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Magnetic field tracking in FLUKA 

FLUKA allows for tracking in arbitrarily complex magnetic fields. 
Magnetic field tracking is performed by iterations until a given 
accuracy when crossing a boundary is achieved.  
Meaningful user input is required when setting up the parameters 
defining the tracking accuracy. 
Furthermore, when tracking in magnetic fields FLUKA accounts for: 
 The precession of the mcs final direction around the particle direction: 

this is critical in order to preserve the various correlations embedded 
in the FLUKA advanced MCS algorithm 

 The precession of a (possible) particle polarization around its direction 
of motion: this matters only when polarization of charged particles is a 
issue (mostly for muons in Fluka) 

 The decrease of the particle momentum due to energy losses along a 
given step and hence the corresponding decrease of its curvature 
radius. Since FLUKA allows for fairly large (up to 20%) fractional 
energy losses per step, this correction is important in order to prevent 
excessive tracking inaccuracies to build up, or force to use very small 
steps 
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Magnetic field tracking in FLUKA 

The red line is the path actually 
followed,  
the magenta segment is the last 
substep, shortened because of a 
boundary crossing 

 = max. tracking angle 
(MGNFIELD) 
  = max. tracking/missing error 
(MGNFIELD or STEPSIZE) 
  ‘ = max. bdrx error (MGNFIELD 
or STEPSIZE) 

The true step (black) is approximated by 
linear sub-steps. Sub-step length and 
boundary crossing iteration are governed by 
the required tracking precision 

The  end  point is ALWAYS on the true path, 
generally NOT exactly on the boundary, but  
at  a distance  <  ‘ from the true boundary  
crossing (light blue  arc) 
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Setting the tracking precision  

   largest angle in degrees that a charged particle is allowed to 
travel in a single sub-step. Default = 57.0 (but a maximum of 
30.0 is recommended!) 

   upper limit to error of the boundary iteration in cm (’ in fig.). 
It also sets the tracking error . Default = 0.05 cm 

 

 MGNFIELD    Smin Bx By Bz 

IF  and /or    are too large, boundaries  may 
be missed ( as in the plot).  
IF they are too small, CPU time explodes.. 
Both  and    conditions  are fulfilled during 
tracking 
 Set them according to your problem 
Tune  by region with the STEPSIZE card 
 Be careful when very small regions exists in 
your setting :   must be smaller than the 
region dimensions! 
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Setting the tracking precision  

 Smin minimum sub-step length. If the radius of curvature is so 
small that the maximum sub-step compatible with  is smaller 
than Smin, then the condition on  is  overridden. It avoids 
endless tracking of spiraling low energy particles. Default = 0.1 
cm 

 

 MGNFIELD    Smin Bx By Bz 

Particle 1: the sub-step corresponding 
to  is > Smin -> accept 
Particle 2: the sub-step corresponding 
to  is < Smin ->  increase  
 
Smin can be set by region with the 
STEPSIZE card 
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Setting precision by region 

 Smin: (if what(1)>0) minimum step size in cm 
Overrides MGNFIELD if larger than its setting. 

  (if what(1)<0) : max error on the location of 
intersection with boundary.  
 The possibility to have different “precision” in different 

regions allows to save cpu time 

 Smax  : max step size in cm.  Default:100000. cm 
for a region without mag field, 10 cm with mag field. 
 Smax can be useful for instance for large vacuum regions 

with relatively low magnetic field   
 It should not be used for general step control, use 

EMFFIX, FLUKAFIX if needed 

 STEPSIZE Smin/ Smax Reg1 Reg2 Step  
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Possible loops in mag.fields 

 Although rare, it is PHYSICALLY possible that a particle loops 
for ever ( or for a very long time).  Imagine a stable particle  
generated  perpendicularly to a uniform B in a large enough 
vacuum region: it will  stay on a circular orbit  forever ! 

 Suppose now that the orbit  enters in a non-vacuum region  
(here we can at least loose energy..) but the boundary is 
missed due to insufficient precision. This results again in a 
never-ending loop. 

