Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

TWO STEP METHOD FOR SHIELDING SIMULATION

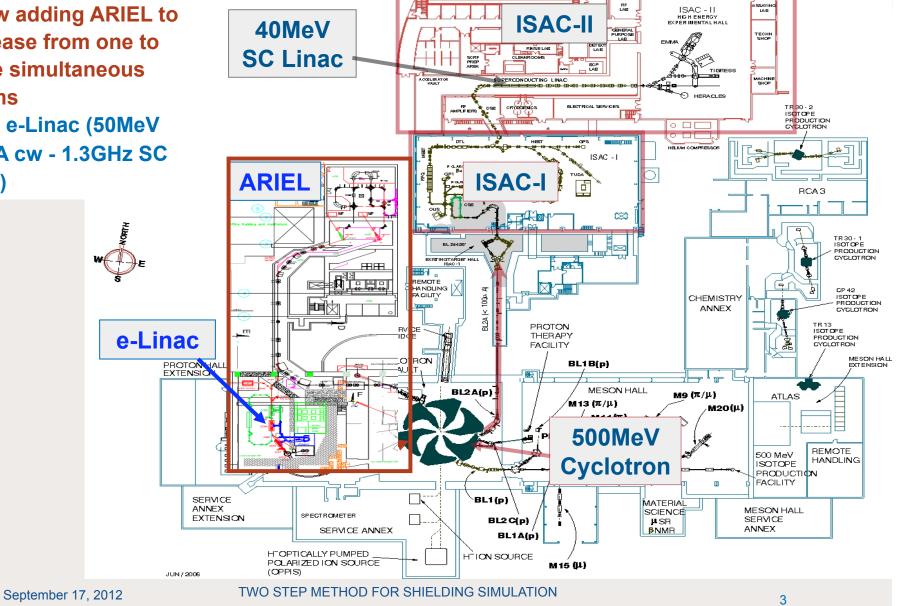
2nd Fluka Advanced Course and Workshop TRIUMF

September 17, 2012

Aurelia Laxdal TRIUMF

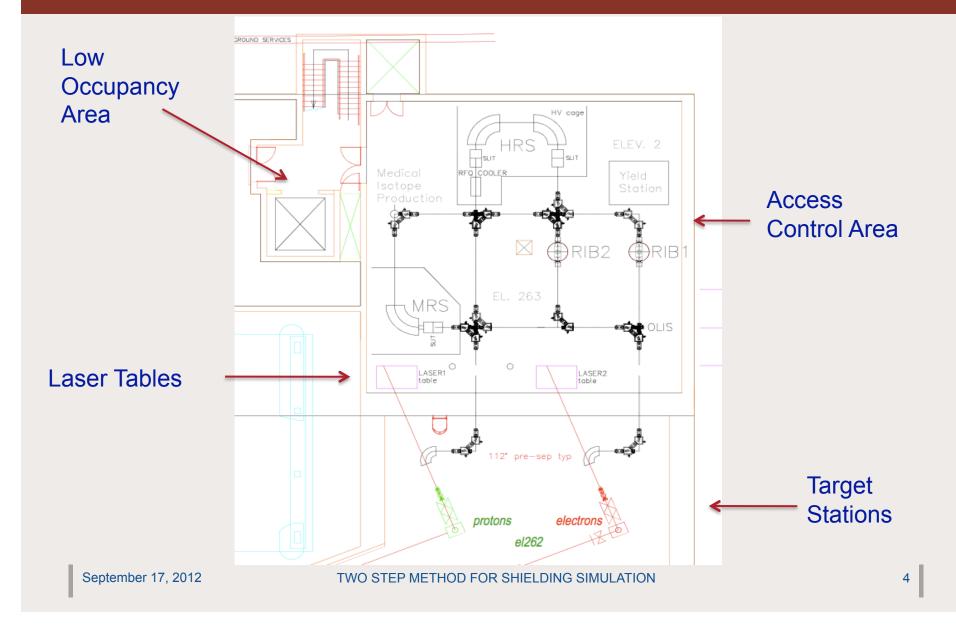
Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

