INFN homepage
FLUKA: 2.5.1} Boundary crossing estimator Previous Index Next

2.5.1} Boundary crossing estimator

        ---------------------------

 Binary files from the USRBDX estimator can be accessed by means of the
 usxsuw.f readout code, which is located in the $FLUPRO/flutil directory.

 That readout code can be easily compiled. For example, the same compiling and
 linking FLUKA tools can be used for this purpose:

  cd $FLUPRO/flutil
  ./lfluka usxsuw.f -o usxsuw

 The simplest way, however, is to use the makefile which is available in the
 $FLUPRO/flutil directory. In that directory, just type: make and all the
 postprocessing utilities will be compiled and linked.

 In order to process the 5 output files produced by the proposed example, the
 following interactive procedure can be used:

  cd /home/user/flukawork
  $FLUPRO/flutil/usxsuw

 The readout code will ask for the first FLUKA detector file name:

  Type the input file:

 For each detector file the program will show the content of the TITLE card of
 the FLUKA input file, the date and time of the FLUKA run and the number of
 histories for the given run.  The request will be iterated until a blank line
 is given. This will be interpreted as the end of the list of files, and then
 a name for the output file prefix will be requested. Let's use, for example,
 the name "pionbdx":

  Type the input file: example001_fort.47
  Charged pion fluence inside and around a proton-irradiated Be target
  DATE:  7/15/ 5,  TIME: 16:22:11
   100000.
  100000
  Type the input file: example002_fort.47
  Charged pion fluence inside and around a proton-irradiated Be target
  DATE:  7/15/ 5,  TIME: 16:23: 3
   100000.
  100000
  Type the input file: example003_fort.47
  Charged pion fluence inside and around a proton-irradiated Be target
  DATE:  7/15/ 5,  TIME: 16:23:54
   100000.
  100000
  Type the input file: example004_fort.47
  Charged pion fluence inside and around a proton-irradiated Be target
  DATE:  7/15/ 5,  TIME: 16:24:51
   100000.
  100000
  Type the input file: example005_fort.47
  Charged pion fluence inside and around a proton-irradiated Be target
  DATE:  7/15/ 5,  TIME: 16:25:45
   100000.
  100000
  Type the input file:
  Type the output file name: pionbdx

 At this point the following 3 new files are produced:

  pionbdx
  pionbdx_sum.lis
  pionbdx_tab.lis

 The first one (pionbdx) is again a binary file that can be read out at any
 time by usxsuw. The content of this file is statistically equivalent to that
 of the sum of the files used to obtain it, and it can replace them to be
 combined with further output files if desired (the usxsuw program takes care
 of giving it the appropriate weight).
 The other two files are ASCII text files.

 Let us first examine pionbdx_sum.lis. This contains many comments which can
 help the user to understand the results. Since by means of the USRBDX command
 separate detectors for pion fluence and current have been requested, with
 their output on the same logical unit, there will be two different sections
 in the file, identified by the word "Detector": Detector no. 1 is for fluence
 and Detector no. 2 is for current, because this is the order in which the
 USRBDX commands have been given.

 Let us inspect the output from Detector no. 1:

  Charged pion fluence inside and around a proton-irradiated Be target

    Total primaries run: 500000
    Total weight of the primaries run:  500000.


   Detector n:  1( 1)  piFluenUD
      (Area:         400. cmq,
       distr. scored: 209   ,
       from reg. 3 to  4,
       one way scoring,
       fluence scoring)

      Tot. resp. (Part/cmq/pr)  8.6904905E-04  +/-  0.6976866     %
      ( -->      (Part/pr)      0.3476196      +/-  0.6976866     % )


 The total (summed) number of primaries (histories) is reported at first, then
 the main features of USRBDX request are summarised. The following numbers
 represent the energy and angle integrated fluence ("total response").
 Here and later, the statistical error is always expressed in percentage.

