

Characterization of Radioactive Material at CERN

Nick Walter CERN, HSE Unit, Radiation Protection Group

Content

Introduction

- Overview of PhD work
- Material Characterization at CERN
- FLUKA within Characterization Process
 - Radiation Spectra
 - Activity dose rate relation
 - Inhomogeneous activity distribution
- Summary & Outlook

Introduction

 The material flow out of CERN accelerator facilities and experimental zones increases steadily: it generates from maintenance, repair, upgrade and decommissioning of existing installation

The particular conditions at CERN

- wide ranges of particle energies and physical conditions
- many different materials and material compounds
- various irradiation & cooling time scenarios

lead to a wide number of different and time dependent radio nuclide inventories

Main question for

- safe handling
- transportation
- waste management

IS THIS MATERIAL RADIOACTIVE???

PhD Thesis

'Development of an In-Situ Radiological Classification Technique of Material from CERN's Accelerators and Experimental Facilities'

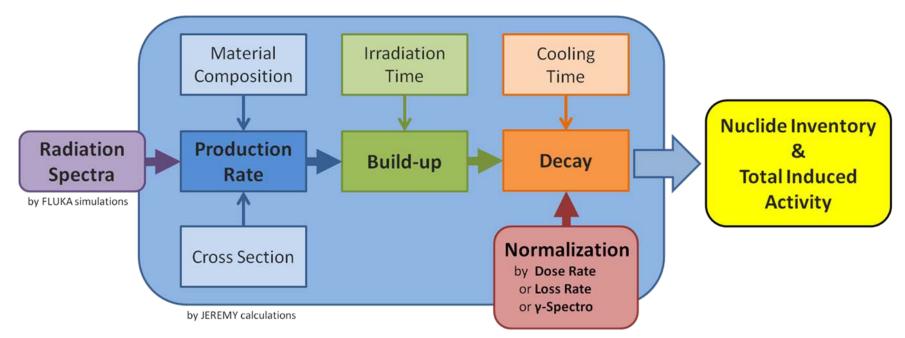
Supervised by Dr. Doris FORKEL-WIRTH, CERN Dr. Robert FROESCHL, CERN Prof. Rafael MACIAN-JUAN, TU Munich

Projects of the last two years

- CERN material catalog / material guide lines / ActiWiz
- Installation and calibration of the total gamma chambers (RADOS RTM 661/440 und RTM 644)
- Measurement campaigns with RADOS RTM 661 & 644
- Material sampling, chemical and radio-chemical analysis
- Measurement campaigns with Canberra Falcon 5000 / ISOCS
- Material release measurements together with VKTA Dresden
- Characterization of LEP ventilation pipes
- Characterization of aluminum coils of the former LEP machine

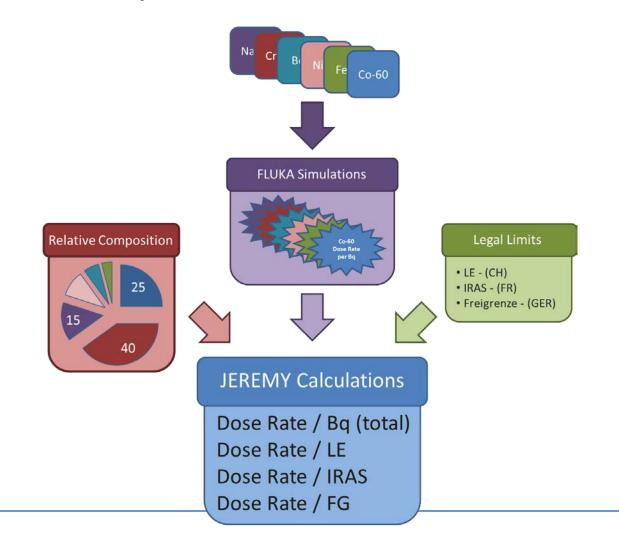
Material Characterization at CERN

3 Procedures


- "On site" operational radiation protection team
 - safe handling/transport
 - zoning concept
 - planning of future use/destination
- "No future use foreseen" radioactive waste team
 - safe treatment and optimized storage
 - classification in treatment classes
- Preparation for elimination radioactive waste team
 - identify elimination path
 - ensure compliance with elimination criteria

