
FLUKA Geometry

FLUKA Advanced Course

2

Contents

 combinatorial geometry and format recalls

 bodies

 generic quadric

 transformations and rotation concepts

 regions operators

 problems and hints

 parentheses

 lattice

 ancillary core routines

 dynamic objects

 voxels

3

Basic Concepts
Four concepts are fundamental in the FLUKA CG:

 Bodies - basic convex objects + infinite planes & infinite cylinders +

 generic quadric

 Zones - sub-region defined only with

 intersection and subtraction of bodies (used internally)

 Regions - are defined as boolean operations of bodies (union of zones)

 Lattices - duplication of existing regions (translated & rotated)

4

Input format

 The input format for the geometry is different from that adopted elsewhere in
FLUKA, i.e. the number and length of the input fields is different.

 The recommended format is name based. For backward compatibility there are
also other formats. Name based format is not the default one!

 Name based format input is used for both body and region if requested by
COMBNAME in the GEOBEGIN card, or by a GLOBAL command at the beginning of
the input file.

 One advantage of name based format is that alignment of the input parameters is
not necessary. Bodies and regions are identified by names. Its main advantages,
in addition to the freedom from strict alignment rules, are the possibility to modify
the input sequence without affecting the region description (for instance, by
inserting a new body) and the availability of parentheses to perform complex
boolean operations in the description of regions.

 In fixed format alignment is mandatory. Bodies and regions are identified by
numbers and not by names which makes creation and updating of the geometry
difficult.

5

Input structure
FLUKA CG input must respect the following sequential order:

 GEOBEGIN card
 VOXELS card (optional)
 Geometry title (and reading format options)
 Body data
 $Start_transformation (optional)

 Body data
 $End_transformation (optional)

 Body data
 END card (automatically added by flair)
 Region data

 END card (automatically added by flair)
 LATTICE cards (optional)
 Region volumes
(optionally requested by a flag in the Geometry title, used together with SCORE)

 GEOEND card

Cards having a * in column 1 are treated as comments

6 6

GEOBEGIN card

The meanings of the WHAT and SDUM parameters are:

WHAT(1) flag for switching off geometry error messages: don't touch!!

 Default = 0.0 (all geometry error messages are printed)

WHAT(2) used to set the accuracy parameter

WHAT(3) = logical unit for the geometry input.
If > 0.0 and different from 5, the name of the corresponding file must
be input on the next card. Otherwise, the geometry input follows.

WHAT(4) = logical unit for the geometry output. If > 0.0 and different from
11, the name of the corresponding file must be input on the next card.
Otherwise, geometry output is printed on the standard output.

WHAT(5) Parenthesis optimization level
WHAT(6) not used
SDUM = COMBNAME or COMBINAT
 COMBNAME selects name based format, COMBINAT fixed format
 Default: COMBINAT (!)
 Can be overwritten by WHAT(5) of a possible GLOBAL card

Tracking accuracy

WHAT(2)*10-6cm is the absolute accuracy (AA) requested for tracking,

applying to boundary identification.

The relative accuracy (RA) achievable in double precision is of the order of

10-14-10-15.

So AA should be larger than RA*L, being L the largest coordinate value in the

problem world (excluding the outer blackhole shell containing it), i.e. the

whole geometry size.

From FLUKA2011, instead of giving WHAT(2) the past default value of 0.0001,

the code guesses L from the size of the second largest body in the geometry

and sets WHAT(2) accordingly. Its value is reported in the output file and, if

needed, can be retuned by the user.

7

8

Bodies
 Each body divides the space into two domains inside and outside.

The outside part is pointed to by the normal on the surface.

 3-character code of available bodies:
 RPP: Rectangular parallelepiped

 SPH: Sphere

 XYP, XZP, YZP: Infinite half space delimited by a coordinate plane

 PLA: Generic infinite half-space

 XCC, YCC, ZCC: Infinite circular cylinder, parallel to coordinate axis

 XEC, YEC, ZEC: Infinite elliptical cylinder, parallel to coordinate axis

 RCC: Right circular cylinder

 REC: Right elliptical cylinder

 TRC: Truncated right angle cone

 ELL: Ellipsoid of revolution

 QUA: Generic quadric surface

 Other bodies ARB, RAW, WED, BOX
 don’t use them, they cause sometimes rounding problems

9

Important Notes

 Whenever it is possible, the following bodies should be preferred:

PLA, RPP, SPH, XCC, YCC, ZCC,

XEC, YEC, ZEC, XYP, XZP, YZP, QUA

 These make tracking faster, since for them extra coding ensures that

unnecessary boundary intersection calculations are avoided when the
length of the next step is smaller than the distance to any boundary of
the current region.

 Always use as many digits as possible in the definition of the
body parameters, particularly for body heights (RCC, REC), and
for direction cosines of bodies with slant surfaces.