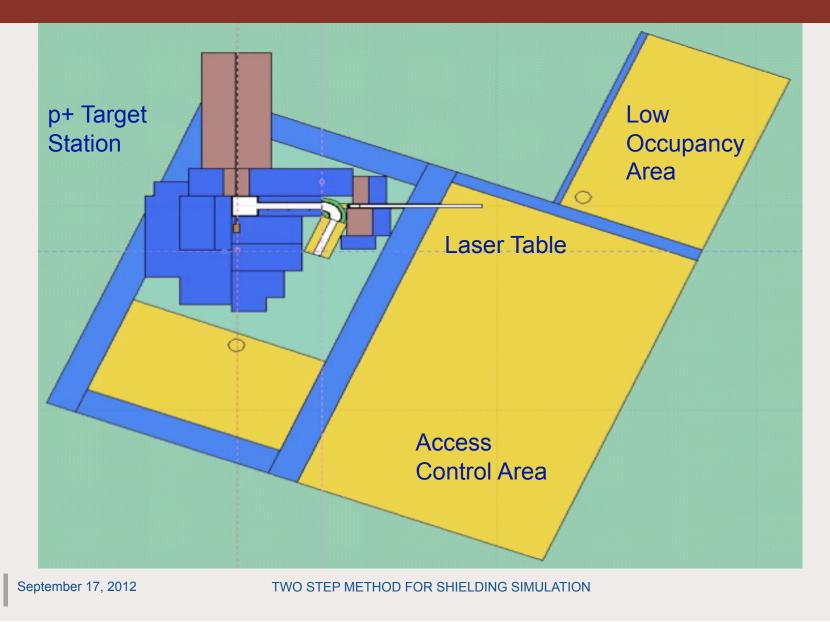


Overview

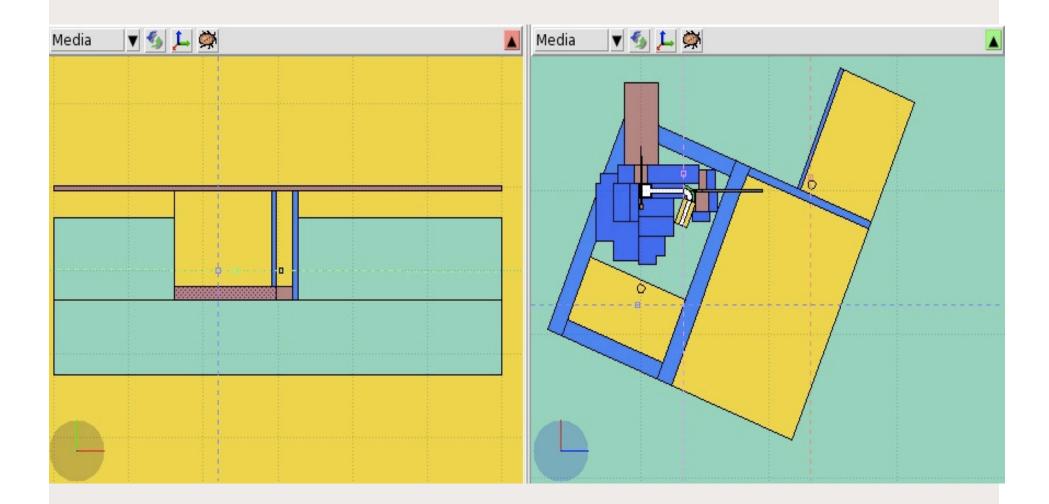
- Introduction:
 - Present
 - Future: adding Advanced Rare IsotopE Laboratory (ARIEL)
- ARIEL target stations:
 - p+ target station: 100µA at 500MeV
 - e- target station: 10mA at 50MeV
- Proton target station overview & adjacent areas
- Standard simulation to determine the necessary shielding for the Laser Ion Source (LIS) setup
- Alternative solutions:
 - use a Two-Step method
- File manipulation for the Two-Step method
- Results
- Conclusions


ARIEL at TRIUMF

 Now adding ARIEL to increase from one to three simultaneous beams Add e-Linac (50MeV) 10mA cw - 1.3GHz SC linac)



