![]() |
![]() |
--------------------------- Binary files from the USRBDX estimator can be accessed by means of the usxsuw.f readout code, which is located in the $FLUPRO/flutil directory. That readout code can be easily compiled. For example, the same compiling and linking FLUKA tools can be used for this purpose: cd $FLUPRO/flutil ./lfluka usxsuw.f -o usxsuw The simplest way, however, is to use the makefile which is available in the $FLUPRO/flutil directory. In that directory, just type: make and all the postprocessing utilities will be compiled and linked. In order to process the 5 output files produced by the proposed example, the following interactive procedure can be used: cd /home/user/flukawork $FLUPRO/flutil/usxsuw The readout code will ask for the first FLUKA detector file name: Type the input file: For each detector file the program will show the content of the TITLE card of the FLUKA input file, the date and time of the FLUKA run and the number of histories for the given run. The request will be iterated until a blank line is given. This will be interpreted as the end of the list of files, and then a name for the output file prefix will be requested. Let's use, for example, the name "pionbdx": Type the input file: example001_fort.47 Charged pion fluence inside and around a proton-irradiated Be target DATE: 7/15/ 5, TIME: 16:22:11 100000. 100000 Type the input file: example002_fort.47 Charged pion fluence inside and around a proton-irradiated Be target DATE: 7/15/ 5, TIME: 16:23: 3 100000. 100000 Type the input file: example003_fort.47 Charged pion fluence inside and around a proton-irradiated Be target DATE: 7/15/ 5, TIME: 16:23:54 100000. 100000 Type the input file: example004_fort.47 Charged pion fluence inside and around a proton-irradiated Be target DATE: 7/15/ 5, TIME: 16:24:51 100000. 100000 Type the input file: example005_fort.47 Charged pion fluence inside and around a proton-irradiated Be target DATE: 7/15/ 5, TIME: 16:25:45 100000. 100000 Type the input file: Type the output file name: pionbdx At this point the following 3 new files are produced: pionbdx pionbdx_sum.lis pionbdx_tab.lis The first one (pionbdx) is again a binary file that can be read out at any time by usxsuw. The content of this file is statistically equivalent to that of the sum of the files used to obtain it, and it can replace them to be combined with further output files if desired (the usxsuw program takes care of giving it the appropriate weight). The other two files are ASCII text files. Let us first examine pionbdx_sum.lis. This contains many comments which can help the user to understand the results. Since by means of the USRBDX command separate detectors for pion fluence and current have been requested, with their output on the same logical unit, there will be two different sections in the file, identified by the word "Detector": Detector no. 1 is for fluence and Detector no. 2 is for current, because this is the order in which the USRBDX commands have been given. Let us inspect the output from Detector no. 1: Charged pion fluence inside and around a proton-irradiated Be target Total primaries run: 500000 Total weight of the primaries run: 500000. Detector n: 1( 1) piFluenUD (Area: 400. cmq, distr. scored: 209 , from reg. 3 to 4, one way scoring, fluence scoring) Tot. resp. (Part/cmq/pr) 