Material Characterization at CERN Characterization Methods

- Analytical calculations
- Monte Carlo simulations
- Alpha/beta counter (wipe tests)
- Gamma spectroscopy
- Total gamma chamber
- Dose rate measurements
- Chemical analysis
- Radio-chemical analysis


Radiation Spectra

FLUKA parameters:

Scoring of particle fluence

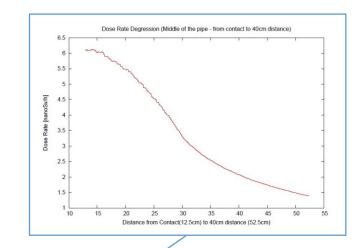
- USRTRACK particle track length
- USRBDX particle boundary crossing

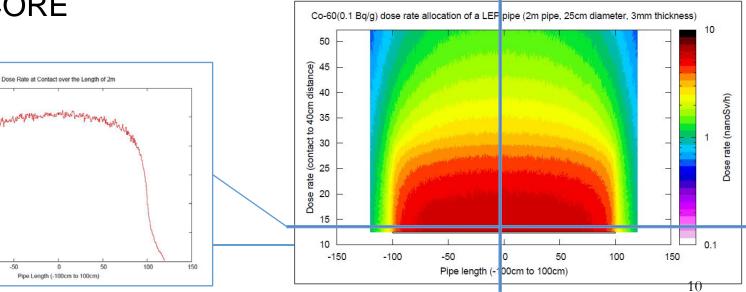
Dose Rate Activity Correlation

FLUKA parameters:

- **BEAM (ISOTOPE)**
- HI-PROBE (Z=27, A=60 -> Co60)
- **BEAMPOS** (Volume, Position) Scoring
- **USRBIN**

ose Rate [nanoSv/h]


2

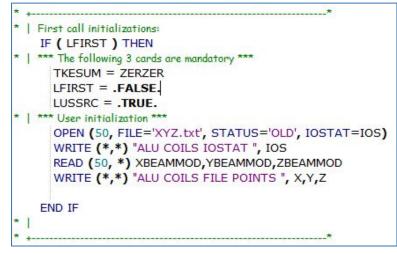

150

-100

-50

DCYSCORE

How to integrate inhomogeneous activity distribution in FLUKA?



- Creation of a dose rate map (via dose rate meter)
- Calculation of fitted probability density function (pdf)
- "Random sampling" creation of pdf distributed random XYZ-coordinates (.txt file)
- FLUKA simulation with SOURCE routine
 - BEAM (photon, E=gamma line i.e. Na-22 = 1.275 MeV & 511 keV)
 - SOURCE.f (particle coordinates read out from the .txt file)
 - "call RACO" (random 3D direction)
 - USRBIN scoring of Dose Eq.