 After this heading, the differential fluence tabulation as a function of
 (pion) energy, and integrated over solid angle, is reported, starting with
 the boundaries of the energy bins. As a general convention, these values are
 given from the highest to the lowest value:

   **** Different. Fluxes as a function of energy ****
   ****      (integrated over solid angle)        ****


   Energy boundaries (GeV):

    49.99992       40.27077       32.43475       26.12349       21.04029
    16.94620       13.64875       10.99293       8.853892       7.131072
    5.743484       4.625898       3.725775       3.000802       2.416896
    1.946608       1.567831       1.262757       1.017045      0.8191454
   0.6597533      0.5313764      0.4279793      0.3447017      0.2776285
   0.2236066      0.1800965      0.1450527      0.1168279      9.4095118E-02
   7.5785778E-02  6.1039131E-02  4.9161937E-02  3.9595842E-02  3.1891152E-02
   2.5685664E-02  2.0687662E-02  1.6662188E-02  1.3420003E-02  1.0808695E-02
   8.7055033E-03  7.0115575E-03  5.6472253E-03  4.5483690E-03  3.6633324E-03
   2.9505091E-03  2.3763892E-03  1.9139835E-03  1.5415541E-03  1.2415934E-03
   Lowest boundary   (GeV):  1.0000000E-03

   Flux (Part/GeV/cmq/pr):

   1.5418744E-09 +/-    99.00000     %   4.8503271E-08 +/-    6.709127     %
   2.3456116E-07 +/-    6.506497     %   5.9040013E-07 +/-    3.466331     %
   1.2585346E-06 +/-    4.051404     %   2.5295039E-06 +/-    2.039807     %
   4.6113087E-06 +/-    2.195296     %   7.6260553E-06 +/-    1.939942     %
   1.2214471E-05 +/-   0.8310503     %   1.8394410E-05 +/-   0.6178440     %
   2.6636921E-05 +/-    1.128397     %   3.6855919E-05 +/-    1.204921     %
   5.1703457E-05 +/-    1.100655     %   6.9101960E-05 +/-   0.7564522     %
   9.0419722E-05 +/-    1.799108     %   1.1945122E-04 +/-    1.256268     %
   1.5757892E-04 +/-   0.8898824     %   1.9452766E-04 +/-    1.332425     %
   2.4165030E-04 +/-    1.521364     %   3.0573772E-04 +/-    2.473622     %
   3.6900895E-04 +/-    1.399170     %   4.4734811E-04 +/-   0.9543594     %
   5.2953843E-04 +/-    1.964312     %   6.1596523E-04 +/-    1.349476     %
   6.4003764E-04 +/-    3.323846     %   6.8828161E-04 +/-   0.9288639     %
   6.8151421E-04 +/-    2.018673     %   7.0822553E-04 +/-    4.401796     %
   7.4972271E-04 +/-    2.600316     %   6.9859857E-04 +/-    3.693749     %
   6.8915845E-04 +/-    4.332464     %   6.6514849E-04 +/-    8.753220     %
   6.4636284E-04 +/-    11.30834     %   5.5008888E-04 +/-    7.691558     %
   4.3721433E-04 +/-    11.36630     %   3.2056248E-04 +/-    8.380781     %
   4.2511927E-04 +/-    12.24571     %   2.2697043E-04 +/-    12.99932     %
   2.0069227E-04 +/-    13.10813     %   1.7180138E-04 +/-    16.90801     %
   9.9383309E-05 +/-    21.15753     %   2.9268101E-04 +/-    39.29378     %
   1.5672133E-04 +/-    44.01294     %   2.1093644E-04 +/-    34.72458     %
   7.4201569E-05 +/-    33.68359     %   7.2452240E-05 +/-    33.54827     %
   8.6934262E-05 +/-    62.03180     %   1.0245090E-04 +/-    99.00000     %
   1.6312006E-04 +/-    82.06016     %   1.3002084E-04 +/-    52.15991     %

 Soon after, the cumulative fluence distribution as a function of energy is
 also given:

   **** Cumulative Fluxes as a function of energy ****
   ****      (integrated over solid angle)        ****


   Energy boundaries (GeV):

    49.99992       40.27077       32.43475       26.12349       21.04029
    16.94620       13.64875       10.99293       8.853892       7.131072
    5.743484       4.625898       3.725775       3.000802       2.416896
    1.946608       1.567831       1.262757       1.017045      0.8191454
   0.6597533      0.5313764      0.4279793      0.3447017      0.2776285
   0.2236066      0.1800965      0.1450527      0.1168279      9.4095118E-02
   7.5785778E-02  6.1039131E-02  4.9161937E-02  3.9595842E-02  3.1891152E-02
   2.5685664E-02  2.0687662E-02  1.6662188E-02  1.3420003E-02  1.0808695E-02
   8.7055033E-03  7.0115575E-03  5.6472253E-03  4.5483690E-03  3.6633324E-03
   2.9505091E-03  2.3763892E-03  1.9139835E-03  1.5415541E-03  1.2415934E-03
   Lowest boundary   (GeV):  1.0000000E-03