 The free format [or the high-accuracy fixed format] should
always be used in these cases.

10

Bodies input

The input for each body consists of

 the 3-letter code indicating the body type

 a unique body name

 (8 character maximum, alphanumeric identifier, case sensitive)

 a set of geometrical quantities defining the body

 (their number depends on the body type)

A maximum of 132 characters per line are accepted,

use extra lines if required

The different items, separated by one or more blanks, or

by one of the separators , / ; :

can extend over as many lines as needed.

All numbers are in cm!

11

A QUA is the most generic quadric surface

It is defined by 10 coefficients in the following order:

Axx Ayy Azz Axy Axz Ayz Ax Ay Az A0

corresponding to the equation

Axx x
2 + Ayy y

2 + Azz z
2 + Axy xy + Axz xz + Ayz yz + Ax x + Ay y + Az z + A0 = 0

 Axx Axy/2 Axz/2 Ax/2 x

 Axy/2 Ayy Ayz/2 Ay/2 y

 Axz/2 Ayz/2 Azz Az/2 z

 Ax/2 Ay/2 Az/2 A0 1

For example:
QUA EllHyper 0.25 1.0 -4.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0

is an elliptic hyperboloid with axis equal to z

QUA Cylinder 0.5 1.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -4.0

is an infinite circular cylinder of radius 2 with axis {z=-x,y=0}

(i.e. at -45o on the xz plane)

QUA EllParab 0.25 1.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0

is an elliptic paraboloid with axis equal to z

Generic quadric: QUA

or [x y z 1] = 0 i.e. rT MQUA r = 0

z

z

12 12

 $Start_expansion ... $End_expansion

 it provides a coordinate expansion (reduction) factor f for all bodies
embedded within the directive

$Start_expansion 10.0
SPH Sphere 5.0 7.0 8.0 50.0

$End_expansion
transforms a sphere of radius 50 centered in (+5,+7,+8)

into a sphere of radius 500 centered in (+50,+70,+80)

Directives in geometry:expansion(&reduction)

r’T MQUA r’ = 0 r = T r’ T =

f 0 0 0

0 f 0 0

0 0 f 0

0 0 0 1

13 13

 $Start_translat ... $End_translat

 it provides a coordinate translation Sx,Sy,Sz for all bodies embedded within
the directive

$Start_translat -5.0 -7.0 -8.0
SPH Sphere 5.0 7.0 8.0 50.0

$End_translat
transforms a sphere of radius 50 centered in (+5,+7,+8)

into a sphere of radius 50 centered in (0,0,0)

Directives in geometry: translation

r’T MQUA r’ = 0 r = T r’ T =

1 0 0 Sx

0 1 0 Sy

0 0 1 Sz

0 0 0 1

14 14

 $Start_transform ... $End_transform

 it applies a pre-defined (via ROT-DEFI) Roto-translation to all bodies

embedded within the directive

ROT-DEFI , 201.0, 0., +116.5650511770780, 0., 0., 0., cylrot

$Start_transform cylrot
QUA Cylinder 0.5 1.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -4.0

$End_transform
transforms an infinite circular cylinder of radius 2 with axis {x=-z,y=0}

into an infinite circular cylinder of radius 2 with axis {x=z/3,y=0} (clockwise rotation)

- it allows to rotate a RPP avoiding the use of the deprecated BOX !

- note that also the inverse transformation can be used T-1

$Start_transform -cylrot

Directives in geometry: roto-translation

r’T MQUA r’ = 0 r = T r’ T =

 Sx

 R Sy

 Sz

0 0 0 1

ROT-DEFIni
The ROT-DEFIni card defines roto-translations that can be applied, in addition

to bodies, to i. USRBIN & EVENTBIN and ii. LATTICE. It transforms the position

of the tracked particle i. before scoring with respect to the defined binning or

ii. into the prototype with the order:

 First applies the translation

 followed by the rotation on the azimuthal angle

 and finally by the rotation on the polar angle.

Xnew = Mpolar Maz (X + T)

WHAT(1): assigns a transformation index and the corresponding rotation axis
 I + J * 100 or I * 1000 + J

 I = index of rotation (WARNING: NOTE THE SWAP OF VARIABLES)

 J = rotation with respect to axis (1=X, 2=Y, 3=Z)

WHAT(2): Polar angle of the rotation (0 ≤ ≤ 180o degrees)

WHAT(3): Azimuthal angle of the rotation (-180 ≤ ≤ 180o degrees)

WHAT(4), WHAT(5), WHAT(6) = X, Y, Z offset for the translation

SDUM: Optional (but recommended) name for the transformation

15

16 16

 $Start_expansion and $Start_translat are applied when reading the geometry

 no CPU penalty, $Start_transform is applied runtime some CPU

penalty

 One can nest the different directives (at most one per type!) but, no matter

the input order, the adopted sequence is always the following:

