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Phase space 
 Phase space: a concept of classical Statistical Mechanics 

 Each Phase Space dimension corresponds to a particle degree of 

freedom 

 3 dimensions correspond to Position in (real) space: x, y, z 

 3 dimensions correspond to Momentum: px, py, pz                                                    

          (or  Energy and direction: E, , ) 

More dimensions may be envisaged, corresponding to other possible 

degrees of freedom, such as quantum numbers: spin, etc. 

 Another degree of freedom is the particle type itself (electron, 

proton...) 

 Each particle is represented by a point in phase space 

 Time can also be considered as a coordinate, or it can be 

considered as an independent variable: the variation of the other 

phase space coordinates as a function of time constitutes a 

particle “history” 
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The angular flux Ψ 
The angular flux Ψ is the most general radiometric quantity: 

                        particle phase space density × velocity  

                                               or also 

derivative of fluence F(x,y,z) with respect to 3 phase space 
coordinates: time, energy and direction vector 

 

 

Y is fully differential, but most Monte Carlo estimators integrate 
it over one or more (or all) phase space dimensions: coordinates, 
time, energy, angle 

Fluence  F, on the opposite, is the most integral radiometric 
quantity: 

 

where n = particle density in normal space, l = tracklength 
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Reaction Rate and Cross Section [1/3] 
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 We call mean free path           the average distance travelled by 
a particle in a material before an interaction. Its inverse,              
is the probability of interaction per unit distance, and is called 
macroscopic cross section. Both    and     depend on the material 
and on the particle type and energy. 

 

 For N identical particles, the number of reactions R occurring in a 

given time interval will be equal to the total distance travelled l 
times the probability per unit distance   : 

 

 The reaction rate will be                          , where v is the 

average particle velocity. 
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Reaction Rate and Cross Section [2/3] 
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 Assume now n(r,v)=dN/dV [cm-3] be the density of particles with 

velocity v=dl/dt [cm/s], at a spatial position r. The reaction rate 
inside the volume element dV will be:  

 
 The quantity                        is called fluence rate or flux density 

and has dimensions [cm-3 cm s-1]=[cm-2 s-1].  

 

 The time integral of the flux density                          is the 
fluence [cm-2]  

 
 Fluence is measured in particles per cm2 but in reality it 

describes the density of particle tracks 
 

 The number of reactions inside a volume V is given by the 

formula:             (where the product         is integrated over 
energy or velocity) 
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Reaction Rate and Cross Section [3/3] 
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• Dividing the macroscopic cross section by N0, the number of atoms   

   per unit volume, one obtains the microscopic cross section   
   s[barn=10-24cm2]. 

  

  i.e., the area of an atom weighted with the probability of   
  interaction (hence the name “cross section”). 
 
• But it can also be understood as the probability of interaction  
   per unit length, with the length measured in atoms/cm2 (the  
   number of atoms contained in a cylinder with a 1 cm2 base). 
•  In this way, both microscopic and macroscopic cross section  
   are shown to have a similar physical meaning of “probability  
   of interaction per unit length”, with length measured in  
   different units. Thus, the number of interactions can be   
   obtained from both, by multiplying them by the corresponding  
   particle track-length. 
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Fluence estimation [1/2] 

 Track length estimation: 

 

 

 

 

 Collision density estimation (NOT IN VACUUM!): 
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Surface crossing estimation 

 Imagine a surface having 
an infinitesimal thickness dt 

A particle incident with an 
angle θ with respect to the normal 
of the surface S will travel a segment dt/cosθ. 

 Therefore, we can calculate an average surface fluence by adding 
dt/cos θ for each particle crossing the surface, and dividing by the 
volume S dt 

 

 

 While the current J will be to count the number of particles 

crossing the surface divided by the surface 

J= dN/dS 

The fluence is independent of the orientation of the surface S, 

while the current is NOT! 

