

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Study of Photo-Production of Radioactive Ion Beams

Nikita Bernier

2nd FLUKA advanced course and Workshop

September 15-20, 2012.

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Overview

- Radioactive Ion Beams
- Photo-production of ⁸Li
- Preliminary Tests
- FLUKA input
 - Geometry and Media
 - Primary Beam
 - Physics and Transport
 - Biasing
 - Scoring
- FLUKA results
- Further Study

Radioactive Ion Beams

50 MeV, 10 mA electron beam

BeO pellets

Photo-production of ⁸Li

 E_i, \vec{P}_i

 $\sim \omega. \vec{a}$

With a converter

Preliminary Tests

BeO pellets

- Target Adaptation
 - Rugged enough to survive the Atlantic
 - Fits their target oven.

Target Fabrication

Porous enough to favour diffusion of light isotopes.

SEM on sintered BeO pellets (x800)

- High speed treatment of BeO powder + Binder
- Oily additive
- Pressing
- Sintering at 1600°C.

Target Components

Target material

BeO pellets

Target oven

- Ta oven
- Graphite container
- Ta converter/radiator

Geometry and Media

- Using only infinite bodies : planes and cylinders. Using no parentheses.
 - Just to be on the safe side.

Mat: Graphite 🔻 LOW-MAT

- LowMat: C. Graphite bound nat. Carbon, 296K V
- Sets the correspondence between the material and the low-energy neutron cross sections library.

Tantalum Converter

Optimization of the Ta converter thickness, in factors of the radiation length $X_0 = 0.409$ cm.

Multiple setups using preprocessor definitions

#if	Conv0.8X V	
CONVE	RTER thickness = 0.8*X0 = 0.328 cm	
XYP	encaplef	z:-0.328
#elif	Conv1.1X V	

Primary Beam

DEFAULTS PRECISIO V

- Detailed transport of electrons, positrons and photons and more.
- Multiple runs using preprocessor cards
 - Average beam kinetic energy E : 20, 30, 40, 50 MeV

#define	20MeV	1		
#define	30MeV	-		
#define	40MeV	÷		
#define	50MeV	£		
#if	20MeV V			
Define t	he beam characteristics :			
20 MeV	e-beam (10 mA).			
BEAM	and the second	Beam: Energy V	E: 0.02	Part: ELECTRON V
	∆p: Flat ▼	Δp: 0.01	∆¢: Flat ▼	Δφ:0.01
	Shape(X): Annular V	Rmin:	Rmax: 0.5	
#elif	30MeV 🔻			
BEAM		Beam: Energy V	E:0.03	Part: ELECTRON V
	∆p: Flat ▼	Δp: 0.01	∆¢:Flat ▼	∆¢:0.01
	Shape(X): Annular V	Rmin:	Rmax: 0.5	
#elif	40MeV 🔻		\frown	
BEAM		Beam: Energy V	E:0.04	Part: ELECTRON V
	Ap: Flat ▼	Δp: 0.01	∆¢:Flat ▼	△0:0.01
	Shape(X): Annular V	Rmin:	Rmax: 0.5	
#elif	50MeV 🔻		\frown	
BEAM		Beam: Energy V	E: 0.05	Part: ELECTRON V
	∆p: Flat ▼	Δp: 0.01	∆¢:Flat ▼	△ቀ:0.01
	Shape(X): Annular V	Rmin:	Rmax: 0.5	

Physics and Transport

Recommended to be equal.

Biasing

•	Bias the decay length of unstable pa LAM-BIAS Mat: ▼	rticles. Type: ▼ Part: PHOTON ▼	× mean life: to Part: ▼	× λ inelastic: 0.02 Step:			
 Increases the probability of gamma interactions. 							
•	Leading particle biasing. EMF-BIAS Old bremss.: off ▼ Compton: On ▼	Type: LPBEMF ▼ Bremsstrahlung: On ▼ Bhabha&Moller: On ▼ <	Ethr e-e+: Pair Prod.: On ▼ Photo-electric: On ▼ to Reg: @LASTREG ▼	Ethr y: e+ ann @rest: On ▼ e+ ann @flight: On ▼ Step:			

• Region importance biasing

#define	Flag_BIAS	:			X				Тор
#if	Flag_BIAS	T			10				
Increasing	region importa	ances through target by	factors of two.		9				
Importance	e 2 : 2 regions -	+ 7 pellets + 2 endcaps	+ 1 converter		ź				
BIASING		Type: All particles V	RR: 1.0	Imp: 2.0	6				
	Opt: 🔻	Reg: ENDCAPL V	to Reg: 🔻	Step:	5				
					4				
					2				_1
					1				
lana autori		ana i Zinallata			0				
Importar	ice 4 : 2 regio	ons + 7 pellets			-1			.	
BIASING		Type: All particles 🔻	BB: 1.0	Imp: 4.0	-2				-0.1
	Opt: 🔻	Reg: OUTCYL2 🔻	to Reg: 🔻	Step	+3				
				\mathbf{V}	-4				