   Cumul. Flux (Part/cmq/pr):

   1.5001119E-08 +/-    99.00000     %   3.9507350E-07 +/-    7.326498     %
   1.8754495E-06 +/-    5.464718     %   4.8765669E-06 +/-    1.819896     %
   1.0029117E-05 +/-    1.898280     %   1.8370021E-05 +/-    1.277005     %
   3.0616819E-05 +/-   0.6900454     %   4.6929261E-05 +/-   0.9553517     %
   6.7972585E-05 +/-   0.7029299     %   9.3496434E-05 +/-   0.6531623     %
   1.2326548E-04 +/-   0.5382378     %   1.5644032E-04 +/-   0.6154544     %
   1.9392396E-04 +/-   0.6043725     %   2.3427299E-04 +/-   0.5368618     %
   2.7679623E-04 +/-   0.5548110     %   3.2204165E-04 +/-   0.6000980     %
   3.7011484E-04 +/-   0.6263003     %   4.1791250E-04 +/-   0.6480659     %
   4.6573509E-04 +/-   0.7125404     %   5.1446725E-04 +/-   0.7778813     %
   5.6183949E-04 +/-   0.8066853     %   6.0809392E-04 +/-   0.7142704     %
   6.5219263E-04 +/-   0.7654761     %   6.9350738E-04 +/-   0.7260005     %
   7.2808337E-04 +/-   0.8159186     %   7.5803063E-04 +/-   0.7573094     %
   7.8191340E-04 +/-   0.7549785     %   8.0190296E-04 +/-   0.7531289     %
   8.1894622E-04 +/-   0.7366922     %   8.3173712E-04 +/-   0.6872664     %
   8.4189989E-04 +/-   0.6799491     %   8.4980001E-04 +/-   0.6579692     %
   8.5598318E-04 +/-   0.6862395     %   8.6022145E-04 +/-   0.6667165     %
   8.6293457E-04 +/-   0.6859071     %   8.6453673E-04 +/-   0.6995495     %
   8.6624804E-04 +/-   0.6864265     %   8.6698390E-04 +/-   0.6886846     %
   8.6750800E-04 +/-   0.6864119     %   8.6786930E-04 +/-   0.6882262     %
   8.6803763E-04 +/-   0.6885374     %   8.6843700E-04 +/-   0.6933275     %
   8.6860918E-04 +/-   0.6915213     %   8.6879585E-04 +/-   0.6911866     %
   8.6884876E-04 +/-   0.6931223     %   8.6889038E-04 +/-   0.6942393     %
   8.6893054E-04 +/-   0.6953420     %   8.6896872E-04 +/-   0.6967193     %
   8.6901762E-04 +/-   0.6981055     %   8.6904905E-04 +/-   0.6976866     %

 The numbers for the cumulative distribution have been obtained by multiplying
 each value of the differential distribution by the corresponding energy bin
 width (variable if the distribution is logarithmic as in our example). The
 integral fluence in any given energy interval can be obtained as the
 difference between the values of the cumulative distribution at the two
 bounds of that interval.

 Since more than one angular interval was requested, at this point the angular
 distribution WITH RESPECT TO THE NORMAL AT THE BOUNDARY CROSSING POINT is
 reported, both in steradians and in degrees:

   **** Double diff. Fluxes as a function of energy ****


   Solid angle minimum value (sr):   0.000000

   Solid angle upper boundaries (sr):

   0.6283185       1.256637       1.884956       2.513274       3.141593
    3.769911       4.398230       5.026548       5.654867       6.283185

   Angular minimum value (deg.):   0.000000

   Angular upper boundaries (deg.):

    25.84193       36.86990       45.57299       53.13010       60.00000
    66.42182       72.54239       78.46304       84.26083       90.00000


 Let us take for instance the energy bin between 0.345 GeV and 0.278 GeV:

   Energy interval (GeV):  0.3447016      0.2776284

   Flux (Part/sr/GeV/cmq/pr):