In an isotropic field it can be easily seen that for a flat surface  J = F/2 

 

Fluence estimation [2/2] 
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The Boltzmann Equation 
 All particle transport calculations are (explicit or implicit) attempts to 

solve the Boltzmann Equation 

 It is a balance equation in phase space: at any phase space point, 
the increment of angular flux Ψ in an infinitesimal phase space 
volume is equal to  
 

  sum of all “production terms”  

minus 

sum of all “destruction terms” 

 Production: 
 Sources, Translational motion “in”, “Inscattering'', Particle Production, Decay “in” 

 Destruction: 
 Absorption, Translational motion “out”, “Outscattering'', Decay “out” 

 

A theorem of statistical mechanics, the Ergodic Theorem, says that     
the average of a function along the trajectories is equal to the average 
over all phase space. 
The particle trajectories “fill” all the available phase space. 
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Visualizing a 2-D phase space... 

pE


,

r


Translational motion: change of position, 
no change of energy and direction 

Scattering: no change of position, 
change of energy and direction 

  In      Out 

  Inscattering   Outscattering 

dE/dx: change of position and energy 
(translation plus many small scatterings) 

No arrows upwards! (except for thermal neutrons) 
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The sources and the detectors 
• To solve the Boltzmann Equation, we must define one or more source  

    and one or more detectors  

•  A source is a region of phase space: one or more particle types, a range  

    of space coordinates, a distribution in angle, energy and time (but often  

    the source is simply a monoenergetic monodirectional point source ― a  

    “beam”!) 

•  Also a detector is a region of phase space, in which we want to find a  

    solution of the Boltzmann equation 

•  We can look for solutions of different type:  

 at a number of (real or phase) space points 

 averages over (real or phase) space regions 

 projected on selected phase space hyperplanes 

 time-dependent or stationary 

........ 

•  For each solution we must define a detector 
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Central Limit theorem 

N

AS

N
N

A

N

A

e

N

SP /2

2)(
2

2

1
)(lim

s

s









For large values of N, the distribution of averages (normalized sums 

SN) of N independent random variables identically distributed, 
according to any distribution with mean     and variance      ≠ ∞, tends 
to a normal distribution with mean      and variance  
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MC mathematical foundation 
The Central Limit Theorem is the mathematical foundation of the Monte  

Carlo method. In words: 

Given any observable A, that can be expressed 
as the result of a convolution of random 
processes, the average value of A can be 
obtained by sampling many values of A according 
to the probability distributions of the random 
processes. 

 
MC is indeed an integration method that allows to solve multi-
dimensional integrals by sampling from a suitable stochastic 
distribution. 

The accuracy of MC estimator depends on the number of samples: 

 

N

1
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The Monte Carlo method  

 

 

Invented by John von Neumann, Stanislaw Ulam and  

Nicholas Metropolis (who gave it its name), and  

independently by Enrico Fermi 

 

N. Metropolis            S. Ulam                 J. von Neumann          E. Fermi 
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Monte Carlo as Simulation 

 

 
• It was soon realized, however, that when the   

   method was applied to an equation describing a  

   physical stochastic process, such as neutron  

   diffusion, the model (in this case a random walk)  

   could be identified with the process itself 

• In these cases the method (analog Monte Carlo)  

   has become known as a simulation technique,  

   since every step of the model corresponds to an  

   identical step in the simulated process 
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Particle transport 
 Particle transport is a typical physical process described by 

probabilities (cross sections = interaction probabilities per unit 
distance) 

 Therefore it lends itself naturally to be simulated by Monte Carlo 

 Many applications, especially in high energy physics and medicine, 
are based on simulations where the history of each particle 
(trajectory, interactions) is reproduced in detail  

 However in other types of application, typically shielding design, the 
user is interested only in the expectation values of some quantities 
(fluence and dose) at some space point or region, which are 
calculated as solutions of a mathematical equation 

 This equation (the Boltzmann equation), describes the statistical 
distribution of particles in phase space and therefore does indeed 
represent a physical stochastic process  

 But in order to estimate the desired expectation values it is not 
necessary that the Monte Carlo process be identical to it 
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Integration without simulation 

 In many cases, it is more efficient to replace the actual 
process by a different one resulting in the same average 
values but built by sampling from modified distributions 

 Such a biased process, if based on mathematically 
correct variance reduction techniques, converges to the 
same expectation values as the unbiased one 

 But it cannot provide information about the higher 
moments of statistical distributions (fluctuations and 
correlations)  

 In addition, the faster convergence in some user-
privileged regions of phase space is compensated by a 
slower convergence elsewhere 
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Analog Monte Carlo 