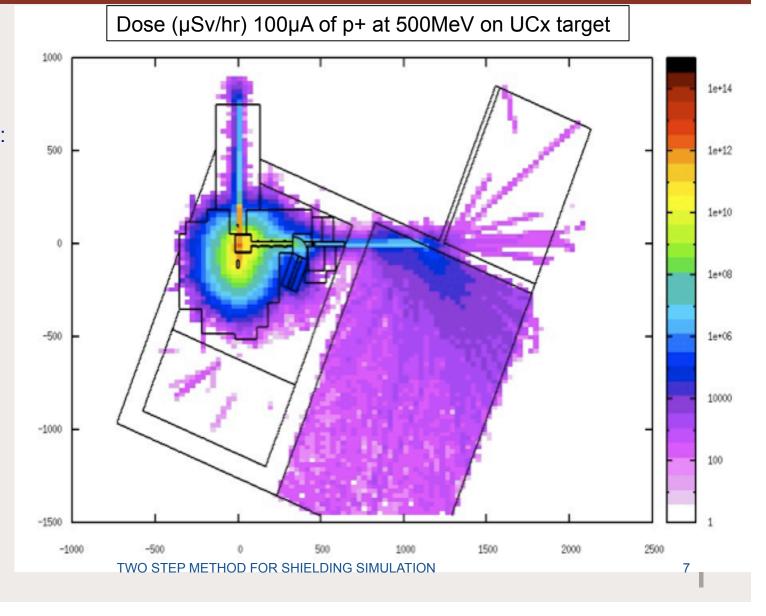
ARIEL target stations



Proton Station & LIS beam pipe - top view

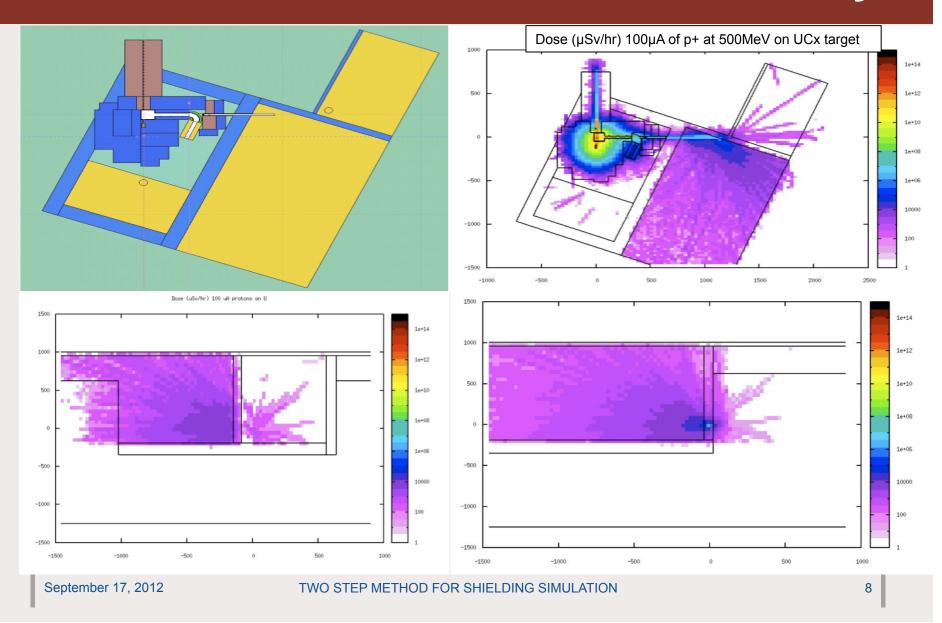
5

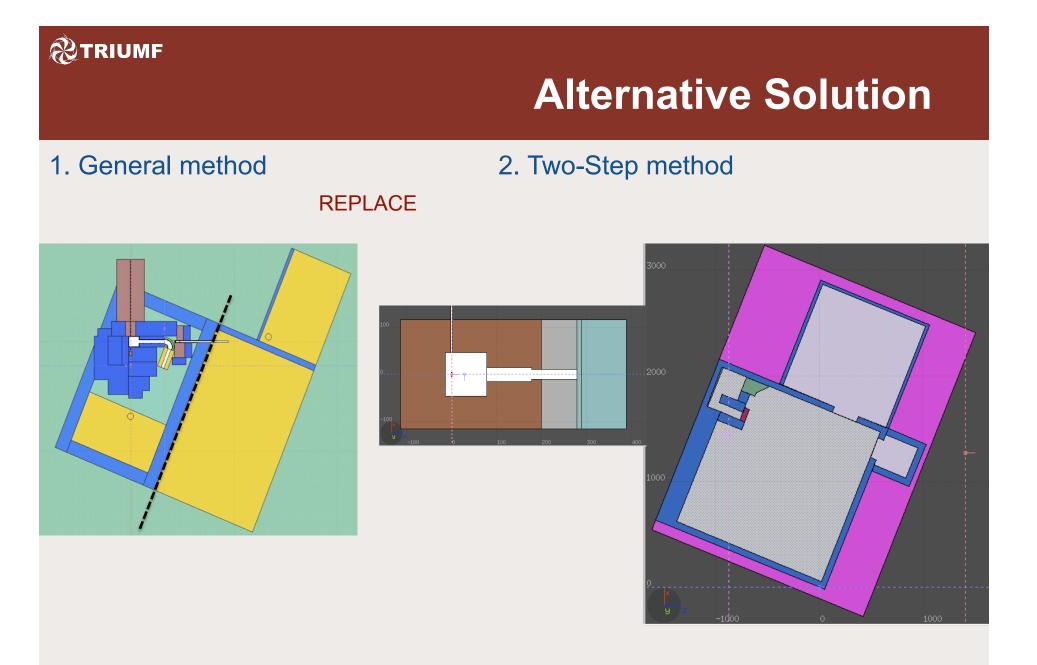
Elevator & Stairs Locations

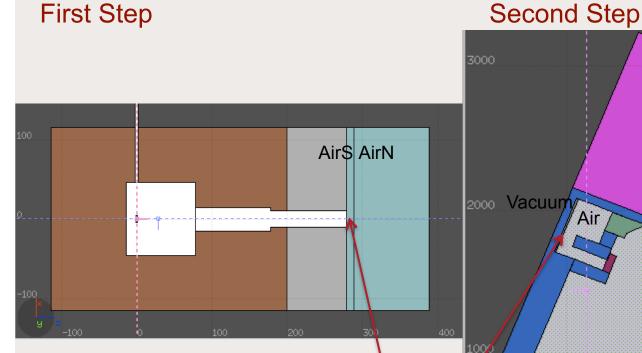

RIUMF

Results: B2 level

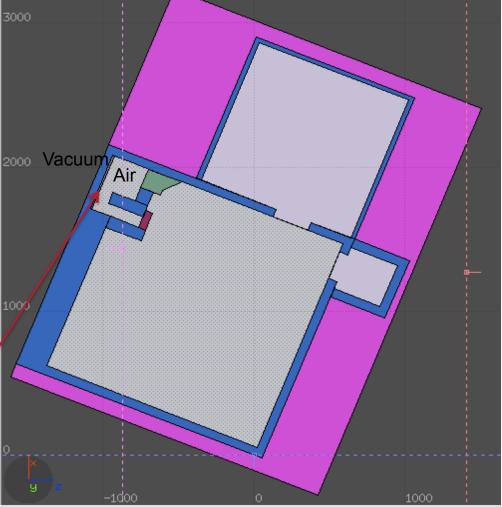
• TRIUMF's limit for Low Occupancy Area: 10µSv/hr


• Recommendations: additional localized shielding to the north of the LIS table to allow occupancy during beam operation MAZE