 $Start_transform StupiRot

 $Start_translat -50.0 -70.0 -80.0

 $Start_expansion 10.0

 QUA WhatIsIt +1.0 +1.0 +1.0 0.0 0.0 0.0 -10.0 -14.0 -16.0 -2362.0

 $End_expansion

 $End_translat

 $End_transform

 Directives are not case sensitive (whereas roto-translation names are)

Directives in geometry: warnings

17 17

Identifying rotation angles

Let’s define the orientation of a body in the space
by a system of 3 orthogonal versors i’, j’, k’ , whose coordinates
are expressed with respect to the fixed reference frame X,Y,Z

Then [i’ j’ k’] = (in the ZXZ convention)

where c1=cos(ψ) c2=cos(θ) c3=cos(Φ) s1=sin(ψ) s2=sin(θ) s3=sin(Φ)

k’

i’
j’

here Φ = 45o θ = 30o ψ = -60o

The obtained Euler angles can be input as azimuthal angle of

three consecutive rotations (ROT-DEFI)

18

Regions (I)
Input for each region starts on a new line and extends on as many
continuation lines as are needed. It is of the form:

REGNAME NAZ boolean-zone-expression | boolean-zone-expression | …

 “boolean-zone-expression” is a sequence of one or more body names
preceded by the operators + (intersection) or – (complement or
subtraction). Several zone expressions can be combined by the union
operator | . (A single boolean-zone-expression is admitted).
The operator precedence sequence is: first parentheses (see later), then +
and – , last |.

 REGNAME is the region name (an arbitrary unique alphanumeric
character string chosen by the user). The region name must begin by an
alphabetical character and must not be longer than 8 characters.

19

Regions (II)
 NAZ is a rough guess for the number of zones which can be entered
leaving the current region zones, it is 5 by default. What in fact matters is
its sum over all regions, defining the size of the contiguity list.

At the beginning, to find the neighboring zones, the code searches over the whole
geometry, but as the tracking proceeds, it learns the neighbors of each zone: they are
stored in the contiguity list, making the calculation more and more efficient. When the
above size limit is reached, the code prints a warning: GEOMETRY SEARCH ARRAY
FULL. This is not lethal: the calculation continues but with a reduced efficiency. If the
neighboring zones are not found in the contiguity list, the code will scan again ALL
zones.

If you have more than 1000 regions, you must issue a GLOBAL card
putting in WHAT(1) a higher limit (not beyond 20000)

20

Operators

Regions are defined as combinations of bodies obtained by
boolean operations:

Regions are not necessarily simply connected (they can be made as
the union of two or more non contiguous or partially overlapping
zones) but must be of homogeneous material composition.

Zones must be finite.

Union Subtraction Intersection

Named based | – +

Fixed OR – +

Mathematically –

21

Illustration of the + and – operators

22

The Blackhole

To avoid infinite tracking the particles must be stopped somewhere.
This has to be insured by the user by defining a region surrounding
the geometry and assigning the material BLCKHOLE to it.

All particles that enter the blackhole are absorbed (they disappear
and are flagged as escaping). Further blackhole regions can be
defined by the user if necessary.

The blackhole is the outermost boundary of the geometry. Inside
the blackhole region:

Each point of space must belong to one and only
one region!

Geometry Example “F” shaped target

Y

Z

X

1 2 3 4 5 6 0

1

2

3

4

5

Material: Copper

Surrounded by vacuum

Black hole: spherical shell

from 1000 – 10000 cm

1 cm thick in x direction

23

Geometry example “F”: Bodies

Several possibilities for bodies:

1

2

1

1

2 2 1

2

(C) overlapping (D) subtraction (A) 3 bodies (B) 3 bodies

We will use C.

3 3 3

3

24

Geometry example “F”: REGIONS

Y

Z

X

1 2 3 4 5 6 0

1

2

3

4

5

1 cm in x

TOP

MIDDLE

V
E

R
T

I

 BLACKBDY: outermost region like a shell
 2 spheres needed: SPOUT, SPIN
 Expression: SPOUT - SPIN

 TARGET: the F shaped object
 Parallelepipeds: VERTI, TOP, MIDDLE
 Expression: VERTI | TOP | MIDDLE

 VOID: region around the target
 Everything inside SPIN that is not target
 Expression: SPIN –VERTI – TOP –MIDDLE

 After all regions are created: Assign material

to each region with ASSIGNMA

25

Geometry example “F”: input file

 GEOBEGIN COMBNAME

 0 0 The copper F

SPH SPIN 0.0 0.0 0.0 1000.

SPH SPOUT 0.0 0.0 0.0 10000.

RPP VERTI 0.0 1. 0.0 5. 0.0 1.

