Flair - Geometry Editor - Part I

Beginners' FLUKA Course

Starting the Geometry Editor

Either start flair with option -g

Geometry editor

- Working on 2D cross sections of the geometry;
- Interactive visual editing of the geometry in 2D;
- Debugging bodies/regions in a graphical way;
- Fast 3D rendering of the geometry;

Pros

- Fast display of complex geometries;
- Many user-customizable layers;
- Graphical editing of the bodies with snapping mechanism to generate accurate coordinates;
- Visual selection and editing of zones w/o the need to know the orientation of bodies;
- Use real curve of bodies with no conversion to vertices/edges;
- Interactive debugging with information of problematic bodies, regions and/or zones;
Cons
- Tricky to orientate in an unknown geometry;
- Difficult to find region using the expression;

\section*{"}
 Geometry Editor: Interface

Viewport axes System

Each viewport is defined by:

- Origin center of viewport
- Basis relative axes system u, v, w. w is coming out of the screen towards the user
- Extends zooming

Note:

- Each viewport is facing towards negative -w
- If bodies A, B are touching the viewport like on the plot.
- Only body B will be visible

Navigation - Keyboard

- [arrows]
- Ctrl + [arrows]
+ [Shift]
- Page Up/ Page Down
- Ctrl + PgUp/PgDn
- $=/-$
- 0
- 0 (zero)
- 1,2
- 3,4
- 5,6

Assuming:
pan viewport
orbit viewport around \mathbf{u}, \mathbf{v} axes rotates by 90°
pan viewport front/back
rotate viewport around \mathbf{w} axis
zoom in / zoom out
open projection dialog to set the origin/basis/save/recall etc...
Center to origin
front [X:Y] / back [-X:Y]
left [Z:Y] / right [-Z:Y]
top [Z:X] / bottom [-Z:X]

$$
\begin{aligned}
& Z=\text { direction of the beam (horizontal) } \\
& X=\text { horizontal } \\
& Y=\text { vertical }
\end{aligned}
$$

Navigation - Mouse ${ }^{[1 / 2]}$

With the left mouse button:

1. Select the appropriate action pan/orbit/zoom with:
i. Menu \rightarrow Tools
II. Toolbar
iiI. Keyboard shortcut
2. Click and drag the desired viewport

	function	key	description
娄	Pan	X	Pan viewport
(3)	Orbit	t	Orbit viewport using a virtual trackball
Q	Zoom	z	Drag area to zoom In ([Ctrl] to zoom out)
		Shift-Z	Zoom viewport on selected items
4		Alt-Left	Go to previous in history projection
\Rightarrow		Alt-Right	Go to next in history projection

Navigation - Mouse [2/2]

With the middle mouse button

- alone Pan/Move viewport
- Ctrl orbit projection using a virtual trackball
- Ctrl-Middle-Shift orbit projection using a virtual trackball with steps of 15 degrees
- Shift select rectangle region and zoom into
- Shift-Middle-Ctrl select rectangle region and zoom out
- Wheel (if any) zoom in/zoom out
- Ctrl-Wheel pan/move forward or backward
- Ctrl-Shift-Wheel smoother pan/move forward/backward

When laptop mode is enabled in the Preferences/Geometry then the middle and right buttons are swapped

Navigation - Viewport lines ${ }^{[1 / 2]}$

Description:

- Dashed lines represent other viewports (the intersection of other viewports with the current one);
- The center is represented with a square;
- Viewing direction wis indicated by a short line;
- When another viewport is outside the view window, the viewport-line will be displayed on the closest edge;

Actions: Select $⿴ 囗+$

- Drag the center square to reposition the viewport
- Drag the line close to the center to reposition the viewport along the vertical \mathbf{w} axis
- Drag the extremities to rotate it

Navigation - Viewport lines ${ }^{[2 / 2]}$

Navigation - Projection dialog

With the projection [0] \downarrow button you can change, move, shift, rotate, save and reload the projection of a viewport

Set the origin of the viewport

Origin	Move	Basis	Euler	Rotate
$\mathrm{x}:$	0			
$\mathrm{y}:$	0			
z:	13000			
		Ok	Apply	Cancel $/ \%$

Rotate around the Cartesian axis

Origin	Move	Basis	Euler	Rotate
Rx:	0			
Ry:	-0			
Rz:	0			
	Ok	Apply	Cancel $\%$	

Shift the coordinate system

Change the reference axis

Rotate around the ($u, v, w)$ axis

Origin	Move	Basis	Euler	Rotate
Ru:				
Rv:				
Rw:				
		Ok	Apply	Cancel $/ / /$

Debugging Geometry Errors [1/2]

Errors found notifies that are errors in the geometry (on the current projection):

- The areas affected by the errors are outlined with a Red stroke:
- Areas filled with a full color correspond to overlapping regions;
- Areas filled with red lines correspond to a missing region definition;
- Body segments that are involved in the errors are numbered;
- Clicking the icon [Ctrl-g] displays the dialog with the errors.
- Touching surfaces are checked against $\mathbf{1 0}$ significant digits
- Non-strictly geometrical errors (i.e. missing Material Assignment to a region, non recognized cards) are also notified;

Debugging Geometry Errors [2/2]

$\mathbf{x}, \mathbf{y}, \mathbf{z}$ Coordinates of the error (on the surface of body)
body Body with the x, y, z point on surface generating the error +body Regions found on the $\boldsymbol{+}$ side of the body.

Regions where the body should be subtracted to remove the error
-body Regions found on the - side of the body.
Regions that the body should be intersected to remove the error
+/- are defined according to the normal on the surface,+ refers to outside, - to inside