8.6904905E-04 +/- 0.6976866 % ( --> (Part/pr) 0.3476196 +/- 0.6976866 % ) The total (summed) number of primaries (histories) is reported at first, then the main features of USRBDX request are summarised. The following numbers represent the energy and angle integrated fluence ("total response"). Here and later, the statistical error is always expressed in percentage. After this heading, the differential fluence tabulation as a function of (pion) energy, and integrated over solid angle, is reported, starting with the boundaries of the energy bins. As a general convention, these values are given from the highest to the lowest value: **** Different. Fluxes as a function of energy **** **** (integrated over solid angle) **** Energy boundaries (GeV): 49.99992 40.27077 32.43475 26.12349 21.04029 16.94620 13.64875 10.99293 8.853892 7.131072 5.743484 4.625898 3.725775 3.000802 2.416896 1.946608 1.567831 1.262757 1.017045 0.8191454 0.6597533 0.5313764 0.4279793 0.3447017 0.2776285 0.2236066 0.1800965 0.1450527 0.1168279 9.4095118E-02 7.5785778E-02 6.1039131E-02 4.9161937E-02 3.9595842E-02 3.1891152E-02 2.5685664E-02 2.0687662E-02 1.6662188E-02 1.3420003E-02 1.0808695E-02 8.7055033E-03 7.0115575E-03 5.6472253E-03 4.5483690E-03 3.6633324E-03 2.9505091E-03 2.3763892E-03 1.9139835E-03 1.5415541E-03 1.2415934E-03 Lowest boundary (GeV): 1.0000000E-03 Flux (Part/GeV/cmq/pr): 1.5418744E-09 +/- 99.00000 % 4.8503271E-08 +/- 6.709127 % 2.3456116E-07 +/- 6.506497 % 5.9040013E-07 +/- 3.466331 % 1.2585346E-06 +/- 4.051404 % 2.5295039E-06 +/- 2.039807 % 4.6113087E-06 +/- 2.195296 % 7.6260553E-06 +/- 1.939942 % 1.2214471E-05 +/- 0.8310503 % 1.8394410E-05 +/- 0.6178440 % 2.6636921E-05 +/- 1.128397 % 3.6855919E-05 +/- 1.204921 % 5.1703457E-05 +/- 1.100655 % 6.9101960E-05 +/- 0.7564522 % 9.0419722E-05 +/- 1.799108 % 1.1945122E-04 +/- 1.256268 % 1.5757892E-04 +/- 0.8898824 % 1.9452766E-04 +/- 1.332425 % 2.4165030E-04 +/- 1.521364 % 3.0573772E-04 +/- 2.473622 % 3.6900895E-04 +/- 1.399170 % 4.4734811E-04 +/- 0.9543594 % 5.2953843E-04 +/- 1.964312 % 6.1596523E-04 +/- 1.349476 % 6.4003764E-04 +/- 3.323846 % 6.8828161E-04 +/- 0.9288639 % 6.8151421E-04 +/- 2.018673 % 7.0822553E-04 +/- 4.401796 % 7.4972271E-04 +/- 2.600316 % 6.9859857E-04 +/- 3.693749 % 6.8915845E-04 +/- 4.332464 % 6.6514849E-04 +/- 8.753220 % 6.4636284E-04 +/- 11.30834 % 5.5008888E-04 +/- 7.691558 % 4.3721433E-04 +/- 11.36630 % 3.2056248E-04 +/- 8.380781 % 4.2511927E-04 +/- 12.24571 % 2.2697043E-04 +/- 12.99932 % 2.0069227E-04 +/- 13.10813 % 1.7180138E-04 +/- 16.90801 % 9.9383309E-05 +/- 21.15753 % 2.9268101E-04 +/- 39.29378 % 1.5672133E-04 +/- 44.01294 % 2.1093644E-04 +/- 34.72458 % 7.4201569E-05 +/- 33.68359 % 7.2452240E-05 +/- 33.54827 % 8.6934262E-05 +/- 62.03180 % 1.0245090E-04 +/- 99.00000 % 1.6312006E-04 +/- 82.06016 % 1.3002084E-04 +/- 52.15991 % Soon after, the cumulative fluence distribution as a function of energy is also given: **** Cumulative Fluxes as a function of energy **** **** (integrated over solid angle) **** Energy boundaries (GeV): 49.99992 40.27077 32.43475 26.12349 21.04029 16.94620 13.64875 10.99293 8.853892 7.131072 5.743484 4.625898 3.725775 3.000802 2.416896 1.946608 1.567831 1.262757 1.017045 0.8191454 0.6597533 0.5313764 0.4279793 0.3447017 0.2776285 0.2236066 0.1800965 0.1450527 0.1168279 9.4095118E-02 