September 17, 2012

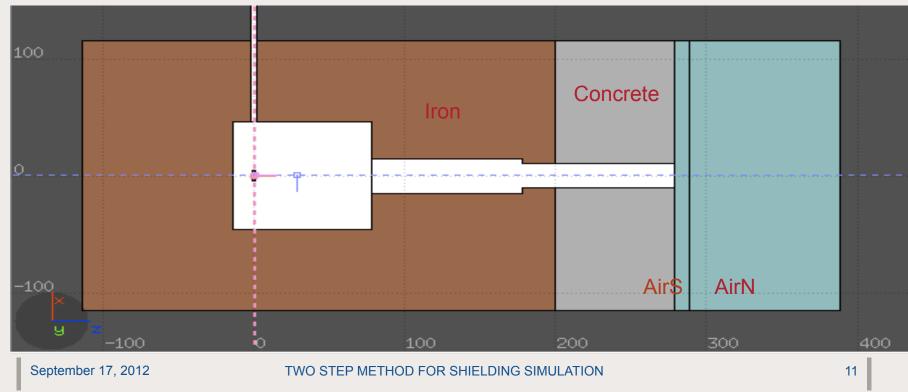

RIUMF

Results: summary


Two-Step Method

• First Step: score the hadrons crossing the Air Regions: position, angle, energy & weight;

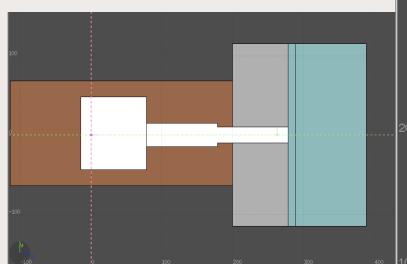
• Second Step: input them from the Vacuum Region


TWO STEP METHOD FOR SHIELDING SIMULATION

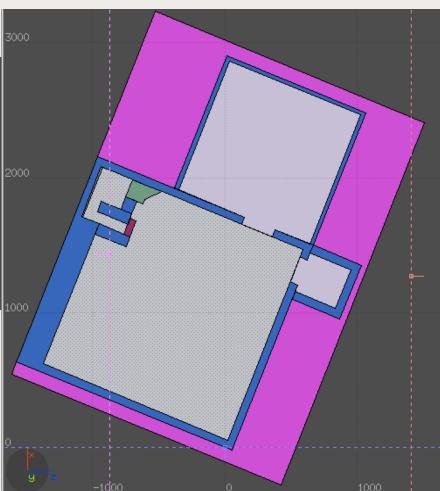
First Step – How?