RPP TOP 0.0 1. 4. 5. 0.0 3.

RPP MIDDLE 0.0 1. 2. 3. 0.0 3.

END

* Black hole

BLKBODY 5 +SPOUT -SPIN

* Void around

VOID 5 +SPIN -TOP -VERTI -MIDDLE

* Target

TARGET 5 TOP | VERTI | MIDDLE

END

GEOEND

ASSIGNMA BLCKHOLE BLKBODY

ASSIGNMA VACUUM VOID

ASSIGNMA COPPER TARGET

26

Flair view of the input file

27

Ideal world Computation world

Avoid touching surfaces!

When floating point operations are involved

 Use cutting planes instead

 Or force partial overlap of bodies

28

Preventing precision errors

RCC RCC

RCC

PLA

A B

B

A

+A+B +A-B

B A

A-B +B

+B +A

29

Geometry errors
During execution the code always needs to know the region where a particle
is located at every step.

 The program will stop only if a particle’s position does not belong to any
region.
It will issue an error message on the .err file with the particle position.

 IMPORTANT! It will not stop if a particle’s position belongs to more than
one region. It will accept the first region it finds but results will be
unreliable!!

 Primary particles starting on a boundary (where the region is undefined)
represent a delicate situation. FLUKA will try to determine the region by
their direction.

30

Debugging tools

 GEOEND card with the DEBUG option

 (handled through a dedicated Flair frame)

 Error messages during simulation in the .err file

 Geometry plotting by Flair

 (automatically invoking the PLOTGEOM card)

 FLAIR Geometry Editor (very powerful! See the dedicated lecture)

 SimpleGeo

Native debugger (I)

GEOEND card activates the FLUKA geometry debugger.

Detects both undefined or multiple defined points in a selected X,Y,Z
mesh

Two cards are needed

 First card
 WHAT(1)=Xmax WHAT(2)=Ymax WHAT(3)=Zmax
 WHAT(4)=Xmin WHAT(5)=Ymin WHAT(6)=Zmin
 SDUM = DEBUG

 Second Card
 WHAT(1)=Nx WHAT(2)=Ny WHAT(3)=Nz
 SDUM = &

GEOEND Xmax Ymax Zmax Xmin Ymin Zmin DEBUG
GEOEND Nx Ny Nz &

31

Native debugger (II)

 If no error is found, no .err file will be created.

 Errors will be listed in the .err file in the form:
 **** Lookdb: Geometry error found ****

 **** The point: -637.623762 -244.554455 -96.039604 ****

 Point is contained in more than one region
 **** is contained in more than 1 region ****
 **** (regions: 6 7) ****

 Not contained in any region

 **** is not contained in any region

 Exploit the geometry symmetry asking for 2D scans on planes

 Scan only the problematic areas

 Adopt as step length an irrational number in order to prevent
from ending up on “special” points (i.e. boundaries)

 REMINDER: If the debugger doesn't find any error it doesn't
mean that the geometry is error free!

32

33

Native debugger (III)

It can be easily run through Flair

34

User optimization in region definition

A zone involving many bodies increases the tracking time, since the
exiting conditions imply a respective number of checks

 1731 holes slices with <50 holes

...ideally large zones (far boundaries) with few bodies (!)

 prefer overlapping zones

one zone with MANY bodies:
large CPU time!

many zones with much less
bodies each: significant benefit

35

Parentheses

Parentheses are grouping together combinations of bodies.
Parentheses can be used in name based format only.

Examples:
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

* Subtract from body2 regions regR03, regR04, regR05

regV02 5 +body2 - (+body4 -body3)

 - (+body6 -body5 |+body8 -body7) - body9 -body10

regR03 5 +body4 -body3

regR04 5 +body6 -body5 |+body8 -body7

regR05 5 +body9 | +body10

Nested parentheses are supported, however:

parentheses should be used with care since their expansion
can generate a quickly diverging amount of terms.

A partial optimization is performed on planes (aligned with
the axes) and bounding boxes only

36

Parenthesis Expansion (I)

 Parentheses expansion is almost like converting
 from product of sums to sum of products

 Product operators are: +/-, Sum operator: |

 The final result will be an expression in the normal form. Unions of all
possible combinations of the bodies in the expression!

 Initially the code removes all repeated terms:
 A + A = A
 A – A =
 expA | expA = expA

37

Parenthesis Expansion (II)

Geometrical optimization can drastically reduce the number of zones

1. Elimination of same type of planes (XYP, XZP, YZP) inside a zone
(product)

2. Optimization of zones based on the bounding boxes of the bodies.

 Infinite objects have an infinite bounding box on some of the
dimensions i.e. XYP, ZCC etc.