7.5785778E-02 6.1039131E-02 4.9161937E-02 3.9595842E-02 3.1891152E-02 2.5685664E-02 2.0687662E-02 1.6662188E-02 1.3420003E-02 1.0808695E-02 8.7055033E-03 7.0115575E-03 5.6472253E-03 4.5483690E-03 3.6633324E-03 2.9505091E-03 2.3763892E-03 1.9139835E-03 1.5415541E-03 1.2415934E-03 Lowest boundary (GeV): 1.0000000E-03 Cumul. Flux (Part/cmq/pr): 1.5001119E-08 +/- 99.00000 % 3.9507350E-07 +/- 7.326498 % 1.8754495E-06 +/- 5.464718 % 4.8765669E-06 +/- 1.819896 % 1.0029117E-05 +/- 1.898280 % 1.8370021E-05 +/- 1.277005 % 3.0616819E-05 +/- 0.6900454 % 4.6929261E-05 +/- 0.9553517 % 6.7972585E-05 +/- 0.7029299 % 9.3496434E-05 +/- 0.6531623 % 1.2326548E-04 +/- 0.5382378 % 1.5644032E-04 +/- 0.6154544 % 1.9392396E-04 +/- 0.6043725 % 2.3427299E-04 +/- 0.5368618 % 2.7679623E-04 +/- 0.5548110 % 3.2204165E-04 +/- 0.6000980 % 3.7011484E-04 +/- 0.6263003 % 4.1791250E-04 +/- 0.6480659 % 4.6573509E-04 +/- 0.7125404 % 5.1446725E-04 +/- 0.7778813 % 5.6183949E-04 +/- 0.8066853 % 6.0809392E-04 +/- 0.7142704 % 6.5219263E-04 +/- 0.7654761 % 6.9350738E-04 +/- 0.7260005 % 7.2808337E-04 +/- 0.8159186 % 7.5803063E-04 +/- 0.7573094 % 7.8191340E-04 +/- 0.7549785 % 8.0190296E-04 +/- 0.7531289 % 8.1894622E-04 +/- 0.7366922 % 8.3173712E-04 +/- 0.6872664 % 8.4189989E-04 +/- 0.6799491 % 8.4980001E-04 +/- 0.6579692 % 8.5598318E-04 +/- 0.6862395 % 8.6022145E-04 +/- 0.6667165 % 8.6293457E-04 +/- 0.6859071 % 8.6453673E-04 +/- 0.6995495 % 8.6624804E-04 +/- 0.6864265 % 8.6698390E-04 +/- 0.6886846 % 8.6750800E-04 +/- 0.6864119 % 8.6786930E-04 +/- 0.6882262 % 8.6803763E-04 +/- 0.6885374 % 8.6843700E-04 +/- 0.6933275 % 8.6860918E-04 +/- 0.6915213 % 8.6879585E-04 +/- 0.6911866 % 8.6884876E-04 +/- 0.6931223 % 8.6889038E-04 +/- 0.6942393 % 8.6893054E-04 +/- 0.6953420 % 8.6896872E-04 +/- 0.6967193 % 8.6901762E-04 +/- 0.6981055 % 8.6904905E-04 +/- 0.6976866 % The numbers for the cumulative distribution have been obtained by multiplying each value of the differential distribution by the corresponding energy bin width (variable if the distribution is logarithmic as in our example). The integral fluence in any given energy interval can be obtained as the difference between the values of the cumulative distribution at the two bounds of that interval. Since more than one angular interval was requested, at this point the angular distribution WITH RESPECT TO THE NORMAL AT THE BOUNDARY CROSSING POINT is reported, both in steradians and in degrees: **** Double diff. Fluxes as a function of energy **** Solid angle minimum value (sr): 0.000000 Solid angle upper boundaries (sr): 0.6283185 1.256637 1.884956 2.513274 3.141593 3.769911 4.398230 5.026548 5.654867 6.283185 Angular minimum value (deg.): 0.000000 Angular upper boundaries (deg.): 25.84193 36.86990 45.57299 53.13010 60.00000 66.42182 72.54239 78.46304 84.26083 90.00000 Let us take for instance the energy bin between 0.345 GeV and 0.278 GeV: Energy interval (GeV): 0.3447016 0.2776284 Flux (Part/sr/GeV/cmq/pr): 2.2090337E-04 +/- 2.271138 % 1.6099877E-04 +/- 2.023665 % 1.2373505E-04 +/- 3.802638 % 9.4749055E-05 +/- 2.419357 % 7.0389280E-05 +/- 5.640523 % 6.6853667E-05 +/- 9.292711 % 6.8042267E-05 +/- 5.421218 % 6.8482914E-05 +/- 11.91976 % 5.8157104E-05 +/- 2.943847 % 4.8027632E-05 +/- 39.71496 % Flux (Part/deg/GeV/cmq/pr): 5.3710260E-06 +/- 2.271138 % 9.1729089E-06 +/- 2.023665 % 