- 1. Scoring: USERDUMP card
- 2. Do a coordinate transformation
- 3. Compile: Use & Modify mgdraw.f user routine of the first file
- Concatenate the data files after the Run(s) -> output first step -> input second step
- 5. Check the results: the output and the data file

First Step - USERDUMP card

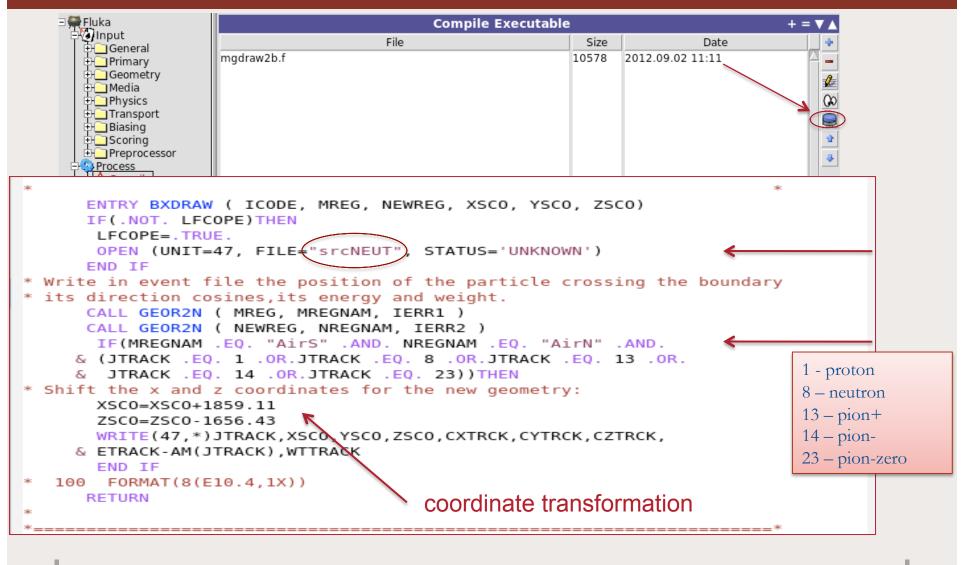

1. Scoring: USERDUMP card

USERDUMP	Type: Dump 🔻	Unit: 🔻	File: Dump
	What: Complete V	Score: Local Losses V	Dump: 🔻


• Defines a phase space file to be written.

First Step - coordinate transformation

2. Coordinate transformation



In FORTRAN: XSCO=XSCO + 1859.11 ZSCO=ZSCO - 1093.78

September 17, 2012

First Step - mgdraw.f user routine

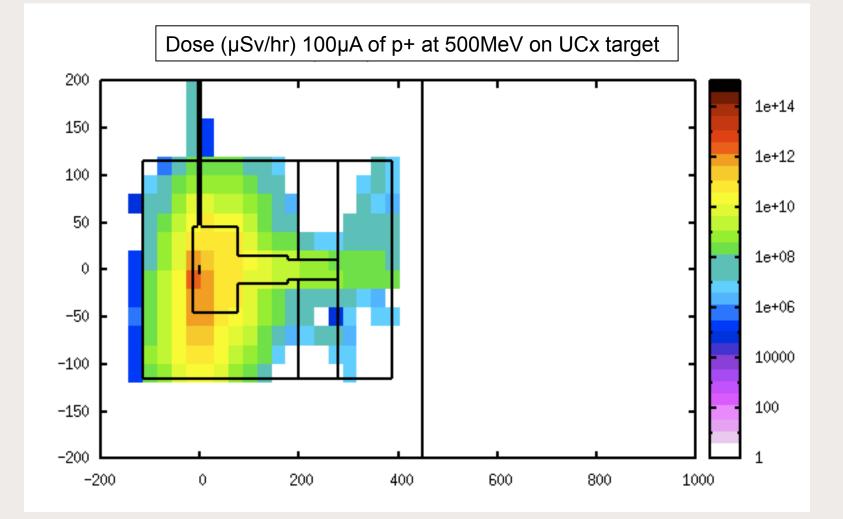
First Step – Checking the Results

FirstA-001 fort.56	56	310	2012.08.31 20:59		
FirstA-001 fort.54	54	2326	2012.08.31 20:59		
ranFirstA-001	-file-	1651	2012.08.30 19:08		
FirstA-001.out	FLUKA out	171082	2012.08.31 20:59		
FirstA-001 srcNEUT	-file-	20446	2012.08.31 20:59		
FirstA-002.out	FLUKA out	170593	2012.08.31 22:25		
FirstA-002_fort.54	54	2326	2012.08.31 22:25		
FirstA-002_srcNEUT	-file-	23668	2012.08.31 22:25		
FirstA-002_fort.55	55	64238	2012.08.31 22:25		
ranFirstA-002	-file-	1651	2012.08.31 20:59		
8 1940.82207 -0.58650769 -1021.43005 0.00829271167 -0.00133180802					
0.999964728 0.00266983597 0.					
1 1940.0558 -1.81006416 -1021.43005 0.00306237128 -0.00273399738					
0.999991574 0.0132999552 0.					
8 1925.94277 0.851876395 - 1021.43005 - 0.812045381 - 0.250975075 0.526871722					
0.00120935 0.					
▼ 8 1932.36131 0.0597017901 - 1021.43005 - 0.00705415101 - 0.000174097706					
: FirstJ-002_srcNEUT 23% L96 (Fundamental)					

First Step – The Output File

• Concatenate the data files:

