-void			
Void around				
REGION	VOID		Neigh: 5	Volume:
	xpr: +void -target			
Target				
REGION	TARGET		Neigh: 5	Volume:
	xpr. +target			
END				

Example (semi-analogue): an ¹³¹I therapeutic source


Requests simulation of radioactive dec	ays and sets the corresponding		
iasing and transport conditions			
RADDECAY	Decays: Semi-Analogue 🔻	Patch Isom: 🔻	Replicas:
h/μ Int: ignore ▼	h/μ LPB: ignore ▼	h/μ WW: ignore ▼	e-e+ Int: ignore ▼
e-e+ LPB: ignore ▼	e-e+ WW: ignore ▼	Low-n Bias: ignore ▼	Low-n WW: ignore 🔻
	decay cut: 0.0	prompt cut: 0.0	Coulomb com: 🔻
TCQUENCH	t cut-off: 3600	Birks c1 :	Birks c2:
	^{Bin:} 1 hpdose ▼	to Bin: 🔻	Step:
USRBIN		Unit: 21 BIN 🔻	Name: 1hpdose
Type: X-Y-Z 🔻	Xmin: -5	Xmax: 5	NX: 100
Part: DOSE 🔻	Ymin: -5	Ymax: 5	NY: 100
	Zmin: -5	Zmax: 5	NZ: 100
USRBIN		Unit: 21 BIN 🔻	Name: physdose
Type: X-Y-Z 🔻	Xmin: -5	Xmax: 5	NX: 100
Part: DOSE ▼	Ymin: -5	Ymax: 5	NY: 100
	Zmin: -5	Zmax: 5	NZ: 100
Associates selected scoring detectors v	with user-defined decay times		
DCYSCORE	Cooling t: Semi-Analogue 🔻	Kind: USRBIN 🔻	
	Det: 1 hpdose 🔻	to Det: physdose 🔻	Step:
+1+2+3+4+5+	6+7		
ASSIGNMA	Mat: BLCKHOLE V	Reg: BLKBODY V	to Reg: 🔻
	Mat(Decay): 🔻	Step:	Field: 🔻
ASSIGNMA	Mat: VACUUM V	Reg: VOID 🔻	to Reg: 🔻
	Mat(Decay): 🔻	Step:	Field: 🔻
ASSIGNMA	Mat: WATER V	Reg: TARGET V	to Reg: 🔻
	Mat(Decay): 🔻	Step:	Field: 🔻


Geometry modifications [1]

FLUKA.2011 contains the possibility of selectively changing regions to *vacuum/blackhole* (and/or switching on/off possible fields) when transporting radioactive decay products. Radioactive decay products originating from regions switched to vacuum/blackhole are ignored. This is helpful for situations where the emissions of an activated object in a complex environment have to be evaluated standalone.


Through Input card: ASSIGNMA

(a (single-element or compound) material is assigned to each geometry region)

Geometry modifications - 2

Summary of main input cards

RADDECAY

requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

DCYTIMES

definition of decay (cooling) times

DCYSCORE

associates scoring detectors (radio-nuclides, fluence, dose equivalent) with different cooling times

AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

PHYSICS

switch to activate the evaporation of heavy fragments (up to A=24) and the simulation of coalescence