8.9330297E-06 +/- 3.802638 % 7.8776966E-06 +/- 2.419357 % 6.4377805E-06 +/- 5.640523 % 6.5410413E-06 +/- 9.292711 % 6.9850003E-06 +/- 5.421218 % 7.2676362E-06 +/- 11.91976 % 6.3026077E-06 +/- 2.943847 % 5.2580162E-06 +/- 39.71496 % The same structure is then replicated for Detector no. 2: Detector n: 2( 2) piCurrUD (Area: 400. cmq, distr. scored: 209 , from reg. 3 to 4, one way scoring, current scoring) Tot. resp. (Part/cmq/pr) 7.1694393E-04 +/- 0.7243900 % ( --> (Part/pr) 0.2867776 +/- 0.7243900 % ) and so on. Note that in this case the ratio between the calculated fluence (8.690E-04) and the corresponding current (7.169E-04) is about 1.2. The ratio between the numerical values of the two quantities would be 1 if the pions were all crossing the boundary at a right angle, 2 in the case of an isotropic distribution, and could even tend to infinity if the particle direction were mainly parallel to the boundary: FLUENCE AND CURRENT ARE VERY DIFFERENT QUANTITIES AND SHOULD NOT BE CONFUSED! Note also that the above output reports also the current value not normalised per unit area. This is equivalent to a simple count of crossing particles, so we see that in our example about 0.287 charged pions per primary proton cross the middle plane of the target. The previous file has a structure which is not easily interfaceable to other readout codes. This can be easily achieved by means of the other output file, pionbdx_tab.lis: there the user can find, for each Detector, a simple 4-column structure for the differential fluence integrated over solid angle. The table starts from the lowest energy and the four columns represent respectively E_min, E_max, the differential fluence and the statistical error in percentage: # Detector n: 1 piFluenUD (integrated over solid angle) # N. of energy intervals 50 1.000E-03 1.242E-03 1.300E-04 5.216E+01 1.242E-03 1.542E-03 1.631E-04 8.206E+01 1.542E-03 1.914E-03 1.025E-04 9.900E+01 1.914E-03 2.376E-03 8.693E-05 6.203E+01 2.376E-03 2.951E-03 7.245E-05 3.355E+01 2.951E-03 3.663E-03 7.420E-05 3.368E+01 3.663E-03 4.548E-03 2.109E-04 3.472E+01 4.548E-03 5.647E-03 1.567E-04 4.401E+01 5.647E-03 7.012E-03 2.927E-04 3.929E+01 ..... By convention, when in a given bin the statistics is not sufficient to calculate a standard deviation, the statistical error is printed as 99%. For a null fluence the statistical error is also null. After this table, the double differential fluence is reported. First, one or more lines marked by a # sign in column 1 give, from minimum to maximum, the extremes of the solid angle intervals. Then, for each energy interval, the minimum and maximum of the interval followed by as many pairs of values as the number of angular bins: the first value is the calculated double-differential quantity (fluence or current) in cm-2 sr-1 and the second is the corresponding statistical error in percent. For instance, for our example we obtain the following printout (for the sake of space only 3 bins in energy are shown): # double differential distributions # number of solid angle intervals 10 # 0.000E+00 6.283E-01 6.283E-01 1.257E+00 1.257E+00 1.885E+00 ... # .... 2.069E-02 2.569E-02 4.013E-05 2.472E+01 4.509E-05 2.068E+01 ... 2.569E-02 3.189E-02 5.408E-05 1.907E+01 4.657E-05 2.200E+01 ... 3.189E-02 3.960E-02 5.150E-05 7.137E+00 5.355E-05 1.587E+01 ... ....