>cat *srcNEUT FirstMod1neut.dat

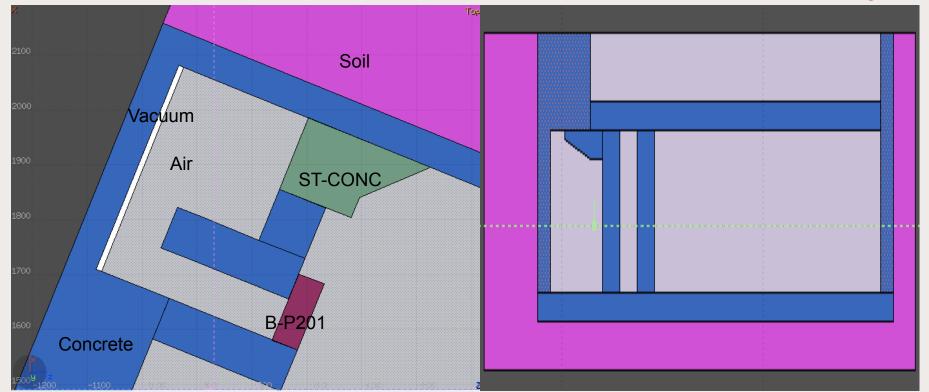

File Edit Options Buffers Tools Help
○ 0.999516423 1.29737E-06 0. ■ 8 1936.45506 4.56949722 -1021.43005 0.00175205552 0.00718068137
0.999972684 0.0050772824 0.
8 1935.60633 -0.502745966 -1021.43005 0.00556555528 -0.000802557732
0.99998419 0.00155284 0.
8 1936.36484 -3.52354256 -1021.43005 -0.0048620425 -0.00570705202
0.999971895 0.0038103439 0.
8 1934.82504 3.28672473 -1021.43005 -0.00738673571 0.00492339478
0.999960597 0.00297589895 0.
8 1931.72437 2.19446206 -1021.43005 -0.00316378897 0.00347310048
0.999988964 0.0550318063 0.
8 1938.04249 1.30379646 -1021.43005 0.00525798389 0.00218529793
0.999983789 0.00466635901 0.
8 1937.51603 3.25645343 -1021.43005 -0.00409499349 0.00504923376
0.999978868 0.00453495781 0. 1 1939.90221 -1.14278777 -1021.43005 -0.000679474313 -0.00152053884
0.999998613 0.0466977019 0.
8 1937.21057 -2.01899852 -1021.43005 -0.00224978208 -0.00319364671
0.99999237 0.00156537199 0.
8 1940.40474 -0.365551085 -1021.43005 0.00388831991 -0.00607222956
0.999974004 4.22285E-08 0.
8 1937.37571 5.58953603 -1021.43005 0.00565641559 0.00939907637
0.999939829 0.000730968312 0.
8 1934.39189 -1.78997808 -1021.43005 -0.00175223924 -0.00246890838
0.999995417 0.0123737352 0.
✓ 8 1935.14385 0.677409649 -1021.43005 -0.00623092486 0.00128301602
: FirstModlneut.dat 1%(L41) (Fundamental)

Output First Step -> Input Second Step

September 17, 2012

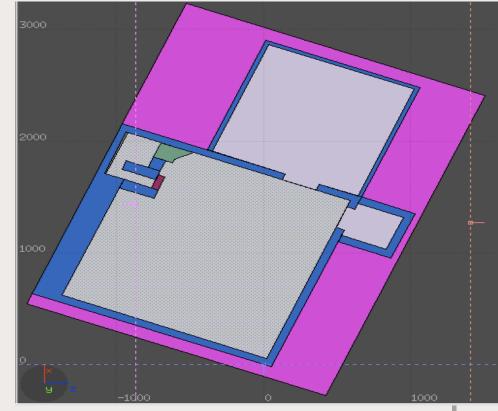
TWO STEP METHOD FOR SHIELDING SIMULATION

First Step – Results/USERBIN Plot


September 17, 2012

TWO STEP METHOD FOR SHIELDING SIMULATION

Second Step - Maze


Second Step: input/launch the hadrons from the Vacuum Region

Second Step – How?