In an analog Monte Carlo calculation, not only the mean of the 
contributions converges to the mean of the actual distribution, but also 
the variance and all moments of higher order: 
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Then, partial distributions, fluctuations and correlations are all 
faithfully reproduced: in this case (and in this case only!) we have a 

real simulation 
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Random sampling: the key to MC 

The central problem of the Monte Carlo method: 

Given a Probability Density Function (pdf), f(x), generate a sample of 
x’s distributed according to f(x)  (x can be multidimensional) 

The use of random sampling techniques is the distinctive feature of Monte Carlo 

Solving the integral Boltzmann transport equation by Monte Carlo consists of: 

• Geometry and material description of the problem 

• Random sampling from probability distributions of the outcome of physical events  

f(x) 

x 


x

xmin
dx'f(x')
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   Assumptions 

 Static, homogeneous, isotropic, amorphous  media and geometry  
     Problems: e.g. moving targets*, atmosphere [must be represented by 

discrete layers of uniform density], radioactive decay taking place in a 
geometry different from that in which the radionuclides were produced*, 
crystal channeling*.  

     * These restrictions have been (* are being) overcome in FLUKA 

 Markovian process: the fate of a particle depends only on its actual 
present properties, not on previous events or histories 

 Particles do not interact with each other 
     Problems: e.g. the Chudakov effect (charges cancelling in e+e– pairs) 

 Particles interact with individual electrons / atoms / nuclei / molecules  
     Problems: invalid at low energies (X-ray mirrors) 

 Material properties are not affected by particle reactions 
     Problems: e.g. burnup 
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 Several pre-defined estimators can be activated in FLUKA. 

 One usually refers to these estimators as “scoring” capabilities 

 Users have also the possibility to build their own scoring through user 
routines (some of which mentioned afterwards), HOWEVER: 

 Built-in scoring covers most of the common needs 

 Built-in scoring has been extensively tested 

 Built-in scoring takes BIASING weights automatically into account 

 Built-in scoring has refined algorithms for track subdivision 

 Built-in scoring comes with utility programs that allow to evaluate 
statistical errors 

 Geometry dependent and geometry independent scoring both available 

 FLUKA can score particle fluence (tracklength), current, energy spectra, 
angular distributions, energy deposition, activity ... 

 Either integrated over the “run”, with proper normalization, OR event-
by event 

 Standard scoring can be weighted by means of simple user routines 
 

Built-in scoring 



23 

see the Beginners’ Course 

 SCORE scores energy deposited (or star density) in each region       
[table in the .out file, not automatically merged over cycles] 

 RESNUCLEi scores residual nuclei (or their activity) in a given region 

 USRTRACK (USRCOLL) scores average differential fluence dF/dE                
of a given type or family of particles over a given region 

 USRBDX scores average double differential fluence (or current) d2F/dEd   
of a given type or family of particles over a given surface 

 USRBIN scores the spatial distribution of deposited energy density, dose, 
integrated fluence, star density, dose equivalent, net charge, specific activity, 
...  in a regular mesh (cylindrical or Cartesian) described by the user 

 USRYIELD scores a double differential yield [do not ask for cross section, like 
by default] of particles escaping from a surface. The distribution can be with 
respect to energy and angle (wrt the beam direction), but also many other 
more “exotic” quantities 

 

Remember that low energy (<20MeV) neutrons 
have a pre-defined energy binning 

 Scoring cards [1] 



Warnings [I] 
 USRBIN scoring algorithm: 

 By selecting WHAT(1)>=10, energy deposition, dose, ... are distributed along the 

particle track (recommended!) 

*** Activity/fission/neutron balance binnings cannot be track-length!!! 

 Point-wise quantities have to be scored at a point (select WHAT(1)<10) 

 

 Badly defined USRBIN limits  

 

 

 

 Never use unit numbers smaller than 20 or higher than 99 
<20 reserved by FLUKA  >99 FORTRAN limitation 

 

 Never mix the output of different scoring cards in the same unit 

 

 Verify that you didn’t merge cycles referring to different input versions 
(change the name of the input file for every new problem!) 
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******* Fluka stopped in Usrbin: "usr/eventbin" n.    1 ******* 
 ******* with zero width   0.000     for axis  R  ****** 



 Thin window with low-E (5MeV) electron beam 

 Energy deposition profile in the window 
(for radiation damage studies) 