Luckily, it almost never happens. Almost. 
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The magfld.f user routine 
This routine allows to define arbitrarily complex magnetic fields: 

 ( uniform fields can be defined trough the  MGNFIELD card) 

SUBROUTINE MAGFLD ( X, Y, Z, BTX, BTY, BTZ, B, NREG, IDISC) 

.                                  Input variables:  

      x,y,z  =  current position  

   nreg    =  current region  

   Output variables:  

   btx,bty,btz     =    cosines of the magn. field vector  

  B  =  magnetic field intensity (Tesla)  

   idisc  = set to 1 if the particle has to be  
  discarded   

 All floating point variables are double precision ones! 

  BTX, BTY, BTZ  must be normalized to 1 in double precision 

 Magfld .f is called only for regions where a magnetic field has 
been declared through ASSIGNMAT 

 



Example: magnetic field in CNGS 

Cern Neutrino to Gran Sasso   

The two magnetic lenses (blue in the sketch) align positive 
mesons towards the Decay tunnel, so that neutrinos from 
the decay are directed to Gran Sasso, 730~km away 
Negative mesons are deflected away 
The lenses have a finite energy/angle acceptance 



Example : the magfld.f routine 

Magnetic field 
intensity in the 
CNGS horn 
 
A cuurent 
≈150kA, pulsed, 
circulates 
through the  
Inner 
and 
Outer 
conductors 
The field is 
toroidal,  
B1/R 
 





magfld: example 
SUBROUTINE MAGFLD ( X, Y, Z, BTX, BTY, BTZ, B, NREG, IDISC ) 

 INCLUDE '(DBLPRC)' 
 INCLUDE '(DIMPAR)' 
 INCLUDE '(IOUNIT)‘ 
 
  INCLUDE '(NUBEAM)' 
 
IF ( NREG .EQ. NRHORN ) THEN 
         RRR = SQRT ( X**2 + Y**2 ) 
         BTX =-Y / RRR 
         BTY = X / RRR 
         BTZ = ZERZER 
         B   = 2.D-07 * CURHOR / 1.D-02 / RRR 
END IF 

In this case, the cosines are 
automatically normalized. 
Otherwise, user MUST 
ensure that 
BTX**2+BTY**2+BTZ**1=ONEONE 

USEFUL TIP 
This is a user defined include file, containing for example  
COMMON  /NUBEAM/ CURHORN, NRHORN, …… 

It  can be  initialized  in a custom  usrini.f user routine, so 
that parameters can be easily changed in the input file   

This gives a  versor  radius 
in a plane  z axis  

 B intensity depending  
on R and current 

Standard FLUKA includes : KEEP THEM 



magfld: example contnd 
Different fields in different regions:  

 IF ( NREG .EQ. NRHORN ) THEN 
                      …… 
ELSE IF ( NREG .EQ. NRSOLE ) THEN 
         BTX = ZERZER 
         BTY = ZERZER 
         BTZ = ONEONE 
         B   = SOLEB 
ELSE IF ( NREG .EQ. NRMAP ) THEN 
         CALL GETMAP ( X, Y, Z, BTX, BTY, BTZ, B) 
ELSE 
         WRITE ( LUNOUT, *) ‘MGFLD, WHY HERE ? 
         WRITE ( LUNOUT, *) NREG’ 
          STOP 
END IF 

This gives a   perfect 
solenoid field 

Intensity  calculated at initialization 

Add a bit of protection. 

Get values from field map 

The user can add more routines,  they have to be included in the  
linking procedure 
Always :  
   include the three standard FLUKA INCLUDEs  
   use FLUKA defined constants and particle properties for consistency 
Possible, not explained here : call C routines 



magfld: results 

charged particle tracks  
in the CNGS geometry 
1 event 
 USRBIN  R-Z 

Focused 
De-focused 
Escaping..many 



The user initialization routines 
 usrglo.f   called before all initialization,  if  a  USRGCALL  card is 

issued 

 usrini.f   called  after all initialization, if a  USRICALL  card is 
issued 

 usrein.f   called at each event, before the  showering of an event 
is started, but after the source particles  of that event have been 
already loaded on the stack. No card is needed  

 

Very useful to initialize and propagate variables common to other 
user routines 

 