- 1. In **Primary**: SOURCE card + BEAM card
- 2. In **Compile**:
 - Use & Modify source.f user routine -> source2b.f
 - Use soevsv.f user routine
- 3. Check the results
- 4. Normalize accordingly

Second Step – Primary

In **Primary**: SOURCE card + BEAM card

Fluka	TITLE DCYSCORE : 48 cards hidden						
Input	Neutron source read in via	source.f					
General	SOURCE	#1:	#2:	#3:			
Primary	sdum:	#4:	#5:	#6:			
⊕ Geometry	+1+2+3	+1+2+3+4+5+6+7					
🗄 🦲 Media	**************************************	**************************************					
🕂 🦲 Physics	Still need Beam card for er	Still need Beam card for energy range of primaries when scoring					
🗄 🦲 Transport	BEAM	Beam: Energy 🔻	E: 0.5	Part: 🔻			
🗄 🦲 Biasing	∆p: Flat 🔻	Δp: 0.0	∆¢: Flat 🔻	∆¢:0.0			
🗄 🦲 Scoring	Shape(X): Rectangular V	∆x: 0.0	Shape(Y): Rectangular 🔻	∆y: 0.0			
🗄 🦲 Preprocessor	BEAMPOS	×:1950.0	у: 0.0	z:-870.0			
Process		cosx: 0.0	cosy: 0,0	Type: POSITIVE 🔻			
🫁 Plot		ACCURACY STOP : 139 cards hidden					
T 🔁 Red	START	No.: 1.0E+04	Report: default ▼	Time:			

Second Step – Compile (1)

Compile Executable			+ = ▼▲
File	Size	Date	4
soevsv.f source2b.f	2672 9483	2012.09.01 01:23 2012.09.01 01:23	
	5405	2012.09.01 01.25	
Link: Ifluka 🔍 Exe: second 🛛 🛃 🏋 🗸 Default	t main:		
Options:	Γ	D Line 🔽 Bound	l Check
		A Build Compi	ile <u>C</u> lean

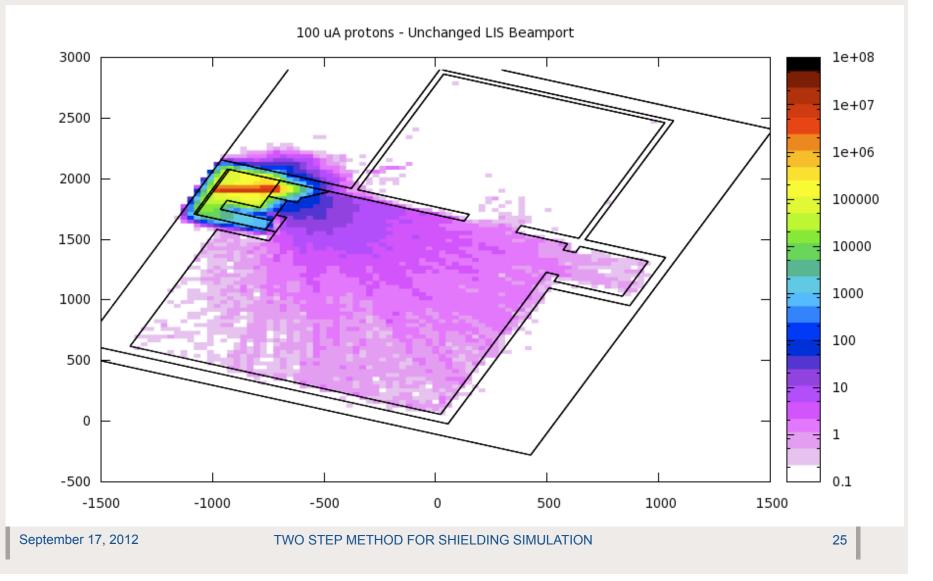
RIUMF

Second Step – Compile (2)

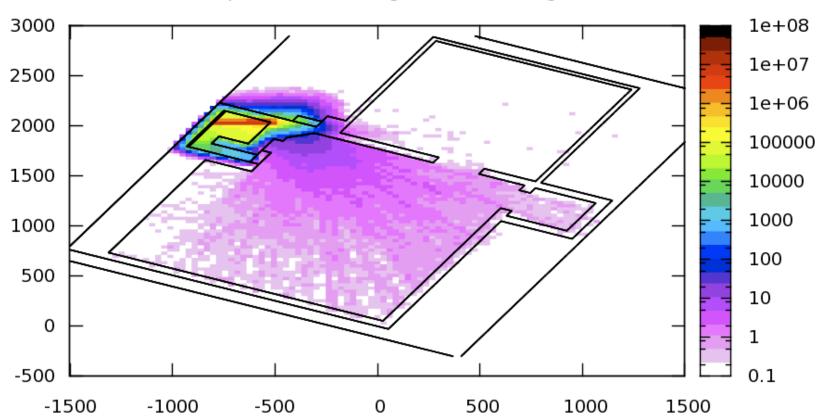
Use & Modify source.f user routine -> source2b.f

```
. . . . . . . . . . . . .
 | First call initializations:
    IF ( LFIRST ) THEN
*** The following 3 cards are mandatory ***
        TKESUM = ZERZER
        LFIRST = .FALSE.
       LUSSRC = .TRUE.
 *** User initialization ***
        WRITE(LUNOUT,*)
       WRITE(LUNOUT, '(a, 132a)') ("*", i=1, 132)
        WRITE(LUNOUT,*)
        WRITE(LUNOUT,*) "Source Collision file for ARIEL RIB B2 Level"
        OPEN(UNIT=41, file='. /FirstModlneut.dat', status='old')
        WRITE(LUNOUT,*)
        WRITE(LUNOUT,*)
        DO i = 1, nlines
          READ(41,*,END=501) IZbeam, Xbpos(i), Ybpos(i), Zbpos(i),
                Xbdir(i), Ybdir(i), Zbdir(i), Tener(i), Bweig(i)
    8
          Jbeam(i) = IZbeam
        END DO
501
       CONTINUE
        Nfile = I-1
        CLOSE(41)
        WRITE (LUNOUT,*) "Source file number of lines", Nfile
        WRITE(LUNOUT, '(a, 132a)') ("*", i=1, 132)
        XDUMMY = 101.D+00
     END IF
```