 PLAnes do not have a bounding box

 For each zone after the expansion, if the intersection of the bounding
boxes is empty the zone is discarded

Lattice (I)

FLUKA geometry has replication (lattice) capabilities

Only one level is implemented (no nested lattices are allowed)

[In a future release the possibility of a second level is planned]

 The user defines lattice positions in the geometry and provides
transformation rules from the lattice to the prototype region:

1. in the input with the ROT-DEFI card

2. in a subroutine (lattic.f)

The lattice identification is available for scoring

Transformations are limited to:
Translation, Rotation and Mirroring (the last only through routine).

WARNING:

 Do not use scaling or any deformation of the coordinate system

38

Lattice (II)

 The regions which constitute the elementary cell (prototype) to
be replicated, have to be defined in detail. Materials and other
properties have to be assigned only to the regions constituting
the prototype.

 The Lattices (replicas/containers) have to be defined as “empty”
regions in their correct location.
WARNING: The lattice region should map exactly the outer
surface definition of the elementary cell.

 The lattice regions are declared as such with a LATTICE card at
the end of the geometry input

 In the LATTICE card, the user also assigns lattice
names/numbers to the lattices. These names/numbers will
identify the replicas in all FLUKA routines and scoring

 Several basic cells and associated lattices can be defined within
the same geometry

 Non-replicas carry the lattice number 0

 Lattices and plain regions can coexist in the same problem

39

LATTICE card
After the Region definition and before the GEOEND card the user can insert the
LATTICE cards

 WHAT(1), WHAT(2), WHAT(3)
Container region range (from, to, step)

 WHAT(4), WHAT(5), WHAT(6)
Name/number(s) of the lattice(s)

 SDUM
blank to use the transformation from the lattic routine
ROT#nn to use a ROT-DEFI rotation/translation from input
name the same as above but identifying the roto-translation by the name
 assigned in the ROT-DEFI SDUM (any alphanumeric string you like)

Example

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

LATTICE TARGR1 TargRep 1tra

TARGR1 is the container region using transformation 1tra

LATTICE 6.00000 19.00000 101.0000 114.00

Region # 6 to 19 are “placeholders”, to which we assign lattice numbers from 101 to 114

40

Example (I)

41

Empty
lattice container

Prototype
regions

Example (II)

42

Replica

Prototype
regions

For every particle
entering the replica

Its coordinates are transformed to the
prototype, where FLUKA performs the tracking

Example (III)

43

Empty
lattice cell

Prototype
cell

Final
replica

Transformation by input card

 Rotations/Translations can be defined with the ROT-DEFIni card

 Can be assigned to a lattice by name or with ROT#nnn (SDUM in
the LATTICE card)

 ROT-DEFIni cards can be concatenated (using the same index or
name) to define complex transformations

WARNING:

 Since matrix multiplication is not commutative the order of the
Rotation/Translation operations in 3D is important.

44

The lattic routine (I)
 The actual transformation from the lattice cell (container) to the elementary

cell (prototype) can also be provided through the lattic routine (if the
LATTICE SDUM is left blank)

 The use of the routine is mandatory for mirroring, and turns out to be highly

preferable in the case of a lot of replicas placed according to a simple arithmetical rule
(e.g. segmented detectors). Otherwise, the use of the LATTICE and ROT-DEFI cards
does not imply any particular limitation and offers the possibility of being combined
with the $Start_transform directive for the container definition (see later) and with the
use of ROTPRBIN for the roto-translation of USRBIN scoring grids.

 SUBROUTINE LATTIC (XB, WB, DIST, SB, UB, IR, IRLTGG, IRLT, IFLAG)

 IRLTGG is the current lattice number (it can optionally be set in the LATTICE
card), IR is the current region number

 XB,WB are vectors with the current particle position and direction
 the routine must give back SB,UB, i.e. position and direction transported to the

prototype

 The
 ENTRY LATNOR (UN, IRLTNO, IRLT)

must provide the transformation for a vector representing a direction (no
translation), applying to boundary normals (UN is both the in and out
vector; IRLTNO is the current lattice number)
 45

As an example, for the 10cm translation along z shown in the previous slides:

 LOGICAL LFIRST
 DATA LFIRST / .TRUE. /
 SAVE LFIRST, IREP
 IF (LFIRST) THEN ! Find replica’s lattice number
 CALL GEON2L(’TargRep ’, IREP, IRTLAT, IERR)
 LFIRST = .FALSE.
 END IF
 IF (IRLTGG .EQ. IREP) THEN
 SB (1) = XB (1)
 SB (2) = XB (2)
 SB (3) = XB (3) – 10.0D0
 UB (1) = WB (1)
 UB (2) = WB (2)
 UB (3) = WB (3)
 END IF

And the UN transformation is the identity

More complex cases can involve reflections and rotations.
For instance, for a reflection around the z axis :
 UN (1) = UN (1)
 UN (2) = UN (2)
 UN (3) =-UN (3)