 Associated OUTPUT routines: 

 usrout.f  called at the end of the run if USROCALL is present 

 usreout.f  called at the end of each event , no card needed  
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Initialization routines -II 
 usrglo.f knows nothing  about the simulations, but 

can provide informations to the other initialization 
stages.  

 usrini.f  knows everything about the problem. Here 
one can, for instance, use  informations about 
materials, regions etc. 

 usrein.f   is useful when doing event-by-event user 
scoring , it can for instance reset and reinitialize 
event-dependent user quantities 

The USRGCALL and USRICALL cards can be issued 
many times if more parameters are needed 

The USRICALL card accepts input BY NAMES 
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usrini.f :example 
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SUBROUTINE USRINI ( WHAT, SDUM ) 
 
INCLUDE '(DBLPRC)' 
INCLUDE '(DIMPAR)' 
INCLUDE '(IOUNIT)‘ 
               ….. 
DIMENSION WHAT (6) 
 CHARACTER SDUM*8 
              …. 
 CHARACTER  MAPFILE(8)   
 INCLUDE '(NUBEAM)‘ 
 
IF ( SDUM .EQ. 'HORNREFL' ) THEN 
     NRHORN = WHAT (1) 
     CURHORN = WHAT (2) 
ELSE IF (SDUM .EQ. ‘SOLENOID‘) THEN 
      SOLEB = WHAT (2) 
       NRSOLE = WHAT(1) 
        
     contnd 
                
 
 

Default declarations 

Here we store our variables 

Here we initialize region numbers 
And parameters for the magfld.f 
routine 



usrini.f: example contnd 
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ELSE 
       MAPFILE=SDUM 
       MYUNIT=21 
       CALL OAUXFI ( MAPFILE,  MYUNIT, ‘OLD’ , IERR) 
       CALL READMAP(MYUNIT) 
       CLOSE (21) 
        NRMAP= WHAT (1) 
END IF 
RETURN 
         
 
 

Use the SDUM  field to read the name 
of the  magnetic field  map file  

Open the field map  

Call a user procedure that reads 
and stores the field map to be 
used by magfld.f  

This  usrini needs 3 cards to initialize all parameters:, like i.e. 
 
USRICALL   MyHorn    150000.                                  HORNREFL 
USRICALL   MySole      1. 3                                        SOLENOID 
USRICALL   Mapped                                                    myflmap 
 
The region names in the what’s are automatically parsed and 
converted to region numbers by  FLUKA 
(same would happen with  materials,  scoring  ..) 



Roto-translation routines: 
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The DOTRSF  routine executes the KROTAT_th  transformation as 
defined by ROT-DEFI on NPOINT points, defined by the X,Y,ZPOINT 
arrays, with a (possible) translation included 
 
DORTNO does the same without the translation (eg for velocity vectors) 
 
UNDOTR performs the inverse transformation, with a (possible) 
translation included 
 
UNDRTO performs the inverse transformation, without the translation  

SUBROUTINE DOTRSF ( NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT ) 
… 
SUBROUTINE DORTNO ( NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT) 
… 
SUBROUTINE UNDOTR ( NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT) 
… 
SUBROUTINE UNDRTO ( NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT) 
… 
DIMENSION XPOINT (NPOINT), YPOINT (NPOINT), ZPOINT (NPOINT) 
… 
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END 



usrglo.f :example 

21 

     SUBROUTINE USRGLO ( WHAT, SDUM ) 
 
      INCLUDE '(DBLPRC)' 
      INCLUDE '(DIMPAR)' 
      INCLUDE '(IOUNIT)‘ 
               ….. 
      DIMENSION WHAT (6) 
      CHARACTER SDUM*8 
      INCLUDE '(NUBEAM)‘ 
               
       IF ( WHAT(1) .GT. ZERZER )  THEN 
            ROTTRG   =  WHAT(1) 
            LTGMISA = .TRUE. 
            TRATARG = ZERZER 
            IF ( WHAT(2) .GT. ZERZER ) TRATARG = WHAT(2) 
       RETURN 
         
 
 

Default declarations 

Here we store our variables 

Suppose we have a lattic.f routine  
That rotates the target  to simulate misalignment : here  a flag and 
the rotation / translation amounts are set 