September 17, 2012


* card. Here it is input as the appropriate particle.

Second Step – Normalization

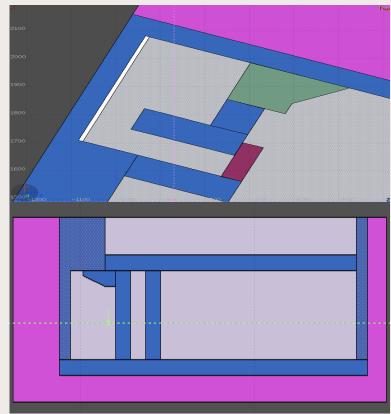

	US	RBIN Plo	t		+ = ▼▲
Plot					
Title: 100 uA protons - Uncha	nged LIS Beamport			Options:	
File: RIBB2_100uAP_Fe&C_All	_Current		.eps	🛛 🛃 Display: 0 🚔	Line Type: 🛛 🔻
Axes Labels				Cat Ciza /	Multiplat
X:	Opt:			Set Size /	Multiplot
Y:	Opt:			✓ legend Width	
CB:	Opt:			liv legena wiath	neight:
· ·	_70 📝 Title: A 75000000 Weight:		A protons on UCx 000.0 Time: *****	(31.5g/cm2) - RIB B Sum file *****	2 Level
Binning Info		01101./2	1 (022)	Min. 1 222446	225.12
Det: 2 RBAnxA	▼ X: [-300 290			Min: 1.222446	
Type: 10: X-Y-Z	Y: [-300 500			Max: 0.115379	
Score: DOSE-EQ	Z: [-1500 15	00] X 101 (Int: 133647.7	28
Projection & Limits	÷	Get	Type: 2D Project	tion V	Coordina
• Y: -43.20988 ▼ 1	\$45.67901	swap	Min: 0.1	Max: 1e+08	Geometry Use: -Auto-
CZ: ▼1	45.07901	r ⊆ errors	CPD: 3	Colors: 27	Pos:
Norm: 3.6E-3*0.62E15*0.25*	▲ ▲	log ₪	Palette: FLUKA		Axes: Auto
Norm. 5.02-5-0.02215-0.25-	4.20E3/7.3E7	l v log	Falette. FLOKA	V Noulia	AXES. AUTO
step normalization	SCORING n	ormaliz	ation: # of I	nadrons score	d / # of primar
September 17, 2012	TWO STEP ME	THOD FOR S	HIELDING SIMULA	TION	24

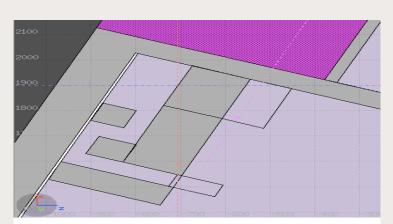
Second Step – USRBIN for Normal Target

Second Step–USRBIN for 5 degrees Rotated Target

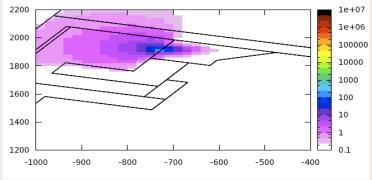
Used ROT-DEFI to rotate the target 5 degrees

100 uA protons UCx - Target Rotated 5 degrees


September 17, 2012


TWO STEP METHOD FOR SHIELDING SIMULATION

RIUMF


Conclusions

- Saves CPU time
- Cannot Bias
- Flexibility in changing the geometry to achieve the optimal solution
- Flexibility in activation assessments

Residual Dose at 100d -100 uA protons on UCx Current

September 17, 2012

TWO STEP METHOD FOR SHIELDING SIMULATION

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you! Merci

Acknowledgements: Anne Trudel, TRIUMF

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada TRIUMF: Alberta | British Columbia | Calgary Carleton | Guelph | Manitoba | McMaster Montréal | Northern British Columbia | Queen's Regina | Saint Mary's | Simon Fraser | Toronto Victoria | Winnipeg | York