 Observation of ‘strange peaks’ 

NEW-DEFAULTS 

 Trying to understand: lower e--thresholds help 

 Real-Problem: point-wise scoring requested 
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PRECISION Low e- Thr. CORRECT Scoring 

Example 
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 EVENTBIN is like USRBIN, but prints the binning output after each event 
instead of an average over histories 

 ROTPRBIN sets the storage precision (single or double) and assigns 
rotations/translations for a given user-defined binning (USRBIN or 
EVENTBIN). Quite useful in case of LATTICE 

 

 USERDUMP defines the events to be written onto a “collision tape” file 
Coupled to the mgdraw user routine 

 

 AUXSCORE  defines filters and conversion coefficients 

 

 TCQUENCH sets scoring time cut-offs and/or Birks quenching parameters for 
binnings (USRBIN or EVENTBIN) indicated by the user 

 DETECT scores energy deposition in coincidence or anti-coincidence with a 
trigger, separately for each “event" (primary history). Dedicated post-
processing routine available 

 Scoring cards [2] 
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Dose-Equivalent (not Dose) 
For some quantities, there is the possibility to get built-in conversions, 
without the need for user routines, rather through dedicated generalized 
particles. The most commonly used is dose equivalent (ambient dose 
equivalent or effective dose): 

DOSE-EQ Dose Equivalent [pSv] 

DOSEQLET    Dose Equivalent via Q(LET) – unrestricted LET in water –  
    according to ICRP60 [GeV/g] 

   !!!! Different to !!! 

   DOSE            total absorbed dose in GeV/g 

   DOSE-EM      as above but electromagnetic contribution only 
 

DOSE-EQ is calculated by folding particle fluences with conversion 
coefficient sets, selected by the user among a list (see manual) through 
AUXSCORE. The default set (not requiring the AUXSCORE association) is 
“AMB74”.  

 

WARNING : in case of DOSE-EQ no coefficients available for heavy ions (ok for DOSEQLET) !!! 

( ) 
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“FILTER” : AUXSCORE 

There is the possibility to filter the estimators, restricting the scoring to a 
selected subset of particles. 

 For instance: USRBIN energy deposition by muons only 

USRBIN     11.0     ENERGY    -40.0      10.0           15.0 TargEne 

USRBIN      0.0                -5.0     100.0          200.0 & 

AUXSCORE USRBIN      MUONS              TargEne 

 

 

Another example: score the yield [vs polar angle and kinetic energy] of 56-Iron ions (there is 
no separate name for each ion specie, except light ones. HEAVYION scores all isotopes 
heavier than alpha together!)   

USRYIELD    124.0  HEAVYION   -87.    TARGS3     INAIR      1.0Fe56 

USRYIELD    180.0       0.0    18.      10.0       0.0      3.0& 

AUXSCORE USRYIELD -5602600.             Fe56 
 

The requested ion is coded in WHAT(2)= - (100*Z + 100000*A + m*100000000) 
according to its A, Z and (optionally) isomeric state m 
with 0==all, i.e. -2600 == all Iron isotopes 

ionization (+NIEL) by the selected particle, critically depending on the delta rays threshold! 
[doubtful physical meaning] 
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Routines associated to FLUKA scoring  
 comscw.f weighting energy deposition and star production 

 fluscw.f  weighting fluence, current and yield 

 mgdraw.f general event interface 

 usrrnc.f  intercepting produced residual nuclei (at the end of their path) 

 endscp.f shifting energy deposition 

 fldscp.f  shifting fluence 

 musrbr.f special USRBIN binning (lattice): returns region # 

 lusrbl.f  special USRBIN binning (lattice): returns lattice # 

 fusrbv.f  special USRBIN binning (lattice): returns zero 

 

 mdstck.f 

 stuprf.f  intercepting particle stack 

 stupre.f 



Statistical Errors [1] 

 Can be calculated for single histories (not in FLUKA), or for 
batches of several histories 

 Distribution of scoring contributions by single histories can be 
very asymmetric (many histories contribute little or zero) 

 Scoring distribution from batches tends to Gaussian for             
N  , provided s2   (thanks to Central Limit Theorem) 

 The standard deviation of an estimator calculated from batches 
or from single histories is an estimate of the standard deviation 
of the actual distribution (“error of the mean”) 

