A study of beam loss pattern & dose distribution around the TPS LINAC during beam commissioning

Ang-Yu Chen, Yu-Chi Lin, Rong-Jiun Sheu

^a National Synchrotron Radiation Research Center, Taiwan; ^b Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan; ^c Department of Engineering and System Science, National Tsing Hua University, Taiwan

TPS LINAC

同步輻射研究中心 Synchrotron Radiation Research Cente

Radiation measurements

- A series of actions have been carried out to improve radiation safety in the area
 - Access control & beam interlock, radiation survey, local shielding
- Beam loss intensities and locations could change significantly and cause radiation safety concern
- Area monitors and survey meters used to measure radiation around the area
 - Gamma rays : VICTOREEN Model 451P
 - Neutrons : FHT 762
- Radiation survey providing useful information for beam studies

Local shielding & radiation survey

- Gamma-ray dose rates outside the downstream shielding wall could sometime reach to several mSv/h during the initial stage
- Local shielding set up between D1 and Q4
- Gamma-ray dose rates outside the downstream concrete wall are now mostly below a comfortable level about 10 μSv/h; other areas and roof are wellcontrolled below about 1 μSv/h (full power)

FLUKA simulations

- A rather detailed geometry model was built
 - Main components, bunker structure, and local shielding
- USRBIN for dose distribution
- Fluence-to-ambient dose conversion factors
- Various beam loss locations were considered from LINAC outlet, Q1, Q2, Q3, D1, Q4, and the beam dump

Dose maps for electron scotching pipe in opposite side

2nd Advanced course and Workshop - Vancouver 2012

Beam loss patterns & dose distributions

- A series of beam loss scenarios with different electron loss locations along the transfer line has been systematically studied by FLUKA simulations
- The calculated results show a quantitative relationship between beam loss pattern and dose distribution in the area

2^{ad} Advanced course and Workshop – Vancouver 2012

Dose rate distributions for electrons lost at the LINAC outlet

Dose rate distributions for electrons lost near the Q4

Dose rate distributions for electrons lost at beam dump

Beam loss patterns & dose distributions

- Differences between the resultant dose distributions caused by different beam loss scenarios are evident
- These distinguishing dose response functions could be used to analyze measured results
 Q4 spectra
- Beam losses near Q4 play a dominant role in the magnitude of downstream dose rates - consistent with our experience during commissioning
- Neutron and gamma-ray spectra due to electrons lost at Q4

Advanced course and Workshop – Vancouver 2012

The dose distributions of some proposed beam loss scenarios

288

150

100

58

0

-50

-186

158

1 0,1 0,01 0,001 0,0001 1e-05

100

10

2% loss at Q4

2nd Advanced course and Workshop – Vancouver 2012

Calculations & measurements

Position	P11	P12	P13	P21	P22	P23	P31	P32	P33
1% at Q4	1.8±1.0%	2.3±3.6%	1.6±3.6%	4.1±2.0%	3.7±2.0%	2.8±2.7%	5.1±2.1%	0.3±4.6%	/ <mark>О</mark> И 4.1±3.2%
2% at Q4	3.6±0.9%	4.5±3.7%	3.2±3.7%	8.0±2.0%	7.3±2.0%	5.5±2.8%	10.2±2.1%	0.5±5.2%	8.2±3.2%
3% at Q4	5.3±0.9%	6.7±3.7%	4.7±3.7%	12.0±2.0%	11.0±2.0%	8.2±2.8%	15.2±2.1%	0.7±5.4%	12.2±3.2%
Measured	2.7	5.3	4.2	2.7	8.3	7.3	11.9	0.3	8.8

A measurement on Sep. 23, 2011 by model 451P
Seenario : 2% at Q4 and 98% to Dump

Conclusions

- A series of simple point beam loss scenarios were used to calculate dose distributions around the LINAC area
 - Some resultant dose distributions are distinguishing with each other and can be regarded as response functions
- Dose distributions due to different beam loss scenarios are different and distinguishable, which could be used to identify possible beam loss locations
- This study has demonstrated that a reasonable beam loss pattern and a detailed dose distribution could be obtained through a synthetic analysis of the calculated response functions and on-site dose rate measurements

Thanks for your attention