46

The lattic routine (II)

Numerical Precision
 Due to the nature of the floating point operations in CPU, even if the

transformation looks correct the end result could be problematic

 This small misalignment between lattice/transformation/prototype could
lead to geometry errors

 Use as many digits as possible to describe correctly the prototype and
lattice cells as well as the transformation.
It is mandatory that the transformation applied to the container makes the
latter EXACTLY corresponding to the prototype

 One can use a FREE and FIXED card before and after the ROT-DEFI card to
input more than 9 digits

 GEOBEGIN WHAT(2) allows to relax the accuracy in boundary identification
(USE WITH CAUTION)

47

Prototype

Rules and strategies

 Always remember that the transformation must bring the
container onto the prototype and not viceversa!

 You can always divide a transformation into many
ROT-DEFI cards for more clarity.

 Rotations are always around the origin of the geometry, and not
the center of the object.

 To rotate an object, first translate the object to the origin of the axes

 Perform the rotation

 Move it by a final translation to the requested position.
Actually the other way around since everything should apply to the
replica

 In order to define the replica body, you can clone the body
enclosing the prototype (assigning it a new name!) and apply to
it the $Start_transform directive with the inverse of the respective
ROT-DEFI transformation.

48

A robust solution: combining lattice with body transformation
GEOBEGIN
...
RPP CollProt -540.0 -460.0 -20.0 20.0 100.0 300.0
$start_transform –rotColl *

RPP CollRepl -540.0 -460.0 -20.0 20.0 100.0 300.0
$end_transform
END
...
Collimat 5 +CollRepl
END
LATTICE, Collimat, , , Whatever, , , rotColl
GEOEND
ROT-DEFI, 1.0, 0.0, 0.0, 0.0, 0.0, -350.0, rotColl [A]
ROT-DEFI, 201.0, 0.0, -15.0, 0.0, 0.0, 0.0, rotColl [B]
ROT-DEFI, 1.0, 0.0, 0.0, -500.0, 0.0, 200.0, rotColl [C]

A-1

C-1

B-1

* Remember: if R=CBA, then R-1=A-1B-1C-1

49

Scoring with lattice

 In all (user) routines the region number refers to the corresponding
one in the prototype.

 The SCORE summary in the .out file and the scoring by regions add
together the contributions of the prototype region as well as of all
its replicas!

 The lattice identity can be recovered runtime by the lattice number,
as set in the LATTICE card or available through the GEON2L routine
from the lattice name

 In particular, a special built-in USRBIN/EVENTBIN structure is
available to manage the scoring on lattices through the LUSRBL user
routine.

 USRBIN/EVENTBIN Cartesian and cylindrical meshes are geometry
independent and, if superimposed on replica containers (possibly
profiting from applying to the binning the respective roto-
translation via ROTPRBIN), naturally discriminate between different
replicas.

50

The USRBIN/EVENTBIN special binning

EVENTBIN/USRBIN with WHAT(1)=8 and 18 :

Special user-defined 3D binning. Two variables are discontinuous (by
default region number and lattice number), the third one is continuous,
but not necessarily a space coordinate.

Variable Type Default Override Routine

1st integer region number MUSRBR

2nd integer lattice cell number LUSRBL

3rd float no default* FUSRBV

51

* Presently it returns 0

52

Accessing ancillary core routines
 To convert the lattice/region name of interest into the respective number

(and vice versa), use the following routines – giving back IERR=0 in case of
success - :

CHARACTER*8 LATNAM

 CALL GEON2L(LATNAM, NLATT, IRTLAT, IERR) Lattice Name to Lattice #
CALL GEOL2N(NLATT, LATNAM, IRTLAT, IERR) Lattice # to Lattice Name

 IRTLAT is the returned index of the (possible) roto-translation associated

 CHARACTER*8 REGNAM

 CALL GEON2R(REGNAM, NREG, IERR) Region Name to Region #
CALL GEOR2N(NREG, REGNAM, IERR) Region # to Region Name

 It is always a good practice to call them only the first time the calling user
routine is accessed and save once for ever the needed pieces of info

53

z0

2

0

22 dcR2RdR

Earth

d

R0

z

muon

Object runtime readjustment (I)

[courtesy of M.Sioli, INFN]

- how to implement collimator replicas set
at different apertures?

LHC IR7

- how to implement the actual rock
thickness according to the muon
incident direction?