   2.2090337E-04 +/-    2.271138     %   1.6099877E-04 +/-    2.023665     %
   1.2373505E-04 +/-    3.802638     %   9.4749055E-05 +/-    2.419357     %
   7.0389280E-05 +/-    5.640523     %   6.6853667E-05 +/-    9.292711     %
   6.8042267E-05 +/-    5.421218     %   6.8482914E-05 +/-    11.91976     %
   5.8157104E-05 +/-    2.943847     %   4.8027632E-05 +/-    39.71496     %

   Flux (Part/deg/GeV/cmq/pr):

   5.3710260E-06 +/-    2.271138     %   9.1729089E-06 +/-    2.023665     %
   8.9330297E-06 +/-    3.802638     %   7.8776966E-06 +/-    2.419357     %
   6.4377805E-06 +/-    5.640523     %   6.5410413E-06 +/-    9.292711     %
   6.9850003E-06 +/-    5.421218     %   7.2676362E-06 +/-    11.91976     %
   6.3026077E-06 +/-    2.943847     %   5.2580162E-06 +/-    39.71496     %


 The same structure is then replicated for Detector no. 2:

   Detector n:  2( 2)  piCurrUD
      (Area:           400. cmq,
       distr. scored: 209   ,
       from reg. 3 to  4,
       one way scoring,
       current scoring)

      Tot. resp. (Part/cmq/pr)  7.1694393E-04  +/-  0.7243900     %
      ( -->      (Part/pr)      0.2867776      +/-  0.7243900     % )


 and so on.
 Note that in this case the ratio between the calculated fluence (8.690E-04)
 and the corresponding current (7.169E-04) is about 1.2. The ratio between the
 numerical values of the two quantities would be 1 if the pions were all
 crossing the boundary at a right angle, 2 in the case of an isotropic
 distribution, and could even tend to infinity if the particle direction were
 mainly parallel to the boundary:
 FLUENCE AND CURRENT ARE VERY DIFFERENT QUANTITIES AND SHOULD NOT BE CONFUSED!
 Note also that the above output reports also the current value not normalised
 per unit area. This is equivalent to a simple count of crossing particles, so
 we see that in our example about 0.287 charged pions per primary proton cross
 the middle plane of the target.

 The previous file has a structure which is not easily interfaceable to other
 readout codes. This can be easily achieved by means of the other output file,
 pionbdx_tab.lis: there the user can find, for each Detector, a simple
 4-column structure for the differential fluence integrated over solid
 angle. The table starts from the lowest energy and the four columns represent
 respectively E_min, E_max, the differential fluence and the statistical error
 in percentage:

  # Detector n:  1  piFluenUD (integrated over solid angle)
  # N. of energy intervals 50
   1.000E-03  1.242E-03  1.300E-04  5.216E+01
   1.242E-03  1.542E-03  1.631E-04  8.206E+01
   1.542E-03  1.914E-03  1.025E-04  9.900E+01
   1.914E-03  2.376E-03  8.693E-05  6.203E+01
   2.376E-03  2.951E-03  7.245E-05  3.355E+01
   2.951E-03  3.663E-03  7.420E-05  3.368E+01
   3.663E-03  4.548E-03  2.109E-04  3.472E+01
   4.548E-03  5.647E-03  1.567E-04  4.401E+01
   5.647E-03  7.012E-03  2.927E-04  3.929E+01
  .....

 By convention, when in a given bin the statistics is not sufficient to
 calculate a standard deviation, the statistical error is printed as 99%. For
 a null fluence the statistical error is also null.

 After this table, the double differential fluence is reported.  First, one or
 more lines marked by a # sign in column 1 give, from minimum to maximum, the
 extremes of the solid angle intervals. Then, for each energy interval, the
 minimum and maximum of the interval followed by as many pairs of values as
 the number of angular bins: the first value is the calculated
 double-differential quantity (fluence or current) in cm-2 sr-1 and the second
 is the corresponding statistical error in percent.
 For instance, for our example we obtain the following printout (for the sake
 of space only 3 bins in energy are shown):

  # double differential distributions
  # number of solid angle intervals 10
  #   0.000E+00  6.283E-01  6.283E-01  1.257E+00  1.257E+00  1.885E+00  ...
  #
 ....
   2.069E-02  2.569E-02  4.013E-05  2.472E+01  4.509E-05  2.068E+01  ...
   2.569E-02  3.189E-02  5.408E-05  1.907E+01  4.657E-05  2.200E+01  ...
   3.189E-02  3.960E-02  5.150E-05  7.137E+00  5.355E-05  1.587E+01  ...
 ....


Previous Index Next