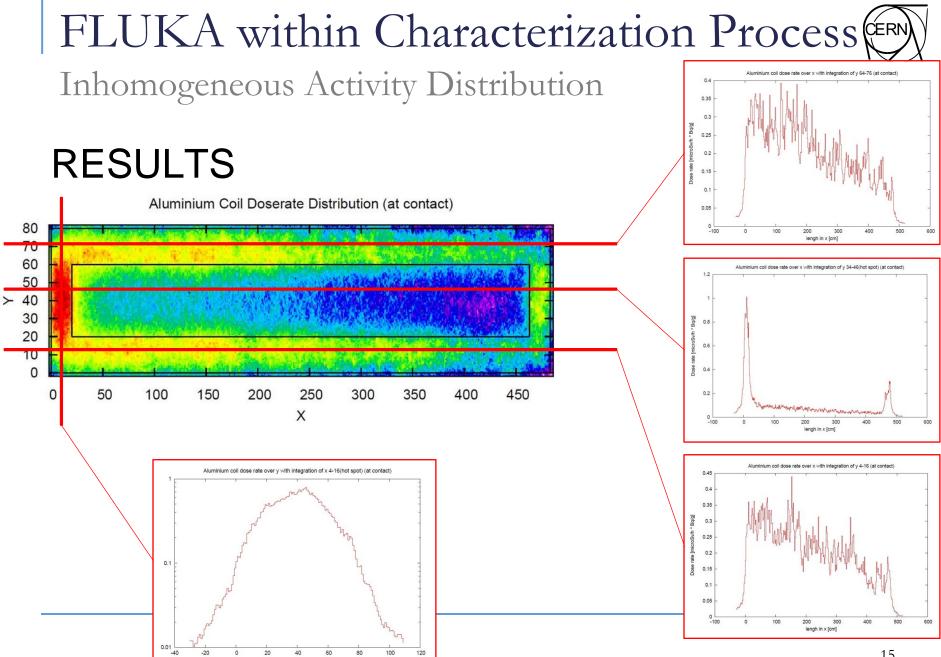
FLUKA parameters: Changes in source.f

*	Particle o	oordinates
	IPCOL	INTER = IPCOUNTER + 1
-		OD(IPCOUNTER, 100) .EQ. 0) THEN
	WRI	(50, *) XBEAMMOD,YBEAMMOD,ZBEAMMOD TE (*,*) "ALU COILS FILE POINTS ", X,Y,Z
	END I	
	XFLK	(NPFLKA) = XBEAMMOD
	YFLK	(NPFLKA) = YBEAMMOD
	ZFLK	(NPFLKA) = ZBEAMMOD

Each point is used 100 times

Initial read in of coordinates

Cosines (tx,ty,tz)	
CALL RACO(TXX, TYY, TZZ)	
TXFLK (NPFLKA) = TXX	
TYFLK (NPFLKA) = TYY	
TZFLK (NPFLKA) = TZZ	


Random direction

FLUKA parameters:

Include .txt file in "rfluka"

#
DATAFILES="sigmapi.bin elasct.bin nuclear.bin fluodt.dat XYZ.txt"
XNLOANFIL="e6r1nds3.fyi jef2.fyi jendl3.fyi"

Compile, create new executable & run

Summary & Outlook


- FLUKA is a helpful tool for characterization
- Can be used in several procedures
- Simulation of inhomogeneous activity distribution possible

Next steps

- Influence of geometry effects (with FLUKA)
- Combination of total gamma chamber and in-situ gamma spectroscopy

FLUKA within characterization process self shielding effects

- The relative radionuclide inventory is determined
- Normalization i.e. per total gamma chamber
- Thus the attenuation length is material and energy dependent calibration measurements for almost all material/geometry combinations are required
- Not for all objects calibration measurements are feasible
- For homogeneous activity distribution within standard geometries and sizes the self shielding effects should be simulated and compared
- The goal is to gain have conservative self shielding factors for any geometry form, size and material combination

FLUKA within characterization process Total Gamma Chamber and in-situ Gamma Spectroscopy In-situ gamma spectroscopy focused on leading nuclides to select conservative nuclide inventory Material Composition worst case **Build-up** Radiation Production FAST 8 or Spectra Rate DECISION Decay by FLUKA simulations scenarios calculated **Cross Section Total gamma chamber** to normalize the nuclide inventory by JEREMY calculations

Thank you for your attention!

Comments, remarks and ideas are welcome!

Many thanks for their very positive contribution to:

Robert Froeschl Joao Saraiva James Chapman

Contact details:

Nick Walter CERN - DGS-RP Group 1211 Geneva 23 Switzerland phone: +41 76 487 9544 e-mail: Nick.Walter@cern.ch