LNGS

54

Object runtime readjustment (II)
In the lattic (when entering a container) and source (as well as usrmed) user
routines, it is possible to manipulate the body parameters

CHARACTER*8 BODNAM

 CALL NM2BDY (BODNAM, IBODY, IERR) Body Name to Body #
 DIMENSION BDYPAR(NBDYPA)

 BDYPAR(I)=... with I=1, NBDYPA

 CALL RSTBDY (IBODY, ITYPE, BDYPAR, NBDYPA) It forces recomputing
 distances only for IBODY

Body type Type # # of parameters
 [ITYPE] [NBDYPA]

 ARB 1 30
 SPH 2 4
 RCC 3 7
 REC 4 12
 TRC 5 8
 ELL 6 7
 BOX 7 12
 WED 8 12
 RPP 9 6
 ZCC 10 3

Body type Type # # of parameters
 [ITYPE] [NBDYPA]

 ZEC 11 4
 XYP 12 1
 XZP 13 1
 YZP 14 1
 PLA 15 6
 XCC 16 3
 XEC 17 4
 YCC 18 3
 YEC 19 4
 QUA 20 10

The FLUKA voxel geometry

It is possible to describe a geometry in terms of “voxels”, i.e., [tiny]

parallelepipeds (all of equal size) forming a 3-dimensional grid

55

An example

56

Another example, for medical applications

Voxel geometries are especially useful to import CT scan of a human
body, e.g., for dosimetric calculations of the planned treatment in
radiotherapy

mGy mGy

[K. Parodi et al., 2007] 57

Concepts

 A CT scan contains integer values (Hounsfield Unit) reflecting the
X-ray attenuation coefficient mx

 HUx = 1000 (mx-mH20) / mH20

 We will use loosely the word “organ” to indicate a group of voxels
(or even more than one group) made of the same “tissue”
material (same HU value or in a given HU interval)

 The code handles each organ as a CG region, in addition to other
conventional “non-voxel” regions defined by the user (the voxel
structure is complemented by parts written in the standard
combinatorial geometry)

 The code assumes that the voxel structure is contained in a
parallelepiped. This RPP is automatically generated from the
voxel information.

58

Procedure (I)

 To describe a voxel geometry, the user must convert his CT scan or
equivalent data to a format understood by FLUKA

 This stage should :

 Assign an organ index to each voxel. In many practical cases, the user
will have a continuum of CT values (HU), and may have to group these
values in intervals

 Each organ is identified by a unique integer ≤32767. The organ
numbering does not need to be contiguous (i.e. “holes” in the
numbering sequence are allowed).

 One of the organs must have number 0 and plays the role of the
medium surrounding the voxels (usually vacuum or air).

 The user assigns to each NONZERO organ a voxel-region number.
The voxel-region numbering has to be contiguous and starts from 1.

59

Procedure (II)
 The information is input to FLUKA through a special unformatted

file *.vxl containing:

 The number of voxels along each coordinate axis

 The number of voxel-regions, and the maximum organ number

 The voxel dimension along each coordinate axis

 A 3D matrix specifying the organ to which each voxel corresponds in
Fortran list-oriented format, with the x coordinate running faster than
y, and y running faster than z.

 val(1) corresponds to 1,1,1 == organ # of first voxel
 … …
 val(Nx) corresponds to Nx,1,1
 val(Nx+1) corresponds to 1,2,1
 … …

 val(2*Nx) corresponds to Nx,2,1
 …
 val(Ny*Nx) corresponds to Nx,Ny,1
 … …
 val(Nz*Ny*Nx) corresponds to Nx,Ny,Nz == organ # of last voxel

 A list giving the voxel-region number corresponding to each organ

60

writect.f
 PROGRAM WRITECT
 IMPLICIT DOUBLE PRECISION (A-H, O-Z)
* COLUMNS: FROM LEFT TO RIGHT
* ROWS: FROM BACK TO FRONT
* SLICES: FROM TOP TO BOTTOM
 PARAMETER (DX = 2.0D+00)
 PARAMETER (DY = 3.0D+00)
 PARAMETER (DZ = 4.0D+00)
 PARAMETER (NX = 20)
 PARAMETER (NY = 20)
 PARAMETER (NZ = 20)
 DIMENSION CT(NX,NY,NZ)
 INTEGER*2 CT
 DIMENSION VXL(NX,NY,NZ)
 INTEGER*2 VXL
 CHARACTER TITLE*80
 DIMENSION IREG(1000), KREG(1000)
 INTEGER*2 IREG, KREG
*
 CALL CMSPPR
 DO IC = 1, 1000
 KREG(IC) = 0
 END DO
 OPEN(UNIT=30,FILE='ascii_ct',STATUS='OLD')
 READ(30,*) CT
*
*
 NO=0
 MO=0