How good is such an estimate depends on the type of estimator 
and on the particular problem (but it converges to the true value 
for N  ) 
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Statistical Errors [2] 

 The variance of the mean of an estimated quantity x (e.g., fluence), 

calculated in N  batches, is: 






































2

1

2

12

1

1

n

xn

n

xn

N

N

iii

N

i

xs

 mean of squares – square of means 

                        N – 1 

where: 

ni = number of histories in the i th batch 

n = Σni = total number of histories in the N batches 

xi = average of x in the i th batch:  

xij is the contribution to x of the jth history in the ith batch 

In the limit N = n, ni =1, the formula applies to single history statistics 
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Statistical Errors [3] 

Practical tips: 

• Use always at least 5-10 batches of comparable size (it is not at  

   all mandatory that they be of equal size) 

• Never forget that the variance itself is a stochastic variable  

   subject to fluctuations 

• Be careful about the way convergence is achieved: often  

   (particularly with biasing) apparent good statistics with few  

   isolated spikes could point to a lack of sampling of the most  

   relevant phase-space part 

• Plot 2D and 3D distributions! Looking at them the eye is the 

   best tool in judging the quality of the result 
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from an old version of the MCNP Manual: 
  Relative error       Quality of Tally 

   50 to 100%           Garbage 

   20 to 50%   Factor of a few 

   10 to 20                Questionable 

       < 10%              Generally reliable 
 

 Why does a 30% σ mean an uncertainty of a “factor of a few”?  
    Because σ in fact corresponds to the sum (in quadrature) of two 

uncertainties: one associated to the fraction of histories which don’t give  
    a zero contribution and the other reflecting the spread of the  
    non-zero contributions 

 The MCNP guideline is empirically based on experience, not on a 
mathematical proof. But it has been generally confirmed as working also with 
other codes 

 Small penetrations and cracks are very difficult to handle by MC, because the 
“detector” is too small and too few non-zero contributions can be sampled, 
even by biasing  
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Statistical Errors [4] 
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Systematic Errors 
 physics: different codes are based on different physics models. Some models 

are better than others. Some models are better in a certain energy range. 
Model quality is best shown by benchmarks at the microscopic level (e.g. 
thin targets) 

 artifacts: due to imperfect algorithms, e.g., energy deposited  in the middle 
of a step*, inaccurate path length correction for multiple scattering*, missing 
correction for cross section and dE/dx change over a step*, etc. Algorithm 
quality is best shown by benchmarks at the macroscopic level (thick targets, 
complex geometries) 

 data uncertainty: results can never be better than allowed by available 
experimental data! 

 

 material composition: not always well known. In particular concrete/soil 
composition (how much water content? Can be critical). Air  contains 
humidity and pollutants, has a density variable with pressure  

 beam losses: most of the time these can only be guessed 

 presence of additional material, not well defined (cables, supports...) 

 geometries cannot be reproduced exactly (or would require too much effort) 
 Is it worth doing a very detailed simulation when some parameters are unknown or 

badly known?  

 

 

 

 



 

 mis-typing the input: Flair is good at checking, but the final responsibility is 
the user’s 

 

 error in user code: use the built-in features as much as possible! 

 

 wrong units 

 

 wrong normalization: quite common 

 

 unfair biasing: energy/space cuts cannot be avoided, but must be done with 
much care 

 

 forgetting to check that gamma production is available in the low energy 
neutron library (e.g., Ba cross sections) 

 

 …  
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Mistakes 
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Biasing Mean Free Paths 

Multiplicity Tuning  BIASING 

 Multiplicity tuning is meant to be to hadrons what LPB is for 
electrons and photons. 

 A hadronic nuclear interaction at LHC energies can end in 
hundreds of secondaries. Except for the leading particle, many 
secondaries are of the same type and have similar energies and 
other characteristics 

 The user can tune the average multiplicity in different regions 

Interaction Length  LAM-BIAS 

 Mean life / average decay length of unstable particles can be 
artificially shortened 

 Can increase generation rate of decay products without 
discarding the parent 

 For hadrons the mean free path for nuclear inelastic interactions 
can be artificially decreased. Useful for very thin targets, and also 
for photonuclear reactions where the cross section is relatively 
small 


