Quick launch:
Last version:
News:
--
Fluka Release
|
[ <--- prev -- ] [ HOME ] [ -- next ---> ] LAM-BIASUsed to bias the decay length of unstable particles, the inelastic
nuclear interaction length of hadrons, photons and muons and the
direction of decay secondaries
WHAT(1) = U (x-direction cosine) of decay direction biasing Default: 0.0 WHAT(2) = V (y-direction cosine) of decay direction biasing Default: 0.0) WHAT(3) = W (z-direction cosine) of decay direction biasing Default: 1.0 WHAT(4) > 0.0: lambda for decay direction biasing. The degree of biasing decreases with increasing lambda (see Note 5). = 0.0: a user provided routine (UDCDRL, see (13)) is called at each decay event, to provide both direction and lambda for decay direction biasing < 0.0 : resets to default (lambda = 0.25) Default = 0.25 WHAT(5) = not used WHAT(6) = not used for SDUM = DCDRBIAS: WHAT(1) > 0.0: decay direction biasing is activated = 0.0: ignored < 0.0: decay direction biasing is switched off WHAT(2) = not used WHAT(3) = not used WHAT(4) = lower bound of the particle id-numbers (or corresponding name) for which decay direction biasing is to be applied ("From particle WHAT(4)..."). Default = 1.0. WHAT(5) = upper bound of the particle id-numbers (or corresponding name) for which decay direction biasing is to be applied ("...to particle WHAT(5)..."). Default = WHAT(4) if WHAT(4) > 0, 64 otherwise. WHAT(6) = step length in assigning numbers. ("...in steps of WHAT(6)"). Default = 1.0. for all other SDUM's: WHAT(1): biasing parameter for decay length or life, applying only to unstable particles (with particle numbers >= 8). Its meaning differs depending on the value of SDUM, as explained in the following. for SDUM = GDECAY: WHAT(1) < 0.0 : the mean DECAY LENGTH (in cm) of the particle in the LABORATORY frame is set = |WHAT(1)| if smaller than the physical decay length (otherwise it is left unchanged). At the decay point sampled according to the biased probability, Russian Roulette (i.e. random choice) decides whether the particle actually will survive or not after creation of the decay products. The latter are created in any case and their weight adjusted taking into account the ratio between biased and physical survival probability. > 0.0 : the mean DECAY LENGTH (in cm) of the particle in the LABORATORY frame is set = WHAT(1) if smaller than the physical decay length (otherwise it is left unchanged). Let P_u = unbiased probability and P_b = biased probability: at the decay point sampled according to P_b, the particle always survives with a reduced weight W(1 - P_u/P_b), where W is the current weight of the particle before the decay. Its daughters are given a weight W P_u/P_b (as in case WHAT(1) < 0.0). = 0.0 : ignored for SDUM = blank: -1 < WHAT(1) < 0. : the mean LIFE of the particle in its REST frame is REDUCED by a factor = |WHAT(1)|. At the decay point sampled according to the biased probability, Russian Roulette (i.e. random choice) decides whether the particle actually will survive or not after creation of the decay products. The latter are created in any case and their weight adjusted taking into account the ratio between biased and physical survival probability. 0 < WHAT(1) < +1. : the mean LIFE of the particle in the REST frame is REDUCED by a factor = |WHAT(1)|. At the decay point sampled according to the biased probability, the particle always survives with a reduced weight. Its daughters are given the same weight. |WHAT(1)| > 1 : a possible previously given biasing parameter is reset to the default value (no biasing) WHAT(1) = 0 : ignored WHAT(2) : biasing factor for hadronic inelastic interactions -1 < WHAT(2) < 0. : the hadronic inelastic interaction length of the particle is reduced by a factor |WHAT(2)|. At the interaction point sampled according to the biased probability, Russian Roulette (i.e. random choice) decides whether the particle actually will survive or not after creation of the secondaries products. The latter are created in any case and their weight adjusted taking into account the ratio between biased and physical survival probability. 0. < WHAT(2) < 1. : the hadronic inelastic interaction length of the particle is reduced by a factor WHAT(2), At the interaction point sampled according to the biased probability, the particle always survives with a reduced weight. The secondaries are created in any case and their weight adjusted taking into account the ratio between biased and physical survival probability. = 0.0 : ignored |WHAT(2)| >= 1.0 : a possible previously set biasing factor is reset to the default value of 1 (no biasing). WHAT(3) : If > 2.0 : number or name of the material to which the inelastic biasing factor has to be applied. < 0.0 : resets to the default a previously assigned value = 0.0 : ignored if a value has been previously assigned to a specific material, otherwise all materials (default) 0.0 < WHAT(3) =< 2.0 : all materials. WHAT(4) = lower bound of the particle id-numbers (or corresponding name) for which decay or inelastic interaction biasing is to be applied ("From particle WHAT(4)..."). Default = 1.0. WHAT(5) = upper bound of the particle id-numbers (or corresponding name) for which decay or inelastic interaction biasing is to be applied ("...to particle WHAT(5)..."). Default = WHAT(4) if WHAT(4) > 0, 46 otherwise. WHAT(6) = step length in assigning numbers. ("...in steps of WHAT(6)"). Default = 1.0. for SDUM = DECPRI, DECALL, INEPRI, INEALL: SDUM = DECPRI: decay biasing, as requested by another LAM-BIAS card with SDUM = GDECAY or blank, must be applied only to primary particles. = DECALL: decay biasing, as requested by another LAM-BIAS card with SDUM = GDECAY or blank, must be applied to all generations (default). = INEPRI: inelastic hadronic interaction biasing, as requested by another LAM-BIAS card with SDUM = blank, must be applied only to primary particles. = INEALL: inelastic hadronic interaction biasing, as requested by another LAM-BIAS card with SDUM = blank, must be applied to all generations (default) Default (option LAM-BIAS not given): no decay length or inelastic interaction or decay direction biasing Notes:
Examples (number based): *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 LAM-BIAS -3.E+3 1. 1. 13. 16. 0.GDECAY * The mean decay length of pions and kaons (particles 13, 14, 15 and 16) * is set equal to 30 m. Survival of the decaying particle is decided by * Russian Roulette. LAM-BIAS 0.0 0.02 11. 7. 0. 0.INEPRI * The interaction length for nuclear inelastic interactions of primary * photons (particle 7) is reduced by a factor 50 in material 11. * (Note that such a large reduction factor is often necessary for photons, * but generally is not recommended for hadrons). The photon survives after * the nuclear interaction with a reduced weight. The same examples, name based: *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 LAM-BIAS -3.E+3 1. 1. PION+ KAON- 0.GDECAY * LAM-BIAS 0.0 0.02 11. PHOTON 0. 0.INEPRI |
© FLUKA Team 2000–2025