 DO IZ=1,NZ
 DO IY=1,NY
 DO IX=1,NX
 IF (CT(IX,IY,IZ) .GT. 0) THEN
 IO= CT(IX,IY,IZ)
 VXL(IX,IY,IZ) = IO
 MO = MAX (MO,IO)
 DO IR=1,NO
 IF (IREG(IR) .EQ. IO) GO TO 1000
 END DO
 NO=NO+1
 IREG(NO)=IO
 KREG(IO)=NO
 WRITE(*,'(A,2I10)')' New number, old number: ', NO, IO
 1000 CONTINUE
 END IF
 END DO
 END DO
 END DO
* NO = number of different organs
* MO = max. organ number before compacting
*
 WRITE(*,*) ' NO,MO',NO,MO
 OPEN(UNIT=31,FILE='ct.vxl',STATUS='UNKNOWN',FORM='UNFORMATTED')
 TITLE = 'Egg-like CT scan'
 WRITE(31) TITLE
 WRITE(31) NX,NY,NZ,NO,MO
 WRITE(31) DX,DY,DZ
 WRITE(31) VXL
 WRITE(31) (KREG(IC),IC=1,MO)
 STOP
 END

Number and
Dimensions
of voxels

read the original CT scan

Assign organ
IO to this
voxel

If new organ: assign new
region NO to organ IO

For each voxel

In this example, the
organ number is simply
set equal to the CT
number for each voxel

61

or CALL OAUXFI ('ascii_ct',30,'OLD',IERR)

or CALL OAUXFI ('ct.vxl',31,‘UNKNOWN UNFORMATTED',IERR)

Input file: geometry description (I)
 Prepare the usual FLUKA input file. The geometry must be written

like for a normal Combinatorial Geometry input (in any of the

allowed formats, as part of the normal input stream or in a separate

*.geo file), but in addition must include:

 VOXELS card as the first line, before the Geometry title card, with the

following information:

 WHAT(1), WHAT(2), WHAT(3) = x, y, z coordinates chosen as the

origin of the “voxel volume”, i.e. the corner of a RPP extending from

WHAT(1) to WHAT(1) + NX*DX, … and containing all the voxels

 WHAT(4) = possible ROT-DEFI transformation applying to the RPP

 (WHAT(5), WHAT(6) not used)

 SDUM = name of the voxel file

(extension will be assumed to be .vxl)

62

VOXELS -20.0 -30.0 -40.0 transf ct

One will have

 The usual list of NB bodies, not including the RPP corresponding to

the “voxel volume” (see VOXELS card above). This RPP will be

generated and added automatically by the code as the (NB+1) th

body, with one corner in the point indicated in the VOXELS card,

and dimensions NX*DX, NY*DY and NZ*DZ as read from the voxel

file.

 The usual list of NR regions, with the space occupied by the body

named VOXEL or numbered NB+1 (the “voxel volume”) subtracted.

In other words, the NR listed regions must cover the whole available

space, except the space corresponding to the “voxel volume”. This

is easily obtained by subtracting the body VOXEL (or NB+1) in the

relevant region definitions, even though this body is not explicitly

input at the end of the body list.

* vacuum inside
VACI 5 +SHI +SHTB -SHBT -VOXEL

63

Input file: geometry description (II)

Voxel Regions

The code will automatically generate NO+2 additional regions,

where NO = number of non-zero organs:

Name Number Description

VOXEL NR+1 sort of a “cage” for all voxels. Nothing

should ever be deposited in it. The user

shall assign VACUUM to it.

VOXEL001 NR+2 containing all voxels belonging to organ

number 0. There must be at least 2 of

such voxels, but in general they should be

many more. Typical material assignment

to this region is air

VOXEL002 NR+3 corresponding to organ 1

VOXEL003 NR+4 corresponding to organ 2

VOXEL### NR+2+NO corresponding to organ NO

64

Voxel Material Assignment
The assignment of materials shall be made by the card ASSIGNMAt
(and in a similar way for other region-dependent options) referring to
the first NR regions in the usual way, and to the additional voxel
regions using the correspondence to organs.

ASSIGNMA BLCKHOLE BLKH
ASSIGNMA VACUUM VACO
ASSIGNMA ALUMINUM AL
ASSIGNMA VACUUM VACI
ASSIGNMA VACUUM VOXEL
ASSIGNMA VACUUM VOXEL001
ASSIGNMA TITANIUM VOXEL002
ASSIGNMA AIR VOXEL003
ASSIGNMA COPPER VOXEL004
ASSIGNMA CALCIUM VOXEL005
ASSIGNMA CARBON VOXEL006
ASSIGNMA AIR VOXEL007

cage
Organ 0

6 “Non-
zero”
organs

65

66

$Start_expansion $End_expansion

$Start_translat $End_translat (inside the geometry input)

$Start_transform $End_transform

 to manipulate bodies

ROT-DEFI

 to define roto-translations

LATTICE (inside the geometry input)

 to declare a region as a replica placeholder and associate it to a
 given transformation

VOXEL (inside the geometry input)

 to introduce a voxel geometry

Summary of relevant input cards