Activation and Residual Nuclei

Activation			
RADDECAY	Decaye: Active V	Patch Isom: On V	Replicas: 3.0
h/μ Int: ignore ▼	h/µ LPB: ignore ▼	h/µ WW: ignore ▼	e-e+ Int: ignore ▼
e-e+ LPB: ignore ▼	e-e+ WW: ignore ▼	Low-n Bias: ignore 🔻	Low-n WW: ignore 🔻
	decay cut: 10.0	prompt cut: 10.0	Coulomb corr: 🔻
Request decay	of produced ra	adioactive nuclide	es.
Definition of irradiation profile : 10 day	/s 10 mA = 6.24146E16 par	t/s	
IBBPBOFI	∆t: –10*day	p/s: 6 2415E16	
	At:	D/S:	
	At:	n/e:	
	<u>ы.</u>	pra.	
Definition of decay times			
Devrines	t1: Etdov	t2:00	t3: Etday
DCTIMES	the dot day	12. 0.0	to:=5 day
	14.=10°day	10. =20*day	to. =1 *month
 Requested with 	DCYSCORE.		
Production rate in nuclei/primary			
RESNUCLE	Type: All	Unit: 54 BIN V	Name: ResNuc 0
Max Z:	Max M:	Reg: @ALL BEGS	Vol: 1.0
		S GALLIEUS L	1.0
Residual Nuclei after 5 days of cooling	Contractor To 1		
DCYSCORE	Cooling t: =5*day ▼	Kind: RESNUCLE V	
	Det: ResNuc_5 V	to Det: 🔻	Step:
RESNUCLE	Type: All V	Unit: 55 BIN V	Name: ResNuc_5
Max Z:	Max M:	Reg: @ALLREGS V	Vol: 1.0
Given in [Ba/cm	³] when linked	to DCYSCORE	

Scoring with USRBIN

	Beam particules	in beam partic	cle/cm²/primary		Name: ReamPart		
	Type: Y	(.V.7 -	Xmin: -2 0	Xmax: 2 0	NX:80		
	Part: P		Ymin: -2.0	Ymax: 2.0	NY: 80		
	i un B		Zmin: -2.0	7max: 22.0	N7: 240		
			2.0		142. 240.		
	 Conf 	irms the be	eam is hittin	g the target.			
_	Cooling time for all	detectors					
	DCYSCORE	<	Cooling t: 0.0 V	Kind: USRBIN V			
			Det: EneDep 🔻	to Det: AllDose_0 V	Step:		
	Dose conversion of	oefficients for all detecto	rs				
	AUXSCORE		Type: USRBIN V	Part: ALL-PART V	Se EWT74		
			Det: EneDep 🔻	to Det: AllDose_5 V	Step:		
	Energy deposition	in GeV/cm ³ /n	rimary				
	USRBIN		, initially	Unit: 52 BIN 🔻	Name: EneDep		
	Type: X	(-Y-Z ▼	Xmin: -2.0	Xmax: 2.0	NX: 80.		
	Part: E	NERGY V	Ymin: -2.0	Ymax: 2.0	NY: 80.		
			Zmin: -2.0	Zmax: 22.0	NZ: 240.		
	Equivalent dose at	1 meter from all particule	s in nSv/s				
	USRBIN		11 pov/s	Unit: 53 BIN 🔻	Name: AllDose 0		
	Type: X	-Y-Z 🔻	Xmin: -50.0	Xmax: 50.0	NX: 50.0		
	Part: D	OSE-EQ V	Ymin: -50.0	Ymax: 50.0	NY: 50.0		
			Zmin: -50.0	Zmax: 50.0	NZ: 50.0		
	DCYSCORE	<	Cooling t: =5*day	Kind: USRBIN V			
			Det: AllDose_5 V	to Det: 🔻	Step:		
	Equivalent dose at 1 meter after 5 days of cooling in nSv/s						
	USRBIN			Unit: 58 BIN 🔻	Name: AllDose_5		
	Type: X	-Y-Z 🔻	Xmin: -50.0	Xmax: 50.0	NX: 50.0		
	Part: D	OSE-EQ V	Ymin: -50.0	Ymax: 50.0	NY: 50.0		
			Zmin: -50.0	Zmax: 50.0	NZ: 50.0		
	Give	n in [pSv/p	rimary] whe	en not linked to IRR	PROFI.		

RIUMF

Run Fluka

⁸Li Production Rate

e-beam.

⁸Li Production Rate

 For 2^E06 primaries.

• For 50^E06 primaries.

Production Rates Summary

Residual Nuclei after 5 days

Beam Particle Fluence

Beam Particle Fluence

Energy Density

Energy Density

Energy Density: 2^E06 primaries

Dose Equivalent after 10 days of irradiation

Dose Equivalent after 5 days of cooling

Further Study

• Results

- Production rates before diffusion
- Penetration depth and Target Length
- Estimation of the minimum shielding required.

• Still in progress

- Optimization of Biasing
- Final target pellets composition
- Target chamber configuration
- Real data at Orsay.

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Faculté de sciences et de génie Département de physique, de génie physique et d'optique

Merci! Thank you!

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada TRIUMF: Alberta | British Columbia | Calgary Carleton | Guelph | Manitoba | McMaster Montréal | Northern British Columbia | Queen's Regina | Saint Mary's | Simon Fraser | Toronto Victoria | Winnipeg | York

RIUMF 2^E06 primaries : Beam particle fluence

RIUMF 2^E06 primaries : Beam particle fluence

2^E06 primaries, No Graphite Cap : Beam particle fluence

(a) 20 MeV – No biasing

(b) 20 MeV

Energy density

Dose equivalent after 10 days of irradiation

(mSv/h)

Dose equivalent after 5 days of cooling

